1
|
Naghibi N, Jahangiri N, Khosrowabadi R, Eickhoff CR, Eickhoff SB, Coull JT, Tahmasian M. Embodying Time in the Brain: A Multi-Dimensional Neuroimaging Meta-Analysis of 95 Duration Processing Studies. Neuropsychol Rev 2024; 34:277-298. [PMID: 36857010 PMCID: PMC10920454 DOI: 10.1007/s11065-023-09588-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 03/02/2023]
Abstract
Time is an omnipresent aspect of almost everything we experience internally or in the external world. The experience of time occurs through such an extensive set of contextual factors that, after decades of research, a unified understanding of its neural substrates is still elusive. In this study, following the recent best-practice guidelines, we conducted a coordinate-based meta-analysis of 95 carefully-selected neuroimaging papers of duration processing. We categorized the included papers into 14 classes of temporal features according to six categorical dimensions. Then, using the activation likelihood estimation (ALE) technique we investigated the convergent activation patterns of each class with a cluster-level family-wise error correction at p < 0.05. The regions most consistently activated across the various timing contexts were the pre-SMA and bilateral insula, consistent with an embodied theory of timing in which abstract representations of duration are rooted in sensorimotor and interoceptive experience, respectively. Moreover, class-specific patterns of activation could be roughly divided according to whether participants were timing auditory sequential stimuli, which additionally activated the dorsal striatum and SMA-proper, or visual single interval stimuli, which additionally activated the right middle frontal and inferior parietal cortices. We conclude that temporal cognition is so entangled with our everyday experience that timing stereotypically common combinations of stimulus characteristics reactivates the sensorimotor systems with which they were first experienced.
Collapse
Affiliation(s)
- Narges Naghibi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Nadia Jahangiri
- Faculty of Psychology & Education, Allameh Tabataba'i University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine Research, Structural and functional organisation of the brain (INM-1), Jülich Research Center, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jennifer T Coull
- Laboratoire de Neurosciences Cognitives (UMR 7291), Aix-Marseille Université & CNRS, Marseille, France
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Yao T, Vanduffel W. Spike rates of frontal eye field neurons predict reaction times in a spatial attention task. Cell Rep 2023; 42:112384. [PMID: 37043349 PMCID: PMC10157294 DOI: 10.1016/j.celrep.2023.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Which neuronal signal(s) predict reaction times when subjects respond to a target at covertly attended locations? Although recent studies showed that spike rates are not predictive, it remains a highly contested question. Therefore, we record single-unit activity from frontal eye field (FEF) neurons while macaques are performing a covert spatial attention task. We find that the attentional modulation of spike rates of FEF neurons is strongly correlated with behavioral reaction times. Moreover, this correlation already emerges 1 s before target dimming, which triggers the behavioral responses. This prediction of reaction times by spike rates is found in neurons showing attention-dependent enhanced and suppressed activity for targets and distractors, respectively, yet in varying degrees across subjects. Thus, spike rates of FEF neurons can predict reaction times persistently and well before the operant behavior during selective attention tasks. Such long prediction windows will be useful for developing spike-based brain-machine interfaces.
Collapse
Affiliation(s)
- Tao Yao
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA.
| |
Collapse
|
3
|
Boshra R, Kastner S. Attention control in the primate brain. Curr Opin Neurobiol 2022; 76:102605. [PMID: 35850060 DOI: 10.1016/j.conb.2022.102605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Attention is fundamental to all cognition. In the primate brain, it is implemented by a large-scale network that consists of areas spanning across all major lobes, also including subcortical regions. Classical attention accounts assume that control over the selection process in this network is exerted by 'top-down' mechanisms in the fronto-parietal cortex that influence sensory representations via feedback signals. More recent studies have expanded this view of attentional control. In this review, we will start from a traditional top-down account of attention control, and then discuss more recent findings on feature-based attention, thalamic influences, temporal network dynamics, and behavioral dynamics that collectively lead to substantial modifications. We outline how the different emerging accounts can be reconciled and integrated into a unified theory.
Collapse
Affiliation(s)
- Rober Boshra
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA; Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
4
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Decramer T, Premereur E, Caprara I, Theys T, Janssen P. Temporal dynamics of neural activity in macaque frontal cortex assessed with large-scale recordings. Neuroimage 2021; 236:118088. [PMID: 33915276 DOI: 10.1016/j.neuroimage.2021.118088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
The cortical network controlling the arm and hand when grasping objects consists of several areas in parietal and frontal cortex. Recently, more anterior prefrontal areas have also been implicated in object grasping, but their exact role is currently unclear. To investigate the neuronal encoding of objects during grasping in these prefrontal regions and their relation with other cortical areas of the grasping network, we performed large-scale recordings (more than 2000 responsive sites) in frontal cortex of monkeys during a saccade-reach-grasp task. When an object appeared in peripheral vision, the first burst of activity emerged in prearcuate areas (the FEF and area 45B), followed by dorsal and ventral premotor cortex, and a buildup of activity in primary motor cortex. After the saccade, prearcuate activity remained elevated while primary motor and premotor activity rose in anticipation of the upcoming arm and hand movement. Remarkably, a large number of premotor and prearcuate sites responded when the object appeared in peripheral vision and remained active when the object came into foveal vision. Thus, prearcuate and premotor areas continuously encode object information when directing gaze and grasping objects.
Collapse
Affiliation(s)
- Thomas Decramer
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven and the Leuven Brain Institute, Belgium
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium.
| | - Irene Caprara
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Tom Theys
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven and the Leuven Brain Institute, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Borra E, Luppino G. Comparative anatomy of the macaque and the human frontal oculomotor domain. Neurosci Biobehav Rev 2021; 126:43-56. [PMID: 33737106 DOI: 10.1016/j.neubiorev.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
In non-human primates, at the junction of the prefrontal with the premotor cortex, there is a sector designated as frontal eye field (FEF), involved in controlling oculomotor behavior and spatial attention. Evidence for at least two FEFs in humans is at the basis of the still open issue of the possible homologies between the macaque and the human frontal oculomotor system. In this review article we address this issue suggesting a new view solidly grounded on evidence from the last decade showing that, in macaques, the FEF is at the core of an oculomotor domain in which several distinct areas, including areas 45A and 45B, provide the substrate for parallel processing of different aspects of oculomotor behavior. Based on comparative considerations, we will propose a correspondence between some of the macaque and the human oculomotor fields, thus suggesting sharing of neural substrate for oculomotor control, gaze processing, and orienting attention in space. Accordingly, this article could contribute to settle some aspects of the so-called "enigma" of the human FEF anatomy.
Collapse
Affiliation(s)
- Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy.
| | - Giuseppe Luppino
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| |
Collapse
|
7
|
Mechanistic determinants of effector-independent motor memory encoding. Proc Natl Acad Sci U S A 2020; 117:17338-17347. [PMID: 32647057 DOI: 10.1073/pnas.2001179117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordinated, purposeful movements learned with one effector generalize to another effector, a finding that has important implications for tool use, sports, performing arts, and rehabilitation. This occurs because the motor memory acquired through learning comprises representations that are effector-independent. Despite knowing this for decades, the neural mechanisms and substrates that are causally associated with the encoding of effector-independent motor memories remain poorly understood. Here we exploit intereffector generalization, the behavioral signature of effector-independent representations, to address this crucial gap. We first show in healthy human participants that postlearning generalization across effectors is principally predicted by the level of an implicit mechanism that evolves gradually during learning to produce a temporally stable memory. We then demonstrate that interfering with left but not right posterior parietal cortex (PPC) using high-definition cathodal transcranial direct current stimulation impedes learning mediated by this mechanism, thus potentially preventing the encoding of effector-independent memory components. We confirm this in our final experiment in which we show that disrupting left PPC but not primary motor cortex after learning has been allowed to occur blocks intereffector generalization. Collectively, our results reveal the key mechanism that encodes an effector-independent memory trace and uncover a central role for the PPC in its representation. The encoding of such motor memory components outside primary sensorimotor regions likely underlies a parsimonious neural organization that enables more efficient movement planning in the brain, independent of the effector used to act.
Collapse
|
8
|
Pelekanos V, Mok RM, Joly O, Ainsworth M, Kyriazis D, Kelly MG, Bell AH, Kriegeskorte N. Rapid event-related, BOLD fMRI, non-human primates (NHP): choose two out of three. Sci Rep 2020; 10:7485. [PMID: 32366956 PMCID: PMC7198564 DOI: 10.1038/s41598-020-64376-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/15/2020] [Indexed: 12/03/2022] Open
Abstract
Human functional magnetic resonance imaging (fMRI) typically employs the blood-oxygen-level-dependent (BOLD) contrast mechanism. In non-human primates (NHP), contrast enhancement is possible using monocrystalline iron-oxide nanoparticles (MION) contrast agent, which has a more temporally extended response function. However, using BOLD fMRI in NHP is desirable for interspecies comparison, and the BOLD signal’s faster response function promises to be beneficial for rapid event-related (rER) designs. Here, we used rER BOLD fMRI in macaque monkeys while viewing real-world images, and found visual responses and category selectivity consistent with previous studies. However, activity estimates were very noisy, suggesting that the lower contrast-to-noise ratio of BOLD, suboptimal behavioural performance, and motion artefacts, in combination, render rER BOLD fMRI challenging in NHP. Previous studies have shown that rER fMRI is possible in macaques with MION, despite MION’s prolonged response function. To understand this, we conducted simulations of the BOLD and MION response during rER, and found that no matter how fast the design, the greater amplitude of the MION response outweighs the contrast loss caused by greater temporal smoothing. We conclude that although any two of the three elements (rER, BOLD, NHP) have been shown to work well, the combination of all three is particularly challenging.
Collapse
Affiliation(s)
- Vassilis Pelekanos
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK. .,Department of Experimental Psychology, University of Oxford, Oxford, UK. .,School of Medicine, University of Nottingham, Nottingham, UK.
| | - Robert M Mok
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University College London, London, UK
| | - Olivier Joly
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew Ainsworth
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Diana Kyriazis
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Maria G Kelly
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Andrew H Bell
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nikolaus Kriegeskorte
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| |
Collapse
|
9
|
Caspari N, Arsenault JT, Vandenberghe R, Vanduffel W. Functional Similarity of Medial Superior Parietal Areas for Shift-Selective Attention Signals in Humans and Monkeys. Cereb Cortex 2019; 28:2085-2099. [PMID: 28472289 DOI: 10.1093/cercor/bhx114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 11/14/2022] Open
Abstract
We continually shift our attention between items in the visual environment. These attention shifts are usually based on task relevance (top-down) or the saliency of a sudden, unexpected stimulus (bottom-up), and are typically followed by goal-directed actions. It could be argued that any species that can covertly shift its focus of attention will rely on similar, evolutionarily conserved neural substrates for processing such shift-signals. To address this possibility, we performed comparative fMRI experiments in humans and monkeys, combining traditional, and novel, data-driven analytical approaches. Specifically, we examined correspondences between monkey and human brain areas activated during covert attention shifts. When "shift" events were compared with "stay" events, the medial (superior) parietal lobe (mSPL) and inferior parietal lobes showed similar shift sensitivities across species, whereas frontal activations were stronger in monkeys. To identify, in a data-driven manner, monkey regions that corresponded with human shift-selective SPL, we used a novel interspecies beta-correlation strategy whereby task-related beta-values were correlated across voxels or regions-of-interest in the 2 species. Monkey medial parietal areas V6/V6A most consistently correlated with shift-selective human mSPL. Our results indicate that both species recruit corresponding, evolutionarily conserved regions within the medial superior parietal lobe for shifting spatial attention.
Collapse
Affiliation(s)
- Natalie Caspari
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - John T Arsenault
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.,Harvard Medical School, Department of Radiology, Boston, MA 02115, USA
| |
Collapse
|
10
|
Borra E, Luppino G. Large-scale temporo–parieto–frontal networks for motor and cognitive motor functions in the primate brain. Cortex 2019; 118:19-37. [DOI: 10.1016/j.cortex.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
11
|
Functional MRI in Macaque Monkeys during Task Switching. J Neurosci 2018; 38:10619-10630. [PMID: 30355629 DOI: 10.1523/jneurosci.1539-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022] Open
Abstract
Nonhuman primates have proven to be a valuable animal model for exploring neuronal mechanisms of cognitive control. One important aspect of executive control is the ability to switch from one task to another, and task-switching paradigms have often been used in human volunteers to uncover the underlying neuronal processes. To date, however, no study has investigated task-switching paradigms in nonhuman primates during functional magnetic resonance imaging (fMRI). We trained two rhesus macaques to switch between arm movement, eye movement, and passive fixation tasks during fMRI. Similar to results obtained in human volunteers, task switching elicits increased fMRI activations in prefrontal cortex, anterior cingulate cortex, orbitofrontal cortex, and caudate nucleus. Our results indicate that the macaque monkey is a reliable model with which to investigate higher-order cognitive functioning such as task switching. As such, these results can pave the way for a detailed investigation of the neural basis of complex human behavior.SIGNIFICANCE STATEMENT Task switching is an important aspect of cognitive control, and task-switching paradigms have often been used to investigate higher-order executive functioning in human volunteers. We used a task-switching paradigm in the nonhuman primate during fMRI and found increased activation mainly in prefrontal areas (46, 45, frontal eye field, and anterior cingulate), in orbitofrontal area 12, and in the caudate nucleus. These data fit surprisingly well with previous human imaging data, proving that the monkey is an excellent model to study task switching with high spatiotemporal resolution tools that are currently not applicable in humans. As such, our results pave the way for a detailed interrogation of regions performing similar executive functions in humans and monkeys.
Collapse
|
12
|
Spatial eye-hand coordination during bimanual reaching is not systematically coded in either LIP or PRR. Proc Natl Acad Sci U S A 2018; 115:E3817-E3826. [PMID: 29610356 PMCID: PMC5910835 DOI: 10.1073/pnas.1718267115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
When we reach for something, we also look at it. If we reach for two objects at once, one with each hand, we look first at one and then the other. It is not known which brain areas underlie this coordination. We studied two parietal areas known to be involved in eye and arm movements. Neither area was sensitive to the order in which the targets were looked at. This implies that coordinated saccades are driven by downstream areas and not by the parietal cortex as is commonly assumed. We often orient to where we are about to reach. Spatial and temporal correlations in eye and arm movements may depend on the posterior parietal cortex (PPC). Spatial representations of saccade and reach goals preferentially activate cells in the lateral intraparietal area (LIP) and the parietal reach region (PRR), respectively. With unimanual reaches, eye and arm movement patterns are highly stereotyped. This makes it difficult to study the neural circuits involved in coordination. Here, we employ bimanual reaching to two different targets. Animals naturally make a saccade first to one target and then the other, resulting in different patterns of limb–gaze coordination on different trials. Remarkably, neither LIP nor PRR cells code which target the eyes will move to first. These results suggest that the parietal cortex plays at best only a permissive role in some aspects of eye–hand coordination and makes the role of LIP in saccade generation unclear.
Collapse
|
13
|
Calderon CB, Van Opstal F, Peigneux P, Verguts T, Gevers W. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset. Front Hum Neurosci 2018; 12:93. [PMID: 29593518 PMCID: PMC5861186 DOI: 10.3389/fnhum.2018.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.
Collapse
Affiliation(s)
- Cristian B Calderon
- Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute, Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, Brussels, Belgium.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Filip Van Opstal
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Philippe Peigneux
- Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute, Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, Brussels, Belgium.,UR2NF-Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Brussels, Belgium
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Wim Gevers
- Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute, Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Abstract
In 1992, Goodale and Milner proposed a division of labor in the visual pathways of the primate cerebral cortex. According to their account, the ventral pathway, which projects to occipitotemporal cortex, constructs our visual percepts, while the dorsal pathway, which projects to posterior parietal cortex, mediates the visual control of action. Although the framing of the two-visual-system hypothesis has not been without controversy, it is clear that vision for action and vision for perception have distinct computational requirements, and significant support for the proposed neuroanatomic division has continued to emerge over the last two decades from human neuropsychology, neuroimaging, behavioral psychophysics, and monkey neurophysiology. In this chapter, we review much of this evidence, with a particular focus on recent findings from human neuroimaging and monkey neurophysiology, demonstrating a specialized role for parietal cortex in visually guided behavior. But even though the available evidence suggests that dedicated circuits mediate action and perception, in order to produce adaptive goal-directed behavior there must be a close coupling and seamless integration of information processing across these two systems. We discuss such ventral-dorsal-stream interactions and argue that the two pathways play different, yet complementary, roles in the production of skilled behavior.
Collapse
Affiliation(s)
- Jason P Gallivan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Melvyn A Goodale
- Department of Psychology, University of Western Ontario, London, Ontario, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
15
|
Nelissen K, Vanduffel W. Action Categorization in Rhesus Monkeys: discrimination of grasping from non-grasping manual motor acts. Sci Rep 2017; 7:15094. [PMID: 29118339 PMCID: PMC5678109 DOI: 10.1038/s41598-017-15378-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
The ability to recognize others’ actions is an important aspect of social behavior. While neurophysiological and behavioral research in monkeys has offered a better understanding of how the primate brain processes this type of information, further insight with respect to the neural correlates of action recognition requires tasks that allow recording of brain activity or perturbing brain regions while monkeys simultaneously make behavioral judgements about certain aspects of observed actions. Here we investigated whether rhesus monkeys could actively discriminate videos showing grasping or non-grasping manual motor acts in a two-alternative categorization task. After monkeys became proficient in this task, we tested their ability to generalize to a number of untrained, novel videos depicting grasps or other manual motor acts. Monkeys generalized to a wide range of novel human or conspecific grasping and non-grasping motor acts. They failed, however, for videos showing unfamiliar actions such as a non-biological effector performing a grasp, or a human hand touching an object with the back of the hand. This study shows the feasibility of training monkeys to perform active judgements about certain aspects of observed actions, instrumental for causal investigations into the neural correlates of action recognition.
Collapse
Affiliation(s)
- Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium.
| | - Wim Vanduffel
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium.,Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martino's Center for Biomedical Imaging, Charlestown, Massachusetts, 02129, USA
| |
Collapse
|
16
|
Corbo D, Orban GA. Observing Others Speak or Sing Activates Spt and Neighboring Parietal Cortex. J Cogn Neurosci 2017; 29:1002-1021. [DOI: 10.1162/jocn_a_01103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
To obtain further evidence that action observation can serve as a proxy for action execution and planning in posterior parietal cortex, we scanned participants while they were (1) observing two classes of action: vocal communication and oral manipulation, which share the same effector but differ in nature, and (2) rehearsing and listening to nonsense sentences to localize area Spt, thought to be involved in audio-motor transformation during speech. Using this localizer, we found that Spt is specifically activated by vocal communication, indicating that Spt is not only involved in planning speech but also in observing vocal communication actions. In addition, we observed that Spt is distinct from the parietal region most specialized for observing vocal communication, revealed by an interaction contrast and located in PFm. The latter region, unlike Spt, processes the visual and auditory signals related to other's vocal communication independently. Our findings are consistent with the view that several small regions in the temporoparietal cortex near the ventral part of the supramarginal/angular gyrus border are involved in the planning of vocal communication actions and are also concerned with observation of these actions, though involvements in those two aspects are unequal.
Collapse
|
17
|
Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys. eNeuro 2017; 4:eN-NWR-0306-16. [PMID: 28275714 PMCID: PMC5329620 DOI: 10.1523/eneuro.0306-16.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters, including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were targeted through connections that in most instances were reciprocal and often of different strength. These connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger eye–hand coordination network, from which they can be selectively set in motion by task demands.
Collapse
|
18
|
Janssen P, Verhoef BE, Premereur E. Functional interactions between the macaque dorsal and ventral visual pathways during three-dimensional object vision. Cortex 2017; 98:218-227. [PMID: 28258716 DOI: 10.1016/j.cortex.2017.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
The division of labor between the dorsal and the ventral visual stream in the primate brain has inspired numerous studies on the visual system in humans and in nonhuman primates. However, how and under which circumstances the two visual streams interact is still poorly understood. Here we review evidence from anatomy, modelling, electrophysiology, electrical microstimulation (EM), reversible inactivation and functional imaging in the macaque monkey aimed at clarifying at which levels in the hierarchy of visual areas the two streams interact, and what type of information might be exchanged between the two streams during three-dimensional (3D) object viewing. Neurons in both streams encode 3D structure from binocular disparity, synchronized activity between parietal and inferotemporal areas is present during 3D structure categorization, and clusters of 3D structure-selective neurons in parietal cortex are anatomically connected to ventral stream areas. In addition, caudal intraparietal cortex exerts a causal influence on 3D-structure related activations in more anterior parietal cortex and in inferotemporal cortex. Thus, both anatomical and functional evidence indicates that the dorsal and the ventral visual stream interact during 3D object viewing.
Collapse
Affiliation(s)
- Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium.
| | - Bram-Ernst Verhoef
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium; Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Elsie Premereur
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Battaglia-Mayer A, Babicola L, Satta E. Parieto-frontal gradients and domains underlying eye and hand operations in the action space. Neuroscience 2016; 334:76-92. [DOI: 10.1016/j.neuroscience.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
|
20
|
Heed T, Leone FTM, Toni I, Medendorp WP. Functional versus effector-specific organization of the human posterior parietal cortex: revisited. J Neurophysiol 2016; 116:1885-1899. [PMID: 27466132 PMCID: PMC5144691 DOI: 10.1152/jn.00312.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/27/2016] [Indexed: 11/22/2022] Open
Abstract
In the present study, we show that regions in posterior parietal regions process information independent of the currently used effector (hand, foot, or eye) during goal-directed actions. Functional MRI repetition suppression analysis suggests that generality across effectors holds also on the neuronal level and not just at the level of entire regions. More anterior parietal regions process information only for a specific effector or a subset of effectors. It has been proposed that the posterior parietal cortex (PPC) is characterized by an effector-specific organization. However, strikingly similar functional MRI (fMRI) activation patterns have been found in the PPC for hand and foot movements. Because the fMRI signal is related to average neuronal activity, similar activation levels may result either from effector-unspecific neurons or from intermingled subsets of effector-specific neurons within a voxel. We distinguished between these possibilities using fMRI repetition suppression (RS). Participants made delayed, goal-directed eye, hand, and foot movements to visual targets. In each trial, the instructed effector was identical or different to that of the previous trial. RS effects indicated an attenuation of the fMRI signal in repeat trials. The caudal PPC was active during the delay but did not show RS, suggesting that its planning activity was effector independent. Hand and foot-specific RS effects were evident in the anterior superior parietal lobule (SPL), extending to the premotor cortex, with limb overlap in the anterior SPL. Connectivity analysis suggested information flow between the caudal PPC to limb-specific anterior SPL regions and between the limb-unspecific anterior SPL toward limb-specific motor regions. These results underline that both function and effector specificity should be integrated into a concept of PPC action representation not only on a regional but also on a fine-grained, subvoxel level.
Collapse
Affiliation(s)
- Tobias Heed
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; and Biological Psychology and Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
| | - Frank T M Leone
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Van Dromme IC, Premereur E, Verhoef BE, Vanduffel W, Janssen P. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision. PLoS Biol 2016; 14:e1002445. [PMID: 27082854 PMCID: PMC4833303 DOI: 10.1371/journal.pbio.1002445] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/18/2016] [Indexed: 11/18/2022] Open
Abstract
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.
Collapse
Affiliation(s)
- Ilse C. Van Dromme
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
| | - Elsie Premereur
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
| | - Bram-Ernst Verhoef
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Wim Vanduffel
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
- Harvard Medical School, Boston, Massachusetts, United States of America
- MGH Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States of America
| | - Peter Janssen
- KU Leuven, Laboratorium voor Neuro- en Psychofysiologie, Leuven, Belgium
- * E-mail:
| |
Collapse
|
22
|
Abstract
The brain has a limited capacity and therefore needs mechanisms to selectively enhance the information most relevant to one's current behavior. We refer to these mechanisms as "attention." Attention acts by increasing the strength of selected neural representations and preferentially routing them through the brain's large-scale network. This is a critical component of cognition and therefore has been a central topic in cognitive neuroscience. Here we review a diverse literature that has studied attention at the level of behavior, networks, circuits, and neurons. We then integrate these disparate results into a unified theory of attention.
Collapse
Affiliation(s)
- Timothy J Buschman
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Sabine Kastner
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
23
|
Abstract
In the awake state, shifts of spatial attention alternate with periods of sustained attention at a fixed location or object. Human fMRI experiments revealed the critical role of the superior parietal lobule (SPL) in shifting spatial attention, a finding not predicted by human lesion studies and monkey electrophysiology. To investigate whether a potential homolog of the human SPL shifting region exists in monkeys (Macaca mulatta), we adopted an event-related fMRI paradigm that closely resembled a human experiment (Molenberghs et al., 2007). In this paradigm, a pair of relevant and irrelevant shapes was continuously present on the horizontal meridian. Subjects had to covertly detect a dimming of the relevant shape while ignoring the irrelevant dimmings. The events of interest consisted of the replacement of one stimulus pair by the next. During shift but not stay events, the relevant shape of the new pair appeared at the contralateral position relative to the previous one. Spatial shifting events activated parietal areas V6/V6A and medial intraparietal area, caudo-dorsal visual areas, the most posterior portion of the superior temporal sulcus, and several smaller frontal areas. These areas were not activated during passive stimulation with the same sensory stimuli. During stay events, strong direction-sensitive attention signals were observed in a distributed set of contralateral visual, temporal, parietal, and lateral prefrontal areas, the vast majority overlapping with the sensory stimulus representation. We suggest medial intraparietal area and V6/V6A as functional counterparts of human SPL because they contained the most widespread shift signals in the absence of contralateral stay activity, resembling the functional characteristics of the human SPL shifting area.
Collapse
|