1
|
Greenhouse I. Inhibition for gain modulation in the motor system. Exp Brain Res 2022; 240:1295-1302. [DOI: 10.1007/s00221-022-06351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023]
|
2
|
Lindén H, Berg RW. Why Firing Rate Distributions Are Important for Understanding Spinal Central Pattern Generators. Front Hum Neurosci 2021; 15:719388. [PMID: 34539363 PMCID: PMC8446347 DOI: 10.3389/fnhum.2021.719388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/02/2021] [Indexed: 01/16/2023] Open
Abstract
Networks in the spinal cord, which are responsible for the generation of rhythmic movements, commonly known as central pattern generators (CPGs), have remained elusive for decades. Although it is well-known that many spinal neurons are rhythmically active, little attention has been given to the distribution of firing rates across the population. Here, we argue that firing rate distributions can provide an important clue to the organization of the CPGs. The data that can be gleaned from the sparse literature indicate a firing rate distribution, which is skewed toward zero with a long tail, akin to a normal distribution on a log-scale, i.e., a “log-normal” distribution. Importantly, such a shape is difficult to unite with the widespread assumption of modules composed of recurrently connected excitatory neurons. Spinal modules with recurrent excitation has the propensity to quickly escalate their firing rate and reach the maximum, hence equalizing the spiking activity across the population. The population distribution of firing rates hence would consist of a narrow peak near the maximum. This is incompatible with experiments, that show wide distributions and a peak close to zero. A way to resolve this puzzle is to include recurrent inhibition internally in each CPG modules. Hence, we investigate the impact of recurrent inhibition in a model and find that the firing rate distributions are closer to the experimentally observed. We therefore propose that recurrent inhibition is a crucial element in motor circuits, and suggest that future models of motor circuits should include recurrent inhibition as a mandatory element.
Collapse
Affiliation(s)
- Henrik Lindén
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune W Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Sekiguchi H, Yamanaka K, Takeuchi S, Futatsubashi G, Kadota H, Miyazaki M, Nakazawa K. Acquisition of novel ball-related skills associated with sports experience. Sci Rep 2021; 11:12379. [PMID: 34183685 PMCID: PMC8238969 DOI: 10.1038/s41598-021-91120-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Some individuals can quickly acquire novel motor skills, while others take longer. This study aimed to investigate the relationships between neurophysiological state, sports experience, and novel ball-related skill acquisition. We enrolled 28 healthy collegiate participants. The participants’ neurophysiological data (input–output curve of the corticospinal tract) were recorded through transcranial magnetic stimulation. Subsequently, the participants performed a novel motor task (unilateral two-ball juggling) on a different day, after which they reported their previous sports experience (types and years). We found that individuals with more years of experience in ball sports showed faster acquisition of novel ball-related skills. Further, this result was not limited to any single ball sport. Therefore, the acquisition of novel ball-related skills is associated with familiarity with a ball’s nature. Furthermore, gain of the corticospinal tract was negatively and positively correlated with the years of experience in primary ball and non-ball sports (implemented for the longest time in individuals), respectively. These results could be associated with the extent of proficiency in their primary sport. The chosen type of sports (e.g., ball or non-ball) could critically influence the future acquisition of novel motor skills. This study provides important insights regarding how to approach sports and physical activities.
Collapse
Affiliation(s)
- Hirofumi Sekiguchi
- Sports and Health Management Program, Faculty of Business and Information Sciences, Jobu University, 634-1 Toyazukamachi, Isesaki-shi, Gunma, 372-8588, Japan.
| | - Kentaro Yamanaka
- Graduate School of Life Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo, 154-8533, Japan
| | - Shigeki Takeuchi
- Sports and Health Management Program, Faculty of Business and Information Sciences, Jobu University, 634-1 Toyazukamachi, Isesaki-shi, Gunma, 372-8588, Japan
| | - Genki Futatsubashi
- Faculty of Management, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295, Japan
| | - Hiroshi Kadota
- School of Information, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami-shi, Kochi, 782-8502, Japan
| | - Makoto Miyazaki
- Department of Computer Science, Faculty of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka, 432-8011, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
4
|
Ferreira Viana B, Trajano GS, Ugrinowitsch C, Oliveira Pires F. Caffeine increases motor output entropy and performance in 4 km cycling time trial. PLoS One 2020; 15:e0236592. [PMID: 32790792 PMCID: PMC7425963 DOI: 10.1371/journal.pone.0236592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 11/24/2022] Open
Abstract
Caffeine improves cycling time trial performance through enhanced motor output and muscle recruitment. However, it is unknown if caffeine further increases power output entropy. To investigate the effects of caffeine effects on cycling time trial performance and motor output entropy (MOEn), nine cyclists (VO2MAX of 55 ± 6.1 mL.kg.-1min-1) performed a 4 km cycling time trial (TT4km) after caffeine and placebo ingestion in a counterbalanced order. Power output data were sampled at a 2 Hz frequency, thereafter entropy was estimated on a sliding-window fashion to generate a power output time series. A number of mixed models compared performance and motor output entropy between caffeine and placebo every 25% of the total TT4km distance. Caffeine ingestion improved power output by 8% (p = 0.003) and increased MOEn by 7% (p = 0.018). Cyclists adopted a U-shaped pacing strategy after caffeine ingestion. MOEn mirrored power output responses as an inverted U-shape MOEn during the time trial. Accordingly, a strong inverse correlation was observed between MOEn and power output responses over the last 25% of the TT4km (p < 0.001), regardless of the ingestion, likely reflecting the end spurt during this period (p = 0.016). Caffeine ingestion improved TT4km performance and motor output responses likely due to a greater power output entropy.
Collapse
Affiliation(s)
- Bruno Ferreira Viana
- Physical Education course, Augusto Motta University Center (UNISUAM), Rio de Janeiro, RJ, Brazil
- Physical Education course, Estácio de Sá University (UNESA), Rio de Janeiro, RJ, Brazil
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, SP, Brazil
| | - Gabriel S. Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | | | - Flávio Oliveira Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
5
|
Radosevic M, Willumsen A, Petersen PC, Lindén H, Vestergaard M, Berg RW. Decoupling of timescales reveals sparse convergent CPG network in the adult spinal cord. Nat Commun 2019; 10:2937. [PMID: 31270315 PMCID: PMC6610135 DOI: 10.1038/s41467-019-10822-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
During the generation of rhythmic movements, most spinal neurons receive an oscillatory synaptic drive. The neuronal architecture underlying this drive is unknown, and the corresponding network size and sparseness have not yet been addressed. If the input originates from a small central pattern generator (CPG) with dense divergent connectivity, it will induce correlated input to all receiving neurons, while sparse convergent wiring will induce a weak correlation, if any. Here, we use pairwise recordings of spinal neurons to measure synaptic correlations and thus infer the wiring architecture qualitatively. A strong correlation on a slow timescale implies functional relatedness and a common source, which will also cause correlation on fast timescale due to shared synaptic connections. However, we consistently find marginal coupling between slow and fast correlations regardless of neuronal identity. This suggests either sparse convergent connectivity or a CPG network with recurrent inhibition that actively decorrelates common input.
Collapse
Affiliation(s)
- Marija Radosevic
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Alex Willumsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Peter C Petersen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Neuroscience Institute, New York University, New York, NY, 10016, USA
| | - Henrik Lindén
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Mikkel Vestergaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin-Buch, Germany
| | - Rune W Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
6
|
Berg RW, Willumsen A, Lindén H. When networks walk a fine line: balance of excitation and inhibition in spinal motor circuits. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Abstract
Coordinated movement depends on constant interaction between neural circuits that produce motor output and those that report sensory consequences. Fundamental to this process are mechanisms for controlling the influence that sensory signals have on motor pathways - for example, reducing feedback gains when they are disruptive and increasing gains when advantageous. Sensory gain control comes in many forms and serves diverse purposes - in some cases sensory input is attenuated to maintain movement stability and filter out irrelevant or self-generated signals, or enhanced to facilitate salient signals for improved movement execution and adaptation. The ubiquitous presence of sensory gain control across species at multiple levels of the nervous system reflects the importance of tuning the impact that feedback information has on behavioral output.
Collapse
|
8
|
Naufel S, Glaser JI, Kording KP, Perreault EJ, Miller LE. A muscle-activity-dependent gain between motor cortex and EMG. J Neurophysiol 2019; 121:61-73. [PMID: 30379603 PMCID: PMC6383667 DOI: 10.1152/jn.00329.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 01/04/2023] Open
Abstract
Whether one is delicately placing a contact lens on the surface of the eye or lifting a heavy weight from the floor, the motor system must produce a wide range of forces under different dynamical loads. How does the motor cortex, with neurons that have a limited activity range, function effectively under these widely varying conditions? In this study, we explored the interaction of activity in primary motor cortex (M1) and muscles (electromyograms, EMGs) of two male rhesus monkeys for wrist movements made during three tasks requiring different dynamical loads and forces. Despite traditionally providing adequate predictions in single tasks, in our experiments, a single linear model failed to account for the relation between M1 activity and EMG across conditions. However, a model with a gain parameter that increased with the target force remained accurate across forces and dynamical loads. Surprisingly, this model showed that a greater proportion of EMG changes were explained by the nonlinear gain than the linear mapping from M1. In addition to its theoretical implications, the strength of this nonlinearity has important implications for brain-computer interfaces (BCIs). If BCI decoders are to be used to control movement dynamics (including interaction forces) directly, they will need to be nonlinear and include training data from broad data sets to function effectively across tasks. Our study reinforces the need to investigate neural control of movement across a wide range of conditions to understand its basic characteristics as well as translational implications. NEW & NOTEWORTHY We explored the motor cortex-to-electromyogram (EMG) mapping across a wide range of forces and loading conditions, which we found to be highly nonlinear. A greater proportion of EMG was explained by a nonlinear gain than a linear mapping. This nonlinearity allows motor cortex to control the wide range of forces encountered in the real world. These results unify earlier observations and inform the next-generation brain-computer interfaces that will control movement dynamics and interaction forces.
Collapse
Affiliation(s)
- Stephanie Naufel
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
- Department of Physiology, Northwestern University , Chicago, Illinois
| | - Joshua I Glaser
- Interdepartmental Neuroscience Program, Northwestern University , Chicago, Illinois
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) , Chicago, Illinois
| | - Konrad P Kording
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
- Department of Physiology, Northwestern University , Chicago, Illinois
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) , Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University , Chicago, Illinois
- Department of Applied Mathematics, Northwestern University , Evanston, Illinois
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
- Interdepartmental Neuroscience Program, Northwestern University , Chicago, Illinois
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) , Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University , Chicago, Illinois
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
- Department of Physiology, Northwestern University , Chicago, Illinois
- Interdepartmental Neuroscience Program, Northwestern University , Chicago, Illinois
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) , Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University , Chicago, Illinois
| |
Collapse
|
9
|
Stroud JP, Porter MA, Hennequin G, Vogels TP. Motor primitives in space and time via targeted gain modulation in cortical networks. Nat Neurosci 2018; 21:1774-1783. [PMID: 30482949 PMCID: PMC6276991 DOI: 10.1038/s41593-018-0276-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Motor cortex (M1) exhibits a rich repertoire of neuronal activities to support the generation of complex movements. Although recent neuronal-network models capture many qualitative aspects of M1 dynamics, they can generate only a few distinct movements. Additionally, it is unclear how M1 efficiently controls movements over a wide range of shapes and speeds. We demonstrate that modulation of neuronal input-output gains in recurrent neuronal-network models with a fixed architecture can dramatically reorganize neuronal activity and thus downstream muscle outputs. Consistent with the observation of diffuse neuromodulatory projections to M1, a relatively small number of modulatory control units provide sufficient flexibility to adjust high-dimensional network activity using a simple reward-based learning rule. Furthermore, it is possible to assemble novel movements from previously learned primitives, and one can separately change movement speed while preserving movement shape. Our results provide a new perspective on the role of modulatory systems in controlling recurrent cortical activity.
Collapse
Affiliation(s)
- Jake P Stroud
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK.
| | - Mason A Porter
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA
- Mathematical Institute, University of Oxford, Oxford, UK
- CABDyN Complexity Centre, University of Oxford, Oxford, UK
| | - Guillaume Hennequin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Tim P Vogels
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Guzulaitis R, Hounsgaard J. Synaptic drive in spinal motoneurons during scratch network activity. J Neurophysiol 2018; 120:2542-2554. [DOI: 10.1152/jn.00094.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic activity in motoneurons may provide unique insight in the relation between functional network activity and behavior. During scratch network activity in an ex vivo preparation from red-eared turtles ( Trachemys scripta elegans), excitatory and inhibitory synaptic current can be separated and quantified in voltage-clamp recordings. With this technique, we confirm the reciprocal synaptic excitation and inhibition in hip flexor motoneurons during ipsilateral scratching and show that out-of-phase inhibition and excitation also characterize hip extensor motoneurons during ipsi- and contralateral scratching. In contrast, inhibition precedes and partly overlaps excitation in hip flexor-like motoneurons and delays depolarization of membrane potential. We conclude that out-of-phase excitation and inhibition during rhythmic network activity is a common feature in spinal motoneurons. NEW & NOTEWORTHY During network activity, the firing pattern of individual neurons is shaped by their intrinsic conductances and synaptic input. Quantification of synaptic input is, therefore, essential to understand how the properties of individual neurons contribute to function and help to reveal the structure of the network. Here, we show how a combination of recording techniques can be used to quantify and compare the pattern of synaptic activity in different groups of motoneurons during rhythmic network activity.
Collapse
Affiliation(s)
| | - Jorn Hounsgaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Brownstein CG, Ansdell P, Škarabot J, Frazer A, Kidgell D, Howatson G, Goodall S, Thomas K. Motor cortical and corticospinal function differ during an isometric squat compared with isometric knee extension. Exp Physiol 2018; 103:1251-1263. [DOI: 10.1113/ep086982] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/19/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Callum G. Brownstein
- Faculty of Health and Life Sciences, Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - Ash Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care; Monash University; Melbourne Victoria Australia
| | - Dawson Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care; Monash University; Melbourne Victoria Australia
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
- Water Research Group, School of Environmental Sciences and Development; Northwest University; Potchefstroom South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| |
Collapse
|
12
|
Berg RW. Commentary: Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity. Front Neural Circuits 2018; 12:1. [PMID: 29403360 PMCID: PMC5778114 DOI: 10.3389/fncir.2018.00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/04/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Rune W Berg
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Perrier JF, Rasmussen HB, Jørgensen LK, Berg RW. Intense Activity of the Raphe Spinal Pathway Depresses Motor Activity via a Serotonin Dependent Mechanism. Front Neural Circuits 2018; 11:111. [PMID: 29375322 PMCID: PMC5767281 DOI: 10.3389/fncir.2017.00111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/15/2017] [Indexed: 01/23/2023] Open
Abstract
Motor fatigue occurring during prolonged physical activity has both peripheral and central origins. It was previously demonstrated that the excitability of motoneurons was decreased when a spillover of serotonin could activate extrasynaptic 5-HT1A receptors at the axon initial segment (AIS) of motoneurons. Here we investigated the impact of massive synaptic release of serotonin on motor behavior in an integrated preparation of the adult turtle performing fictive scratching behaviors. We found that a prolonged electrical stimulation of the raphe spinal pathway induced a reversible inhibition of the motor behavior that lasted several tens of seconds. The effect disappeared when the spinal cord was perfused with an antagonist for 5-HT1A receptors. By demonstrating a direct impact of serotonin on motor behavior, we suggest a central role of this monoamine behind central fatigue.
Collapse
Affiliation(s)
- Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne B. Rasmussen
- Department of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone K. Jørgensen
- Department of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune W. Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Berg RW. Neuronal Population Activity in Spinal Motor Circuits: Greater Than the Sum of Its Parts. Front Neural Circuits 2017; 11:103. [PMID: 29311842 PMCID: PMC5742103 DOI: 10.3389/fncir.2017.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 11/27/2022] Open
Abstract
The core elements of stereotypical movements such as locomotion, scratching and breathing are generated by networks in the lower brainstem and the spinal cord. Ensemble activities in spinal motor networks had until recently been merely a black box, but with the emergence of ultra-thin Silicon multi-electrode technology it was possible to reveal the spiking activity of larger parts of the network. A series of experiments revealed unexpected features of spinal networks, such as multiple spiking regimes and lognormal firing rate distributions. The lognormality renders the widespread idea of a typical firing rate ± standard deviation an ill-suited description, and therefore these findings define a new arithmetic of motor networks. Focusing on the population activity behind motor pattern generation this review summarizes this advance and discusses its implications.
Collapse
Affiliation(s)
- Rune W. Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Jensen KHR, Berg RW. Advances and perspectives in tissue clearing using CLARITY. J Chem Neuroanat 2017; 86:19-34. [DOI: 10.1016/j.jchemneu.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
|
16
|
Grigonis R, Alaburda A. Spike threshold dynamics in spinal motoneurons during scratching and swimming. J Physiol 2017; 595:5843-5855. [PMID: 28653361 PMCID: PMC5577544 DOI: 10.1113/jp274434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Action potential threshold can vary depending on firing history and synaptic inputs. We used an ex vivo carapace-spinal cord preparation from adult turtles to study spike threshold dynamics in motoneurons during two distinct types of functional motor behaviour - fictive scratching and fictive swimming. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Slow synaptic integration resulting in a wave of membrane potential depolarization is the factor influencing the threshold potential within firing bursts during motor behaviours. Depolarization of the threshold potential decreases the excitability of motoneurons and may provide a mechanism for stabilization of the response of a motoneuron to intense synaptic inputs to maintain the motor commands within an optimal range for muscle activation. ABSTRACT During functional spinal neural network activity motoneurons receive intense synaptic input, and this could modulate the threshold for action potential generation, providing the ability to dynamically adjust the excitability and recruitment order for functional needs. In the present study we investigated the dynamics of action potential threshold during motor network activity. Intracellular recordings from spinal motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles were performed during two distinct types of motor behaviour - fictive scratching and fictive swimming. We found that the threshold of the first spike in episodes of scratching and swimming was the lowest. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Depolarization of the threshold potential results in decreased excitability of motoneurons. Synaptic inputs do not modulate the threshold of the first action potential during episodes of scratching or of swimming. There is no correlation between changes in spike threshold and interspike intervals within bursts. Slow synaptic integration that results in a wave of membrane potential depolarization rather than fast synaptic events preceding each spike is the factor influencing the threshold potential within firing bursts during motor behaviours.
Collapse
Affiliation(s)
- Ramunas Grigonis
- Department of Neurobiology and BiophysicsInstitute of Biosciences, Vilnius UniversitySauletekio ave. 7LT‐10257VilniusLithuania
| | - Aidas Alaburda
- Department of Neurobiology and BiophysicsInstitute of Biosciences, Vilnius UniversitySauletekio ave. 7LT‐10257VilniusLithuania
| |
Collapse
|
17
|
Hao ZZ, Berkowitz A. Shared Components of Rhythm Generation for Locomotion and Scratching Exist Prior to Motoneurons. Front Neural Circuits 2017; 11:54. [PMID: 28848402 PMCID: PMC5554521 DOI: 10.3389/fncir.2017.00054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/26/2017] [Indexed: 11/13/2022] Open
Abstract
Does the spinal cord use a single network to generate locomotor and scratching rhythms or two separate networks? Previous research showed that simultaneous swim and scratch stimulation (“dual stimulation”) in immobilized, spinal turtles evokes a single rhythm in hindlimb motor nerves with a frequency often greater than during swim stimulation alone or scratch stimulation alone. This suggests that the signals that trigger swimming and scratching converge and are integrated within the spinal cord. However, these results could not determine whether the integration occurs in motoneurons themselves or earlier, in spinal interneurons. Here, we recorded intracellularly from hindlimb motoneurons during dual stimulation. Motoneuron membrane potentials displayed regular oscillations at a higher frequency during dual stimulation than during swim or scratch stimulation alone. In contrast, arithmetic addition of the oscillations during swimming alone and scratching alone with various delays always generated irregular oscillations. Also, the standard deviation of the phase-normalized membrane potential during dual stimulation was similar to those during swimming or scratching alone. In contrast, the standard deviation was greater when pooling cycles of swimming alone and scratching alone for two of the three forms of scratching. This shows that dual stimulation generates a single rhythm prior to motoneurons. Thus, either swimming and scratching largely share a rhythm generator or the two rhythms are integrated into one rhythm by strong interactions among interneurons.
Collapse
Affiliation(s)
- Zhao-Zhe Hao
- Department of Biology, University of Oklahoma, NormanOK, United States.,Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, NormanOK, United States
| | - Ari Berkowitz
- Department of Biology, University of Oklahoma, NormanOK, United States.,Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, NormanOK, United States
| |
Collapse
|
18
|
Vich C, Berg RW, Guillamon A, Ditlevsen S. Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents. Front Comput Neurosci 2017; 11:69. [PMID: 28790909 PMCID: PMC5524927 DOI: 10.3389/fncom.2017.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
Subthreshold fluctuations in neuronal membrane potential traces contain nonlinear components, and employing nonlinear models might improve the statistical inference. We propose a new strategy to estimate synaptic conductances, which has been tested using in silico data and applied to in vivo recordings. The model is constructed to capture the nonlinearities caused by subthreshold activated currents, and the estimation procedure can discern between excitatory and inhibitory conductances using only one membrane potential trace. More precisely, we perform second order approximations of biophysical models to capture the subthreshold nonlinearities, resulting in quadratic integrate-and-fire models, and apply approximate maximum likelihood estimation where we only suppose that conductances are stationary in a 50–100 ms time window. The results show an improvement compared to existent procedures for the models tested here.
Collapse
Affiliation(s)
- Catalina Vich
- Departament de Matemàtiques i Informàtica, Universitat de les Illes BalearsPalma, Spain
| | - Rune W Berg
- Center for Neuroscience, University of CopenhagenCopenhagen, Denmark
| | - Antoni Guillamon
- Departament de Matemàtiques, Universitat Politècnica de CatalunyaBarcelona, Spain
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
19
|
Petersen PC, Berg RW. Spinal Cord Preparation from Adult Red-eared Turtles for Electrophysiological Recordings during Motor Activity. Bio Protoc 2017; 7:e2381. [PMID: 34541120 DOI: 10.21769/bioprotoc.2381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 11/02/2022] Open
Abstract
Although it is known that the generation of movements is performed to a large extent in neuronal circuits located in the spinal cord, the involved mechanisms are still unclear. The turtle as a model system for investigating spinal motor activity has advantages, which far exceeds those of model systems using other animals. The high resistance to anoxia allows for investigation of the fully developed and adult spinal circuitry, as opposed to mammals, which are sensitive to anoxia and where using neonates are often required to remedy the problems. The turtle is mechanically stable and natural sensory inputs can induce multiple complex motor behaviors, without the need for application of neurochemicals. Here, we provide a detailed protocol of how to make the adult turtle preparation, also known as the integrated preparation for electrophysiological investigation. Here, the hind-limb scratch reflex can be induced by mechanical sensory activation, while recording single cells, and the network activity, via intracellular-, extracellular- and electroneurogram recordings. The preparation was developed for the studies by Petersen et al. (2014) and Petersen and Berg (2016), and other ongoing studies.
Collapse
Affiliation(s)
- Peter C Petersen
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Current address: New York University Neuroscience Institute, New York University, New York, New York 10016, USA
| | - Rune W Berg
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Petersen PC, Berg RW. Lognormal firing rate distribution reveals prominent fluctuation-driven regime in spinal motor networks. eLife 2016; 5:e18805. [PMID: 27782883 PMCID: PMC5135395 DOI: 10.7554/elife.18805] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022] Open
Abstract
When spinal circuits generate rhythmic movements it is important that the neuronal activity remains within stable bounds to avoid saturation and to preserve responsiveness. Here, we simultaneously record from hundreds of neurons in lumbar spinal circuits of turtles and establish the neuronal fraction that operates within either a 'mean-driven' or a 'fluctuation-driven' regime. Fluctuation-driven neurons have a 'supralinear' input-output curve, which enhances sensitivity, whereas the mean-driven regime reduces sensitivity. We find a rich diversity of firing rates across the neuronal population as reflected in a lognormal distribution and demonstrate that half of the neurons spend at least 50 % of the time in the 'fluctuation-driven' regime regardless of behavior. Because of the disparity in input-output properties for these two regimes, this fraction may reflect a fine trade-off between stability and sensitivity in order to maintain flexibility across behaviors.
Collapse
Affiliation(s)
- Peter C Petersen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune W Berg
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Grigonis R, Guzulaitis R, Buisas R, Alaburda A. The influence of increased membrane conductance on response properties of spinal motoneurons. Brain Res 2016; 1648:110-118. [PMID: 27450930 DOI: 10.1016/j.brainres.2016.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022]
Abstract
During functional spinal neural network activity motoneurons receive massive synaptic excitation and inhibition, and their membrane conductance increases considerably - they are switched to a high-conductance state. High-conductance states can substantially alter response properties of motoneurons. In the present study we investigated how an increase in membrane conductance affects spike frequency adaptation, the gain (i.e., the slope of the frequency-current relationship) and the threshold for action potential generation. We used intracellular recordings from adult turtle motoneurons in spinal cord slices. Membrane conductance was increased pharmacologically by extracellular application of the GABAA receptor agonist muscimol. Our findings suggest that an increase in membrane conductance of about 40-50% increases the magnitude of spike frequency adaptation, but does not change the threshold for action potential generation. Increased conductance causes a subtractive rather than a divisive effect on the initial and the early frequency-current relationships and may have not only a subtractive but also a divisive effect on the steady-state frequency-current relationship.
Collapse
Affiliation(s)
- Ramunas Grigonis
- Department of Neurobiology and Biophysics, Vilnius University, Sauletekio ave. 7, LT-10222 Vilnius, Lithuania.
| | - Robertas Guzulaitis
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Rokas Buisas
- Department of Neurobiology and Biophysics, Vilnius University, Sauletekio ave. 7, LT-10222 Vilnius, Lithuania
| | - Aidas Alaburda
- Department of Neurobiology and Biophysics, Vilnius University, Sauletekio ave. 7, LT-10222 Vilnius, Lithuania
| |
Collapse
|
22
|
Kobayashi R, Nishimaru H, Nishijo H. Estimation of excitatory and inhibitory synaptic conductance variations in motoneurons during locomotor-like rhythmic activity. Neuroscience 2016; 335:72-81. [PMID: 27561702 DOI: 10.1016/j.neuroscience.2016.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/06/2016] [Accepted: 08/12/2016] [Indexed: 11/28/2022]
Abstract
The rhythmic activity of motoneurons (MNs) that underlies locomotion in mammals is generated by synaptic inputs from the locomotor network in the spinal cord. Thus, the quantitative estimation of excitatory and inhibitory synaptic conductances is essential to understand the mechanism by which the network generates the functional motor output. Conductance estimation is obtained from the voltage-current relationship measured by voltage-clamp- or current-clamp-recording with knowledge of the leak parameters of the recorded neuron. However, it is often difficult to obtain sufficient data to estimate synaptic conductances due to technical difficulties in electrophysiological experiments using in vivo or in vitro preparations. To address this problem, we estimated the average variations in excitatory and inhibitory synaptic conductance during a locomotion cycle from a single voltage trace without measuring the leak parameters. We found that the conductance variations can be accurately reconstructed from a voltage trace of 10 cycles by analyzing synthetic data generated from a computational model. Next, the conductance variations were estimated from mouse spinal MNs in vitro during drug-induced-locomotor-like activity. We found that the peak of excitatory conductance occurred during the depolarizing phase of the locomotor cycle, whereas the peak of inhibitory conductance occurred during the hyperpolarizing phase. These results suggest that the locomotor-like activity is generated by push-pull modulation via excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-0003, Japan; Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|