1
|
Jin L, Liu Y, Wu Y, Huang Y, Zhang D. REST Is Not Resting: REST/NRSF in Health and Disease. Biomolecules 2023; 13:1477. [PMID: 37892159 PMCID: PMC10605157 DOI: 10.3390/biom13101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Chromatin modifications play a crucial role in the regulation of gene expression. The repressor element-1 (RE1) silencing transcription factor (REST), also known as neuron-restrictive silencer factor (NRSF) and X2 box repressor (XBR), was found to regulate gene transcription by binding to chromatin and recruiting chromatin-modifying enzymes. Earlier studies revealed that REST plays an important role in the development and disease of the nervous system, mainly by repressing the transcription of neuron-specific genes. Subsequently, REST was found to be critical in other tissues, such as the heart, pancreas, skin, eye, and vascular. Dysregulation of REST was also found in nervous and non-nervous system cancers. In parallel, multiple strategies to target REST have been developed. In this paper, we provide a comprehensive summary of the research progress made over the past 28 years since the discovery of REST, encompassing both physiological and pathological aspects. These insights into the effects and mechanisms of REST contribute to an in-depth understanding of the transcriptional regulatory mechanisms of genes and their roles in the development and progression of disease, with a view to discovering potential therapeutic targets and intervention strategies for various related diseases.
Collapse
Affiliation(s)
- Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yi Huang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
2
|
Carvalho LB, Dos Santos Sanna PL, Dos Santos Afonso CC, Bondan EF, da Silva Feltran G, Ferreira MR, Birbrair A, Andia DC, Latini A, Foganholi da Silva RA. MicroRNA biogenesis machinery activation and lncRNA and REST overexpression as neuroprotective responses to fight inflammation in the hippocampus. J Neuroimmunol 2023; 382:578149. [PMID: 37481910 DOI: 10.1016/j.jneuroim.2023.578149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Brain Long non-coding RNA (lncRNA) and microRNAs (miRs) play essential roles in the regulation of several important biological processes, including neuronal activity, cognitive processes, neurogenesis, angiogenesis, and neuroinflammation. In this context, the transcriptional repressor, RE1 silencing transcription factor (Rest), acts regulating the expression of neuronal genes as well as of lncRNAs and multiple miRNAs in the central nervous system. Nevertheless, its role in neuroinflammation was less explored. Here, we demonstrate, using an in vivo model of neuroinflammation induced by i.p. injection of LPS (0.33 mg/kg), that neuroinflammation increases gene expression of pro-inflammatory cytokines concomitant with the native and truncated forms of Rest and of non-coding RNAs. Additionally, the increased expression of enzymes Drosha ribonuclease III) (Drosha), Exportin 5 (Xpo5) and Endoribonuclease dicer (Dicer), associated with high expression of neuroprotective miRs 22 and 132 are indicative that the activation of biogenesis of miRs in the hippocampal region is a Central Nervous System (CNS) protective mechanism for the deleterious effects of neuroinflammation. Our results indicate that positive regulation of Rest gene expression in the hippocampal region by neuroinflammation correlates directly with the expression of miRs 22 and 132 and inversely with miR 335. In parallel, the confirmation of the possible alignment between the lncRNAs with miR 335 by bioinformatics corroborates with the sponge effect of Hottip and Hotair hybridizing and inhibiting the pro-inflammatory action of miR 335. This suggests the existence of a possible correlation between the activation of miR biogenesis machinery with increased expression of the transcription factor Rest, contributing to neuroprotection.
Collapse
Affiliation(s)
| | | | | | - Eduardo F Bondan
- CEEpiRG - Center for Epigenetic Study and Genic Regulation, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, SP, Brazil
| | - Geórgia da Silva Feltran
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unity, Botucatu Medical School, São Paulo State University, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Denise Carleto Andia
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, São Paulo, Brazil
| | - Alexandra Latini
- Laboratory of Bioenergetics and Oxidative Stress, LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo A Foganholi da Silva
- Dentistry, University of Taubaté, Taubaté, São Paulo, SP, Brazil; CEEpiRG - Center for Epigenetic Study and Genic Regulation, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
T P, Katta B, Lulu S S, Sundararajan V. Gene expression analysis reveals GRIN1, SYT1, and SYN2 as significant therapeutic targets and drug repurposing reveals lorazepam and lorediplon as potent inhibitors to manage Alzheimer's disease. J Biomol Struct Dyn 2023; 42:10352-10373. [PMID: 37691428 DOI: 10.1080/07391102.2023.2256878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a slowly progressive neurodegenerative disease and a leading cause of dementia. We aim to identify key genes for the development of therapeutic targets and biomarkers for potential treatments for AD. Meta-analysis was performed on six microarray datasets and identified the differentially expressed genes between healthy and Alzheimer's disease samples. Thereafter, we filtered out the common genes which were present in at least four microarray datasets for downstream analysis. We have constructed a gene-gene network for the common genes and identified six hub genes. Furthermore, we investigated the regulatory mechanisms of these hub genes by analysing their interaction with miRNAs and transcription factors. The gene ontology analysis results highlighted the enriched terms significantly associated with hub genes. Through an extensive literature survey, we found that three of the hub genes including GRIN1, SYN2, and SYT1 were critically involved in disease development. To leverage existing drugs for potential repurposing, we predicted drug-gene interaction using the drug-gene interaction database, and performed molecular docking studies. The docking results revealed that the drug compounds had strong interactions and favorable binding with selected hub genes. Lorazepam exhibits a binding energy of -7.3 kcal/mol with GRIN1, Lorediplon exhibits binding energies of -7.7 kcal/mol and -6.3 kcal/mol with the SYT1, and SYN2 respectively. In addition, 100 ns molecular dynamics simulations were carried out for the top complexes and apo protein as well. Furthermore, the MM-PBSA free energy calculations also revealed that these complexes are stable and had favorable energies. According to our study, the identified hub gene could serve as a biomarker as well as a therapeutic target for AD, and the proposed repurposed drug molecules appear to have promising efficacy in treating the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Premkumar T
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bhavana Katta
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sajitha Lulu S
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Zhang N, Yang L, Wen J, Cui H. miR-200b-3p antagomir inhibits neuronal apoptosis in oxygen-glucose deprivation (OGD) model through regulating β-TrCP. Brain Res 2023; 1800:148192. [PMID: 36463959 DOI: 10.1016/j.brainres.2022.148192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Hypoxia-ischemic brain damage (HIBD) is a primary cause of morbidity and disability in survivors of preterm infants. We previously discovered that miR-200b-3p plays an important role in HIBD via targeting Slit2. This study was designed to identify novel targets of miR-200b-3p and investigate the relationship between miR-200b-3p and its downstream effectors. METHODS AND RESULTS Cultured primary rat hippocampal neurons were used in the model of oxygen-glucose deprivation (OGD) and RT-qPCR was utilized to detect the alterations of miR-200b-3p in these cells following the OGD. Our study found that the expression of miR-200b-3p was up-regulated in neurons post OGD. Bioinformatics analysis identified that β transducin repeat-containing protein (β-TrCP) is a target gene of miR-200b-3p, and our luciferase reporter gene assay confirmed that miR-200b-3p can interact with β-TrCP mRNA. Hypoxia-ischemic brain damage was induced in three-day-old SD rats and inhibition of miR-200b-3p by injection of antagomir into bilateral lateral ventricles enhanced β-TrCP expression at both the mRNA and protein levels in rats' brains. TUNEL staining and CCK-8 assays found that the survival of hippocampal neurons in the miR-200b-3p antagomir group was improved significantly (p<0.05), whereas apoptosis of neurons in the miR-200b-3p antagomir group was significantly decreased (p<0.05), as compared with the OGD group. However, silencing of β-TrCP by β-TrCP siRNA impaired the neuroprotective effect of miR-200b-3p antagomir. H&E staining showed that miR-200b-3p attenuated the pathological changes in the hippocampal region of rats with HIBD. CONCLUSION Our study has demonstrated that β-TrCP is a target gene of miR-200b-3p and that inhibition of miR-200b-3p by antagomir attenuates hypoxia-ischemic brain damage via β-TrCP.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jialin Wen
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Veverka P, Brom T, Janovič T, Stojaspal M, Pinkas M, Nováček J, Hofr C. Electron microscopy reveals toroidal shape of master neuronal cell differentiator REST - RE1-silencing transcription factor. Comput Struct Biotechnol J 2022; 21:731-741. [PMID: 36698979 PMCID: PMC9860152 DOI: 10.1016/j.csbj.2022.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The RE1-Silencing Transcription factor (REST) is essential for neuronal differentiation. Here, we report the first 18.5-angstrom electron microscopy structure of human REST. The refined electron map suggests that REST forms a torus that can accommodate DNA double-helix in the central hole. Additionally, we quantitatively described REST binding to the canonical DNA sequence of the neuron-restrictive silencer element. We developed protocols for the expression and purification of full-length REST and the shortened variant REST-N62 produced by alternative splicing. We tested the mutual interaction of full-length REST and the splicing variant REST-N62. Revealed structure-function relationships of master neuronal repressor REST will allow finding new biological ways of prevention and treatment of neurodegenerative disorders and diseases.
Collapse
Key Words
- CD, circular dichroism
- CoIP, coimmunoprecipitation
- DLS, dynamic light scattering
- Differentiation
- EM
- EM, electron microscopy
- Electron microscopy
- IDRs, intrinsically disordered regions
- NRSE, neuron-restrictive silencer element
- NRSF
- NRSF, neuron-restrictive silencer factor
- Neuron-restrictive silencer factor
- Neuronal
- PCNA, proliferating cell nuclear antigen
- RD1/2, repressor domain 1/2
- RE1, repressor element-1
- RE1-silencing transcription factor
- REST
- REST, RE1-silencing transcription factor
- REST-FL, full-length REST
- REST-N62
- REST-N62, splicing isoform of REST, also known as REST4 or REST4-S3
- REST4
- ZF, zinc finger
- aa, amino acid(s)
- bp, base pair(s)
- kDa, kilodaltons
Collapse
Affiliation(s)
- Pavel Veverka
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Tomáš Brom
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Tomáš Janovič
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Martin Stojaspal
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | | | - Jiří Nováček
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Ctirad Hofr
- LifeB, FGP – NCBR, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
- Corresponding author.
| |
Collapse
|
6
|
Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022; 10:3249. [PMID: 36552005 PMCID: PMC9775650 DOI: 10.3390/biomedicines10123249] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.
Collapse
Affiliation(s)
- Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
He CF, Xue WJ, Xu XD, Wang JT, Wang XR, Feng Y, Zhou HG, Guo JC. Knockdown of NRSF Alleviates Ischemic Brain Injury and Microvasculature Defects in Diabetic MCAO Mice. Front Neurol 2022; 13:869220. [PMID: 35645950 PMCID: PMC9136417 DOI: 10.3389/fneur.2022.869220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes is one of the well-established risk factors of stroke and is associated with a poor outcome in patients with stroke. Previous studies have shown that the expression of neuron restrictive silencer factor (NRSF) is elevated in diabetes as well as ischemic stroke. However, the role of NRSF in regulating an outcome of diabetic ischemic stroke has not been completely understood. Here, we hypothesized that diabetes-induced NRSF elevation can aggravate brain injury and cognition impairment in ischemic stroke. The diabetic ischemic stroke mice model was established by 8 weeks of high-fat-diet feeding and 5 days of streptozotocin injection followed by 30 min of middle cerebral artery occlusion (MCAO). We found that diabetes enhanced the MCAO-induced elevation of NRSF in the hippocampus in accompany with an elevation of its corepressors, HDAC1, and mSin3A, and decrease of β-TrCP. By using histological/immunofluorescence staining and neurobehavioral testing, our results showed that the brain damage and learning/memory impairment were aggravated in diabetic ischemic mice but significantly attenuated after stereotaxic injection of NRSF-shRNA. Meanwhile, by performing whole-brain clearing with PEGASOS, microvascular reconstruction, western blotting, and ELISA, we found that NRSF-shRNA markedly alleviated the vasculature disorders and rescued the suppression of NRP-1, VEGF, and VEGFR2 in the hippocampus of diabetic ischemic mice. Therefore, our results demonstrated for the first time that the elevation of hippocampal NRSF plays an important role in alleviating brain injury and cognitive disabilities in diabetic ischemic mice, potentially via the reduction of NRP-1/VEGF signaling.
Collapse
Affiliation(s)
- Cheng-Feng He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Jiao Xue
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Die Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian-Tao Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Xin-Ru Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Yi Feng
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Yi Feng
| | - Hou-Guang Zhou
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Hou-Guang Zhou
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
- Jing-Chun Guo
| |
Collapse
|
8
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX, Zhu C. Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System. Front Cell Dev Biol 2022; 10:834620. [PMID: 35300407 PMCID: PMC8921553 DOI: 10.3389/fcell.2022.834620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.
Collapse
Affiliation(s)
- Xin-Jin Su
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Duo Shen
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Xin Song
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Yang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - De-Sheng Wu
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Butler-Ryan R, Wood IC. The functions of repressor element 1-silencing transcription factor in models of epileptogenesis and post-ischemia. Metab Brain Dis 2021; 36:1135-1150. [PMID: 33813634 PMCID: PMC8272694 DOI: 10.1007/s11011-021-00719-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Epilepsy is a debilitating neurological disorder characterised by recurrent seizures for which 30% of patients are refractory to current treatments. The genetic and molecular aetiologies behind epilepsy are under investigation with the goal of developing new epilepsy medications. The transcriptional repressor REST (Repressor Element 1-Silencing Transcription factor) is a focus of interest as it is consistently upregulated in epilepsy patients and following brain insult in animal models of epilepsy and ischemia. This review analyses data from different epilepsy models and discusses the contribution of REST to epileptogenesis. We propose that in healthy brains REST acts in a protective manner to homeostatically downregulate increases in excitability, to protect against seizure through downregulation of BDNF (Brain-Derived Neurotrophic Factor) and its receptor, TrkB (Tropomyosin receptor kinase B). However, in epilepsy patients and post-seizure, REST may increase to a larger degree, which allows downregulation of the glutamate receptor subunit GluR2. This leads to AMPA glutamate receptors lacking GluR2 subunits, which have increased permeability to Ca2+, causing excitotoxicity, cell death and seizure. This concept highlights therapeutic potential of REST modulation through gene therapy in epilepsy patients.
Collapse
Affiliation(s)
- Ruth Butler-Ryan
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT UK
| | - Ian C. Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
10
|
The Genome-Wide Binding Profile for Human RE1 Silencing Transcription Factor Unveils a Unique Genetic Circuitry in Hippocampus. J Neurosci 2021; 41:6582-6595. [PMID: 34210779 DOI: 10.1523/jneurosci.2059-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Early studies in mouse neurodevelopment led to the discovery of the RE1 Silencing Transcription Factor (REST) and its role as a master repressor of neuronal gene expression. Recently, REST was reported to also repress neuronal genes in the human adult brain. These genes were found to be involved in pro-apoptotic pathways; and their repression, associated with increased REST levels during aging, were found to be neuroprotective and conserved across species. However, direct genome-wide REST binding profiles for REST in adult brain have not been identified for any species. Here, we apply this approach to mouse and human hippocampus. We find an expansion of REST binding sites in the human hippocampus that are lacking in both mouse hippocampus and other human non-neuronal cell types. The unique human REST binding sites are associated with genes involved in innate immunity processes and inflammation signaling which, on the basis of histology and recent public transcriptomic analyses, suggest that these new target genes are repressed in glia. We propose that the increases in REST expression in mid-adulthood presage the beginning of brain aging, and that human REST function has evolved to protect the longevity and function of both neurons and glia in human brain.SIGNIFICANCE STATEMENT The RE1 Silencing Transcription Factor (REST) repressor has served historically as a model for gene regulation during mouse neurogenesis. Recent studies of REST have also suggested a conserved role for REST repressor function across lower species during aging. However, direct genome-wide studies for REST have been lacking for human brain. Here, we perform the first genome-wide analysis of REST binding in both human and mouse hippocampus. The majority of REST-occupied genes in human hippocampus are distinct from those in mouse. Further, the REST-associated genes unique to human hippocampus represent a new set related to innate immunity and inflammation, where their gene dysregulation has been implicated in aging-related neuropathology, such as Alzheimer's disease.
Collapse
|
11
|
Soga T, Nakajima S, Parhar IS. Expression of Repressor Element 1 Silencing Transcription Factor (REST) in Serotonin Neurons in the Adult Male Nile Tilapia ( Oreochromis niloticus). Front Neuroanat 2021; 14:599540. [PMID: 33776659 PMCID: PMC7990894 DOI: 10.3389/fnana.2020.599540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 11/15/2022] Open
Abstract
Repressor element-1 silencing transcription factor (REST) is highly expressed in the dorsal raphe where serotonin (5-hydroxytryptamine, 5-HT) neurons are located. REST works as a transcription factor for the 5-HT receptor and tryptophan hydroxylase two-gene expression. We hypothesized that REST is co-expressed in 5-HT neurons, which, if demonstrated, would be useful to understand the mechanism of 5-HT dysfunction-related disorders such as negative emotions and depression. Therefore, the present study was designed to examine the expression of the REST gene in the brain (forebrain, midbrain, and hindbrain) of adult male Nile tilapia (Oreochromis niloticus) using rt-PCR. Besides, using immunocytochemistry, co-localization of the REST gene was examined in 5-HT neurons and with neuronal-/glial-cell markers. We found a high expression of the REST gene in the midbrain region of the dorsal raphe, an area of 5-HT neurons. Double-label immunocytochemistry showed neuron-specific expression of REST co-localized in 5-HT neurons in the dorsal and ventral parts of the periventricular pretectal nucleus, paraventricular organ, and dorsal and medial raphe nucleus. Since midbrain 5-HT neurons express REST, we speculate that REST may control 5-HT neuronal activity related to negative emotions, including depression.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute Monash Sunway (BRIMS), Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Shingo Nakajima
- Brain Research Institute Monash Sunway (BRIMS), Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute Monash Sunway (BRIMS), Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
12
|
Bliźniewska-Kowalska K, Gałecki P, Szemraj J, Talarowska M. Expression of Selected Genes Involved in Neurogenesis in the Etiopathogenesis of Depressive Disorders. J Pers Med 2021; 11:jpm11030168. [PMID: 33804468 PMCID: PMC7998568 DOI: 10.3390/jpm11030168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
(1) Background: The neurogenic theory suggests that impaired neurogenesis within the dentate gyrus of the hippocampus is one of the factors causing depression. Immunology also has an impact on neurotrophic factors. The aim of the study was to assess the importance of selected genes involved in the process of neurogenesis i.e., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and neuron-restrictive silencer factor (REST gene) in the etiopathogenesis of depressive disorders. (2) Methods: A total of 189 subjects took part in the study (95 depressed patients, 94 healthy controls). Sociodemographic data were collected. The severity of depressive symptoms was assessed using the Hamilton Depression Rating Scale (HDRS). RT-PCR was used to assess gene expression at the mRNA levels, while Enzyme-Linked Immunosorbent Assay (ELISA) was used to assess gene expression at the protein level. (3) Results: Expression of NGF, BDNF, REST genes is lower in depressed patients than in the control group, whereas the expression of GDNF gene is higher in patients with depressive disorders than in the group of healthy volunteers. (4) Conclusions: The expression of selected genes might serve as a biomarker of depression.
Collapse
Affiliation(s)
- Katarzyna Bliźniewska-Kowalska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
- Correspondence: ; Tel.: +48-608-203-624
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Monika Talarowska
- Department of Clinical Psychology, Institute of Psychology University of Lodz, 91-433 Lodz, Poland;
| |
Collapse
|
13
|
Zhang AP, Zhang YY, Liu AF, Wang K, Li C, Liu YE, Zhang YQ, Zhou J, Lv J, Jiang WJ. Molecular mechanism of long-term neuroprotective effects of gradual flow restoration on cerebral ischemia reperfusion injury in MCAO rats. J Stroke Cerebrovasc Dis 2020; 29:105041. [PMID: 32807453 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischemia-reperfusion injuries (IRIs) can aggravate the condition of some patients with acute occlusion of major intracranial artery (AOMIA) who received endovascular thrombectomy. Here, we provided data confirming the association of Repressor Element-1 Silencing Transcription factor (REST) with the long-term neuroprotective effect of the middle cerebral artery occlusion (MCAO) rats underwent Gradual Flow Restoration (GFR). METHODS Long term neuroprotective effects of GFR intervention were evaluated on MCAO rats model after 3d and 7d reperfusion. The neurological deficit score and TTC staining were performed to evaluate the degree of brain damage in GFR and other interventions at different time. Differentially expressed genes related to cerebral ischemia reperfusion injury (CIRI) were initially screened and identified using GSE32529 microarray analysis. REST protein expression in rat brain cortex infarction was detected by Western blot analysis. RESULTS MCAO rats intervened with GFR exhibited reduced neurological deficit (P < 0.05) and alleviated brain infarction volume (P < 0.01). The REST gene with up-regulated expression and its downstream genes with down-regulated expression were screened by Microarray analysis. The brain cortex infarction in MCAO rats produced high levels of REST expression. The GFR intervention inhibited REST expression, and alleviated brain injury on MCAO rats. CONCLUSION Our results demonstrated that GFR intervention plays a long-term neuroprotective role and reduces brain edema and damage at reperfusion, possibly by inhibiting REST expression.
Collapse
Affiliation(s)
- Ai-Ping Zhang
- Medical College of Soochow University, Suzhou, Jiangsu 215123; The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China; Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Ying-Ying Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Ao-Fei Liu
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Kai Wang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Chen Li
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Yun-E Liu
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Yi-Qun Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Ji Zhou
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Jin Lv
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China; Central Laboratory of Research Department, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR china.
| | - Wei-Jian Jiang
- Medical College of Soochow University, Suzhou, Jiangsu 215123; The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China; Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China.
| |
Collapse
|
14
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Chmielewska N, Wawer A, Maciejak P, Turzyńska D, Sobolewska A, Skórzewska A, Osuch B, Płaźnik A, Szyndler J. The role of REST/NRSF, TrkB and BDNF in neurobiological mechanisms of different susceptibility to seizure in a PTZ model of epilepsy. Brain Res Bull 2020; 158:108-115. [PMID: 32151715 DOI: 10.1016/j.brainresbull.2020.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/05/2023]
Abstract
Global transcriptional disturbances are believed to play a major role in the course of epilepsy. Due to the high complexity, the neurobiological mechanisms underlying different susceptibility to seizure and epilepsy are not well known. A transcription factor called REST/NRSF (repressor element 1-silencing transcription factor/neuron-restrictive silencer factor) is believed to contribute to processes associated with seizure development. Its downstream genes, those encoding BDNF (brain-derived neurotrophic factor) and TrkB (BDNF receptor; tropomyosin receptor kinase B), are also thought to play a role. To verify this hypothesis, we used a PTZ kindling model of epilepsy and divided animals into groups according to their different susceptibility to seizure. The concentrations of REST/NRSF, BDNF, and TrkB protein and mRNA were measured in hippocampal homogenates. The level of REST/NRSF protein measured 24 h after the last PTZ injection was increased in animals resistant to kindling and was unchanged in groups of rats kindled after 5, 10 and 20 in.ections of PTZ. In contrast, TrkB protein concentration was enhanced in all kindled rats and was unchanged in the resistant rats. There were no changes in the protein concentration of BDNF in rats with different susceptibility to kindling; however, data from the combined kindled groups vs. the resistant group revealed an increased level of BDNF in resistant animals. In sum, the increased level of protein REST/NRSF in resistant animals may reflect its neuroprotective role against seizure development. The increased concentration of TrkB protein in kindled animals indicates its pivotal role in the process of epileptogenesis. We propose that in resistant rats, REST/NRSF could contribute to the prevention of TrkB activation related to seizures.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland.
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland.
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland.
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland.
| | - Bartosz Osuch
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland.
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957, Warsaw, Poland.
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| |
Collapse
|
16
|
Tiwari R, Manzar N, Bhatia V, Yadav A, Nengroo MA, Datta D, Carskadon S, Gupta N, Sigouros M, Khani F, Poutanen M, Zoubeidi A, Beltran H, Palanisamy N, Ateeq B. Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat Commun 2020; 11:384. [PMID: 31959826 PMCID: PMC6971084 DOI: 10.1038/s41467-019-14184-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Emergence of an aggressive androgen receptor (AR)-independent neuroendocrine prostate cancer (NEPC) after androgen-deprivation therapy (ADT) is well-known. Nevertheless, the majority of advanced-stage prostate cancer patients, including those with SPINK1-positive subtype, are treated with AR-antagonists. Here, we show AR and its corepressor, REST, function as transcriptional-repressors of SPINK1, and AR-antagonists alleviate this repression leading to SPINK1 upregulation. Increased SOX2 expression during NE-transdifferentiation transactivates SPINK1, a critical-player for maintenance of NE-phenotype. SPINK1 elicits epithelial-mesenchymal-transition, stemness and cellular-plasticity. Conversely, pharmacological Casein Kinase-1 inhibition stabilizes REST, which in cooperation with AR causes SPINK1 transcriptional-repression and impedes SPINK1-mediated oncogenesis. Elevated levels of SPINK1 and NEPC markers are observed in the tumors of AR-antagonists treated mice, and in a subset of NEPC patients, implicating a plausible role of SPINK1 in treatment-related NEPC. Collectively, our findings provide an explanation for the paradoxical clinical-outcomes after ADT, possibly due to SPINK1 upregulation, and offers a strategy for adjuvant therapies.
Collapse
Affiliation(s)
- Ritika Tiwari
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Vipul Bhatia
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Anjali Yadav
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Mushtaq A Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Shannon Carskadon
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Michael Sigouros
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Amina Zoubeidi
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nallasivam Palanisamy
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India.
| |
Collapse
|
17
|
Poiana G, Gioia R, Sineri S, Cardarelli S, Lupo G, Cacci E. Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone. Neural Regen Res 2020; 15:1773-1783. [PMID: 32246617 PMCID: PMC7513981 DOI: 10.4103/1673-5374.280301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.
Collapse
Affiliation(s)
- Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Serena Sineri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Larrick JW, Mendelsohn AR. Increased REST to Optimize Life Span? Rejuvenation Res 2019; 22:529-532. [PMID: 31762373 DOI: 10.1089/rej.2019.2287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reduced levels of neural activity are associated with a longer life span in the nematode Caenorhabditis elegans and in mice. Augmented neural activity is associated with a shorter life span. Recent studies show that levels of repressor element 1-silencing transcription factor (REST) increase with normal aging in mice and humans, and reduce neuronal excitation. In C. elegans, increased expression of spr-4, a functional REST homologue, increased the worm life span and is required for classical life span increase mediated by reduced DAF-2/insulin-IGF-1 and increased DAF-16. Preliminary evidence shows that REST and FOXO1, a DAF-16, homologue increase during mammalian aging, and that REST activity is needed for the age-related FOXO1 increase. On the contrary, REST is activated in epilepsy and plays a role in the pathogenesis of Huntington's disease. A simple unifying hypothesis suggests that REST is a "goldilocks-effect factor": too little REST promotes excitotoxic activity, which in turn leads to neurodegenerative diseases such as Alzheimer's. Appropriate increased levels of REST maintain the excitation/inhibition (E-I) balance by reducing potential excitotoxic activity. Increased levels of REST beyond this are toxic as neurons become dysfunctional due to loss of a neuronal phenotype.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnyvale, California.,Regenerative Sciences Institute, Sunnyvale, California
| | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California.,Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
19
|
The interaction between RE1-silencing transcription factor (REST) and heat shock protein 90 as new therapeutic target against Huntington's disease. PLoS One 2019; 14:e0220393. [PMID: 31361762 PMCID: PMC6667143 DOI: 10.1371/journal.pone.0220393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
The wild type huntingtin protein (Htt), supports the production of brain-derived neurotrophic factor (BDNF), a survival factor for striatal neurons, through cytoplasmic sequestering of RE-1silencing transcription factor (REST). In Huntington´s Disease an inherited degenerative disease, caused by a CAG expansion in the 5´coding region of the gene, the mutant huntingtin protein (mHtt), causes that REST enters pathologically into the nucleus of cells, resulting in the repression of neuronal genes including BDNF, resulting in the progressive neuronal death. It has been reported that Htt associates with Hsp90 and this interaction is involved in regulation of huntingtin aggregation. Discovering mechanisms to reduce the cellular levels of mutant huntingtin and REST provide promising strategies for treating Huntington disease. Here, we use the yeast two-hybrid system to show that N-terminus or REST interacts with the heat shock protein 90 (Hsp90) and identifies REST as an Hsp90 Client Protein. To assess the effects of Hsp90 we used antisense oligonucleotide, and evaluated the levels mHtt and REST levels. Our results show that direct knockdown of endogenous Hsp90 significantly reduces the levels of REST and mutant Huntingtin, decreased the percentage of cells with mHtt in nucleus and rescued cells from mHtt-induced cellular cytotoxicity. Additionally Hsp90–specific inhibitors geldanamicyn and PUH71 dramatically reduced mHtt and REST levels, thereby providing neuroprotective activity. Our data show that Hsp90 is necessary to maintain the levels of REST and mHtt, which suggests that the interactions between Hsp90-REST and Hsp90-Huntingtin could be potential therapeutic targets in Huntington's disease.
Collapse
|
20
|
Fang M, Zhao Y, Liu X. High Aβ load may cause microglial cell dysfunction and reduced nuclear repressor element-1 silencing transcription factor (REST) expression which might be ascribed to its degradation by ubiquitination. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:338. [PMID: 31475208 DOI: 10.21037/atm.2019.06.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background This study aimed to investigate the effects of high Aβ load on the microglial function, neuronal activity, and repressor element-1 silencing transcription factor (REST) expression and nuclear localization and further explore the mechanism underlying nuclear REST deficiency and the correlation between pathology and symptoms in Alzheimer's disease (AD). Methods BV2 cells and N2A cells were treated with Aβ at different concentrations, and the viability, apoptosis and autophagy of these cells were further evaluated. The expression of major histocompatibility complex class II (MHC-II, a marker of microglial activation), REST in the neurons and REST specific phosphorylase casein kinase 1 (CK1) were detected. Results Aβ at a low concentration (2.5 µmol/L) could alter the microglial morphology, and the proportion of amoebic microglia and protein expression of MHC-II increased in a Aβ concentration dependent manner. Aβ at a high concentration (10 µmol/L) was able to reduce REST expression, elevate the expression of pro-apoptotic and pro-autophagic genes, inhibit the expression of anti-apoptotic gene, and reduce the neuronal activity. REST expression reduced, but CK1 increased in neurons, and CK1 inhibitor significantly increased REST expression. there was co-expression of REST and CK1 in the brain of AD mice, which was characterized by reduced nuclear REST expression and elevated CK1 expression. Conclusions High Aβ load may cause microglial cell dysfunction and loss of REST expression in the neurons, resulting in dementia. The reduced nuclear REST might be ascribed to its degradation by ubiquitination. This supports the hypothesis that high plaque load may increase the risk for dementia.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yanxin Zhao
- Department of Neurology, Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xueyuan Liu
- Department of Neurology, Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
21
|
Chronic lead exposure decreases the expression of Huntingtin-associated protein 1 (HAP1) through Repressor element-1 silencing transcription (REST). Toxicol Lett 2019; 306:1-10. [DOI: 10.1016/j.toxlet.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/27/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023]
|
22
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
23
|
Freitas-Andrade M, Wang N, Bechberger JF, De Bock M, Lampe PD, Leybaert L, Naus CC. Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. J Exp Med 2019; 216:916-935. [PMID: 30872361 PMCID: PMC6446879 DOI: 10.1084/jem.20171452] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/31/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
This study demonstrates that astrocytic connexin43 gap junction hemichannels are largely controlled by four C-terminal tail–located serine residues and provides mechanistic insight on how phosphorylation of these residues affects recovery from stroke. Connexin43 (Cx43) function is influenced by kinases that phosphorylate specific serine sites located near its C-terminus. Stroke is a powerful inducer of kinase activity, but its effect on Cx43 is unknown. We investigated the impact of wild-type (WT) and knock-in Cx43 with serine to alanine mutations at the protein kinase C (PKC) site Cx43S368A, the casein kinase 1 (CK1) sites Cx43S325A/328Y/330A, and the mitogen-activated protein kinase (MAPK) sites Cx43S255/262/279/282A (MK4) on a permanent middle cerebral artery occlusion (pMCAO) stroke model. We demonstrate that MK4 transgenic animals exhibit a significant decrease in infarct volume that was associated with improvement in behavioral performance. An increase in astrocyte reactivity with a concomitant decrease in microglial reactivity was observed in MK4 mice. In contrast to WT, MK4 astrocytes displayed reduced Cx43 hemichannel activity. Pharmacological blockade of Cx43 hemichannels with TAT-Gap19 also significantly decreased infarct volume in WT animals. This study provides novel molecular insights and charts new avenues for therapeutic intervention associated with Cx43 function.
Collapse
Affiliation(s)
- Moises Freitas-Andrade
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nan Wang
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - John F Bechberger
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marijke De Bock
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Luc Leybaert
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc Natl Acad Sci U S A 2018; 115:E9707-E9716. [PMID: 30242133 DOI: 10.1073/pnas.1808247115] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fragile X syndrome (FXS) is the most frequent form of heritable intellectual disability and autism. Fragile X (Fmr1-KO) mice exhibit aberrant dendritic spine structure, synaptic plasticity, and cognition. Autophagy is a catabolic process of programmed degradation and recycling of proteins and cellular components via the lysosomal pathway. However, a role for autophagy in the pathophysiology of FXS is, as yet, unclear. Here we show that autophagic flux, a functional readout of autophagy, and biochemical markers of autophagy are down-regulated in hippocampal neurons of fragile X mice. We further show that enhanced activity of mammalian target of rapamycin complex 1 (mTORC1) and translocation of Raptor, a defining component of mTORC1, to the lysosome are causally related to reduced autophagy. Activation of autophagy by delivery of shRNA to Raptor directly into the CA1 of living mice via the lentivirus expression system largely corrects aberrant spine structure, synaptic plasticity, and cognition in fragile X mice. Postsynaptic density protein (PSD-95) and activity-regulated cytoskeletal-associated protein (Arc/Arg3.1), proteins implicated in spine structure and synaptic plasticity, respectively, are elevated in neurons lacking fragile X mental retardation protein. Activation of autophagy corrects PSD-95 and Arc abundance, identifying a potential mechanism by which impaired autophagy is causally related to the fragile X phenotype and revealing a previously unappreciated role for autophagy in the synaptic and cognitive deficits associated with fragile X syndrome.
Collapse
|
25
|
Song Z, Yang W, Cheng G, Zhou X, Yang L, Zhao D. Prion protein is essential for the RE1 silencing transcription factor (REST)-dependent developmental switch in synaptic NMDA receptors. Cell Death Dis 2018; 9:541. [PMID: 29748616 PMCID: PMC5945644 DOI: 10.1038/s41419-018-0576-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
It is important that the correct amounts of GluN2 subunits are maintained, as they determine NMDAR functional properties, which are crucial to neuronal communication, synaptogenesis and cognitive function. The transcriptional repressor RE1 silencing transcription factor (REST) is critical for the postnatal developmental switch in NMDARs. However, the mechanisms triggering REST and the link between NMDARs and REST are unclear. Here we show a new physiological essential role for cellular prion protein (PrPC) in REST-dependent homeostasis and the developmental switch of NMDARs. REST and REST-associated proteins were overactivated in the hippocampi of Prnp knockout mice (Prnp 0/0 ) compared with wild-type Prnp (Prnp +/+ ) mice. This coincided with the disruption of the normal developmental switch from GluN2B-to-GluN2A in vivo. PrPC co-located with REST under physiological environments and mediated the translocation of REST in conditioners of NMDARs in vitro in Prnp +/+ hippocampal neurons. Regardless of whether REST was knocked down or overexpressed, deletion of PrPC not only disrupted REST-mediated distribution of mitochondria, but also prevented REST-regulated expression of GluN2B and GluN2A in Prnp 0/0 . Importantly, these effects were rescued after overexpression of full-length PrPC through restoration of NMDAR2 subunits and their distributions in dendritic processes in Prnp 0/0 . Consistently, knockdown of PrPC in Prnp +/+ had a similar effect on Prnp 0/0 . Furthermore, PrPC colocalized with both GluN2B and GluN2A in Prnp +/+ . For the first time, we demonstrate that PrPC is essential for REST-regulated NMDARs. Confirming the regulation of NMDAR-modulating mechanisms could provide novel therapeutic targets against dysfunctions of glutamatergic transmission in the nervous system.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical Collage (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, 100021, Beijing, China
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Hebei Institute of Animal Science and Veterinary Medicine, 071000, Baoding, China
| | - Guangyu Cheng
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
26
|
Yang M, Li Y, Hu L, Luo D, Zhang Y, Xiao X, Li G, Zhang L, Zhu G. Lead exposure inhibits expression of SV2C through NRSF. Toxicology 2018; 398-399:23-30. [DOI: 10.1016/j.tox.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/11/2018] [Accepted: 02/27/2018] [Indexed: 12/31/2022]
|
27
|
Hwang JY, Zukin RS. REST, a master transcriptional regulator in neurodegenerative disease. Curr Opin Neurobiol 2018; 48:193-200. [PMID: 29351877 DOI: 10.1016/j.conb.2017.12.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
The restrictive element-1 silencing transcription factor)/NRSF (neuron-restrictive silencing factor (NRSF) is a transcriptional repressor which acts via epigenetic remodeling to silence target genes. Emerging evidence indicates that REST is a master transcriptional regulator of neuron-specific genes not only in neurogenesis and neuronal differentiation, but also in differentiated neurons during the critical period in postnatal brain development, where it plays a role in fine-tuning of genes involved in synaptic plasticity, and in normal aging, where it promotes neuroprotection by repressing genes involved in oxidative stress and β-amyloid toxicity. This review focuses on recent findings that dysregulation of REST and REST-dependent epigenetic remodeling provide a central mechanism critical to the progressive neurodegeneration associated with neurologic disorders and diseases including global ischemia, stroke, epilepsy, Alzheimer's and Huntington's disease.
Collapse
Affiliation(s)
- Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 610, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 610, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| |
Collapse
|
28
|
Chen R, Li Y, Buttyan R, Dong X. Implications of PI3K/AKT inhibition on REST protein stability and neuroendocrine phenotype acquisition in prostate cancer cells. Oncotarget 2017; 8:84863-84876. [PMID: 29156689 PMCID: PMC5689579 DOI: 10.18632/oncotarget.19386] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer (PCa) that arises as a consequence of rigorous androgen receptor (AR) pathway inhibition (ARPI) therapies. While the PI3K/AKT pathway has been investigated as a co-therapeutic target with ARPI for advanced PCa, whether this strategy can prevent tumor progression to t-NEPC remains unknown. Here, we report that PI3K/AKT inhibition alone reduces RE-1 silencing transcription factor (REST) protein expression and induces multiple NE markers in PCa cells. The loss of REST by PI3K/AKT inhibition is through protein degradation mediated by the E3-ubiquitin ligase β-TRCP and REST phosphorylations at the S1024, S1027, and S1030 sites. Since AR inhibition can also deplete REST, the combinational inhibition of PI3K/AKT and AR further aggravated REST protein reduction. We profiled the transcriptomes of AKT and AR inhibitions in the LNCaP cells. The Gene Set Enrichment Analysis (GSEA) showed that these transcriptomes are highly correlated with the REST-regulated gene signature. Co-targeting AKT and AR resulted in a higher correlation comparing to those of single treatment. Comparing these transcriptomes to the t-NEPC gene signature in patients by GSEA, we observed that adding AKT inhibition to AR blockade enhanced the expression of neurogenesis-related genes and resulted in a stronger and broader upregulation of REST-regulated genes specific to t-NEPC. These results indicate that AKT pathway inhibition can induce neuroendocrine differentiation of PCa cells via REST protein degradation. It delineates a potential risk for the AR and PI3K/AKT co-targeting strategy as it may further facilitate t-NEPC development.
Collapse
Affiliation(s)
- Ruiqui Chen
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Yinan Li
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Ralph Buttyan
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Xuesen Dong
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Maternal Rest/Nrsf Regulates Zebrafish Behavior through snap25a/b. J Neurosci 2017; 36:9407-19. [PMID: 27605615 DOI: 10.1523/jneurosci.1246-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED During embryonic development, regulation of gene expression is key to creating the many subtypes of cells that an organism needs throughout its lifetime. Recent work has shown that maternal genetics and environmental factors have lifelong consequences on diverse processes ranging from immune function to stress responses. The RE1-silencing transcription factor (Rest) is a transcriptional repressor that interacts with chromatin-modifying complexes to repress transcription of neural-specific genes during early development. Here we show that in zebrafish, maternally supplied rest regulates expression of target genes during larval development and has lifelong impacts on behavior. Larvae deprived of maternal rest are hyperactive and show atypical spatial preferences. Adult male fish deprived of maternal rest present with atypical spatial preferences in a novel environment assay. Transcriptome sequencing revealed 158 genes that are repressed by maternal rest in blastula stage embryos. Furthermore, we found that maternal rest is required for target gene repression until at least 6 dpf. Importantly, disruption of the RE1 sites in either snap25a or snap25b resulted in behaviors that recapitulate the hyperactivity phenotype caused by absence of maternal rest Both maternal rest mutants and snap25a RE1 site mutants have altered primary motor neuron architecture that may account for the enhanced locomotor activity. These results demonstrate that maternal rest represses snap25a/b to modulate larval behavior and that early Rest activity has lifelong behavioral impacts. SIGNIFICANCE STATEMENT Maternal factors deposited in the oocyte have well-established roles during embryonic development. We show that, in zebrafish, maternal rest (RE1-silencing transcription factor) regulates expression of target genes during larval development and has lifelong impacts on behavior. The Rest transcriptional repressor interacts with chromatin-modifying complexes to limit transcription of neural genes. We identify several synaptic genes that are repressed by maternal Rest and demonstrate that snap25a/b are key targets of maternal rest that modulate larval locomotor activity. These results reveal that zygotic rest is unable to compensate for deficits in maternally supplied rest and uncovers novel temporal requirements for Rest activity, which has implications for the broad roles of Rest-mediated repression during neural development and in disease states.
Collapse
|
30
|
Pecoraro-Bisogni F, Lignani G, Contestabile A, Castroflorio E, Pozzi D, Rocchi A, Prestigio C, Orlando M, Valente P, Massacesi M, Benfenati F, Baldelli P. REST-Dependent Presynaptic Homeostasis Induced by Chronic Neuronal Hyperactivity. Mol Neurobiol 2017; 55:4959-4972. [PMID: 28786015 DOI: 10.1007/s12035-017-0698-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Homeostatic plasticity is a regulatory feedback response in which either synaptic strength or intrinsic excitability can be adjusted up or down to offset sustained changes in neuronal activity. Although a growing number of evidences constantly provide new insights into these two apparently distinct homeostatic processes, a unified molecular model remains unknown. We recently demonstrated that REST is a transcriptional repressor critical for the downscaling of intrinsic excitability in cultured hippocampal neurons subjected to prolonged elevation of electrical activity. Here, we report that, in the same experimental system, REST also participates in synaptic homeostasis by reducing the strength of excitatory synapses by specifically acting at the presynaptic level. Indeed, chronic hyperactivity triggers a REST-dependent decrease of the size of synaptic vesicle pools through the transcriptional and translational repression of specific presynaptic REST target genes. Together with our previous report, the data identify REST as a fundamental molecular player for neuronal homeostasis able to downscale simultaneously both intrinsic excitability and presynaptic efficiency in response to elevated neuronal activity. This experimental evidence adds new insights to the complex activity-dependent transcriptional regulation of the homeostatic plasticity processes mediated by REST.
Collapse
Affiliation(s)
- F Pecoraro-Bisogni
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy. .,Institute of Neurology, University College of London, WC1N 3BG, London, UK.
| | - A Contestabile
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - E Castroflorio
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - D Pozzi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Pharmacology and Brain Pathology Lab, Humanitas Clinical and Research Center, Humanitas University, Via Manzoni 56, Rozzano, Milan, Italy
| | - A Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - C Prestigio
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - M Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Neurocure NWFZ, Charite Universitaetsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - P Valente
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - M Massacesi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Laboratory of Neurosciences and Neurogenetics, Department of Head and Neck Diseases, "G. Gaslini" Institute, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - F Benfenati
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy. .,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
31
|
The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 2017; 18:347-361. [PMID: 28515491 DOI: 10.1038/nrn.2017.46] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms - including DNA methylation, histone post-translational modifications and changes in nucleosome positioning - regulate gene expression, cellular differentiation and development in almost all tissues, including the brain. In adulthood, changes in the epigenome are crucial for higher cognitive functions such as learning and memory. Striking new evidence implicates the dysregulation of epigenetic mechanisms in neurodegenerative disorders and diseases. Although these disorders differ in their underlying causes and pathophysiologies, many involve the dysregulation of restrictive element 1-silencing transcription factor (REST), which acts via epigenetic mechanisms to regulate gene expression. Although not somatically heritable, epigenetic modifications in neurons are dynamic and reversible, which makes them good targets for therapeutic intervention.
Collapse
|
32
|
Song Z, Shah SZA, Yang W, Dong H, Yang L, Zhou X, Zhao D. Downregulation of the Repressor Element 1-Silencing Transcription Factor (REST) Is Associated with Akt-mTOR and Wnt-β-Catenin Signaling in Prion Diseases Models. Front Mol Neurosci 2017; 10:128. [PMID: 28515679 PMCID: PMC5413570 DOI: 10.3389/fnmol.2017.00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of infectious diseases characterized by multiple neuropathological changes, yet the mechanisms that preserve function and protect against prion-associated neurodegeneration are still unclear. We previously reported that the repressor element 1-silencing transcription factor (REST) alleviates neurotoxic prion peptide (PrP106-126)-induced toxicity in primary neurons. Here we confirmed the findings of the in vitro model in 263K infected hamsters, an in vivo model of prion diseases and further showed the relationships between REST and related signaling pathways. REST was depleted from the nucleus in prion infected brains and taken up by autophagosomes in the cytoplasm, co-localizing with LC3-II. Importantly, downregulation of the Akt–mTOR and at least partially inactivation of LRP6-Wnt-β-catenin signaling pathways correlated with the decreased levels of REST in vivo in the brain of 263K-infected hamsters and in vitro in PrP106-126-treated primary neurons. Overexpression of REST in primary cortical neurons alleviated PrP106-126 peptide-induced neuronal oxidative stress, mitochondrial damage and partly inhibition of the LRP6-Wnt-β-catenin and Akt–mTOR signaling. Based on our findings, a model of REST-mediated neuroprotection in prion infected animals is proposed, with Akt–mTOR and Wnt-β-catenin signaling as the key pathways. REST-mediated neuronal survival signaling could be explored as a viable therapeutic target for prion diseases and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Syed Z A Shah
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Haodi Dong
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
33
|
REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep 2017; 7:42795. [PMID: 28256535 PMCID: PMC5335619 DOI: 10.1038/srep42795] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Castration-resistance prostate cancer (CRPC), also known as hormone-refractory prostate cancer (HRPC), requires immediate attention since it is not only resistant to androgen ablation, chemo- and radiotherapy, but also highly metastatic. Increasing evidence suggests that enrichment of neuroendocrine (NE) cells is associated with CRPC. Here, combined RNA-seq and ChIP-seq analysis reveals that REST is involved in epithelial-mesenchymal transition (EMT) and stemness acquisition in NE differentiated prostate cancer (PCa) cells via direct transcriptional repression of Twist1 and CD44. Specifically we show that short-term knockdown of REST induces NE differentiation of LNCaP cells. Long-term REST knockdown enhanced the expression of Twist1 and CD44, cell migration and sphere formation. Overexpression of REST in hormone-refractory CWR22Rv1 PCa cells significantly reduces Twist1 and CD44 expression, cell migration and sphere formation. Collectively, our study uncovers REST in regulating EMT and stemness properties of NE PCa cells and suggests that REST is a potential therapeutic target for CRPC.
Collapse
|
34
|
Cavadas MAS, Cheong A, Taylor CT. The regulation of transcriptional repression in hypoxia. Exp Cell Res 2017; 356:173-181. [PMID: 28219680 DOI: 10.1016/j.yexcr.2017.02.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
A sufficient supply molecular oxygen is essential for the maintenance of physiologic metabolism and bioenergetic homeostasis for most metazoans. For this reason, mechanisms have evolved for eukaryotic cells to adapt to conditions where oxygen demand exceeds supply (hypoxia). These mechanisms rely on the modification of pre-existing proteins, translational arrest and transcriptional changes. The hypoxia inducible factor (HIF; a master regulator of gene induction in response to hypoxia) is responsible for the majority of induced gene expression in hypoxia. However, much less is known about the mechanism(s) responsible for gene repression, an essential part of the adaptive transcriptional response. Hypoxia-induced gene repression leads to a reduction in energy demanding processes and the redirection of limited energetic resources to essential housekeeping functions. Recent developments have underscored the importance of transcriptional repressors in cellular adaptation to hypoxia. To date, at least ten distinct transcriptional repressors have been reported to demonstrate sensitivity to hypoxia. Central among these is the Repressor Element-1 Silencing Transcription factor (REST), which regulates over 200 genes. In this review, written to honor the memory and outstanding scientific legacy of Lorenz Poellinger, we provide an overview of our existing knowledge with respect to transcriptional repressors and their target genes in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Alex Cheong
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences and Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
35
|
Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die. Cell Death Differ 2016; 24:317-329. [PMID: 27935582 PMCID: PMC5299717 DOI: 10.1038/cdd.2016.140] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/08/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke.
Collapse
|
36
|
Cavadas MAS, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, Fabian Z, Scholz CC, Nolan KA, Rocha LMA, Tambuwala MM, Brown S, Wdowicz A, Corbett D, Murphy KJ, Godson C, Cummins EP, Taylor CT, Cheong A. REST is a hypoxia-responsive transcriptional repressor. Sci Rep 2016; 6:31355. [PMID: 27531581 PMCID: PMC4987654 DOI: 10.1038/srep31355] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Marion Mesnieres
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Bianca Crifo
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Mario C Manresa
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Andrew C Selfridge
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Ciara E Keogh
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zsolt Fabian
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Carsten C Scholz
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Karen A Nolan
- Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Liliane M A Rocha
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK
| | - Stuart Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Anita Wdowicz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Danielle Corbett
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Eoin P Cummins
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Alex Cheong
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
37
|
Hoque A, Hossain MI, Ameen SS, Ang CS, Williamson N, Ng DCH, Chueh AC, Roulston C, Cheng HC. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacol Ther 2016; 160:159-79. [PMID: 26899498 DOI: 10.1016/j.pharmthera.2016.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Anderly C Chueh
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carli Roulston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
38
|
Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector. Mol Neurobiol 2016; 54:541-550. [DOI: 10.1007/s12035-015-9658-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
|
39
|
Methylmercury upregulates RE-1 silencing transcription factor (REST) in SH-SY5Y cells and mouse cerebellum. Neurotoxicology 2015; 52:89-97. [PMID: 26610923 DOI: 10.1016/j.neuro.2015.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023]
Abstract
Methylmercury (MeHg) is a highly neurotoxic compound that, in adequate doses, can cause damage to the brain, including developmental defects and in severe cases cell death. The RE-1-silencing transcription factor (REST) has been found to be involved in the neurotoxic effects of environmental pollutants such as polychlorinated biphenyls (PCBs). In this study, we investigated the effects of MeHg treatment on REST expression and its role in MeHg-induced neurotoxicity in neuroblastoma SH-SY5Y cells. We found that MeHg exposure caused a dose- and time- dependent apoptotic cell death, as evidenced by the appearance of apoptotic hallmarks including caspase-3 processing and annexin V uptake. Moreover, MeHg increased REST gene and gene product expression. MeHg-induced apoptotic cell death was completely abolished by REST knockdown. Interestingly, MeHg (1μM/24h) increased the expression of REST Corepressor (Co-REST) and its binding with REST whereas the other REST cofactor mammalian SIN3 homolog A transcription regulator (mSin3A) was not modified. In addition, we demonstrated that the acetylation of histone protein H4 was reduced after MeHg treatment and was critical for MeHg-induced apoptosis. Accordingly, the pan-histone deacetylase inhibitor trichostatin-A (TSA) prevented MeHg-induced histone protein H4 deacetylation, thereby reverting MeHg-induced neurotoxic effect. Male mice subcutaneously injected with 10mg/kg of MeHg for 10 days showed an increase in REST expression in the granule cell layer of the cerebellum together with a decrease in histone H4 acetylation. Collectively, we demonstrated that methylmercury exposure can cause neurotoxicity by activating REST gene expression and H4 deacetylation.
Collapse
|
40
|
Guida N, Laudati G, Anzilotti S, Secondo A, Montuori P, Di Renzo G, Canzoniero LMT, Formisano L. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death. Toxicol Appl Pharmacol 2015; 288:387-98. [PMID: 26307266 DOI: 10.1016/j.taap.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway.
Collapse
Affiliation(s)
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Public Health, 'Federico II' University of Naples, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
41
|
Nesti E. Harnessing the master transcriptional repressor REST to reciprocally regulate neurogenesis. NEUROGENESIS 2015; 2:e1055419. [PMID: 27535341 PMCID: PMC4973598 DOI: 10.1080/23262133.2015.1055419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023]
Abstract
Neurogenesis begins in embryonic development and continues at a reduced rate into adulthood in vertebrate species, yet the signaling cascades regulating this process remain poorly understood. Plasma membrane-initiated signaling cascades regulate neurogenesis via downstream pathways including components of the transcriptional machinery. A nuclear factor that temporally regulates neurogenesis by repressing neuronal differentiation is the repressor element 1 (RE1) silencing transcription (REST) factor. We have recently discovered a regulatory site on REST that serves as a molecular switch for neuronal differentiation. Specifically, C-terminal domain small phosphatase 1, CTDSP1, present in non-neuronal cells, maintains REST activity by dephosphorylating this site. Reciprocally, extracellular signal-regulated kinase, ERK, activated by growth factor signaling in neural progenitors, and peptidylprolyl cis/trans isomerase Pin1, decrease REST activity through phosphorylation-dependent degradation. Our findings further resolve the mechanism for temporal regulation of REST and terminal neuronal differentiation. They also provide new potential therapeutic targets to enhance neuronal regeneration after injury.
Collapse
Affiliation(s)
- Edmund Nesti
- Alcamena Stem Cell Therapeutics, LLC ; Beltsville, MD USA
| |
Collapse
|
42
|
Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci 2015; 35:7332-48. [PMID: 25972164 DOI: 10.1523/jneurosci.2174-14.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger 1 (NCX1) is reduced in stroke by the RE1-silencing transcription factor (REST), whereas it is increased in ischemic brain preconditioning (PC) by hypoxia-inducible factor 1 (HIF-1). Because ncx1 brain promoter (ncx1-Br) has five putative consensus sequences, named Sp1A-E, for the specificity protein (Sp) family of transcription factors (Sp1-4), we investigated the role of this family in regulating ncx1 transcription in rat cortical neurons. Here we found that Sp1 is a transcriptional activator, whereas Sp3 is a transcriptional repressor of ncx1, and that both bind ncx1-Br in a sequence-specific manner, modulating ncx1 transcription through the Sp1 sites C-E. Furthermore, by transient middle cerebral artery occlusion (tMCAO) in rats, the transcriptional repressors Sp3 and REST colocalized with the two histone-deacetylases (HDACs) HDAC1 and HDAC2 on the ncx1-Br, with a consequent hypoacetylation. Contrarily, in PC+tMCAO the transcriptional activators Sp1 and HIF-1 colocalized with histone acetyltransferase p300 on ncx1-Br with a consequent hyperacetylation. In addition, in neurons silenced with siRNA of NCX1 and subjected to oxygen and glucose deprivation (OGD) (3 h) plus reoxygenation (RX) (24 h), the neuroprotection of Class I HDAC inhibitor MS-275 was counteracted, whereas in neurons overexpressing NCX1 and subjected to ischemic preconditioning (PC+OGD/RX), the neurotoxic effect of p300 inhibitor C646 was prevented. Collectively, these results demonstrate that NCX1 expression is regulated by the Sp3/REST/HDAC1/HDAC2 complex in tMCAO and by the Sp1/HIF-1/p300 complex in PC+tMCAO and that epigenetic intervention, by modulating the acetylation of ncx1-Br, may be a strategy for the development of innovative therapeutic intervention in stroke.
Collapse
|
43
|
The Transcription Repressor REST in Adult Neurons: Physiology, Pathology, and Diseases. eNeuro 2015; 2:eN-REV-0010-15. [PMID: 26465007 PMCID: PMC4596026 DOI: 10.1523/eneuro.0010-15.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
REST [RE1-silencing transcription factor (also called neuron-restrictive silencer factor)] is known to repress thousands of possible target genes, many of which are neuron specific. To date, REST repression has been investigated mostly in stem cells and differentiating neurons. Current evidence demonstrates its importance in adult neurons as well. Low levels of REST, which are acquired during differentiation, govern the expression of specific neuronal phenotypes. REST-dependent genes encode important targets, including transcription factors, transmitter release proteins, voltage-dependent and receptor channels, and signaling proteins. Additional neuronal properties depend on miRNAs expressed reciprocally to REST and on specific splicing factors. In adult neurons, REST levels are not always low. Increases occur during aging in healthy humans. Moreover, extensive evidence demonstrates that prolonged stimulation with various agents induces REST increases, which are associated with the repression of neuron-specific genes with appropriate, intermediate REST binding affinity. Whether neuronal increases in REST are protective or detrimental remains a subject of debate. Examples of CA1 hippocampal neuron protection upon depolarization, and of neurodegeneration upon glutamate treatment and hypoxia have been reported. REST participation in psychiatric and neurological diseases has been shown, especially in Alzheimer’s disease and Huntington’s disease, as well as epilepsy. Distinct, complex roles of the repressor in these different diseases have emerged. In conclusion, REST is certainly very important in a large number of conditions. We suggest that the conflicting results reported for the role of REST in physiology, pathology, and disease depend on its complex, direct, and indirect actions on many gene targets and on the diverse approaches used during the investigations.
Collapse
|
44
|
NRSF: an Angel or a Devil in Neurogenesis and Neurological Diseases. J Mol Neurosci 2014; 56:131-44. [DOI: 10.1007/s12031-014-0474-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/18/2014] [Indexed: 12/12/2022]
|
45
|
Karlin KL, Mondal G, Hartman JK, Tyagi S, Kurley SJ, Bland CS, Hsu TYT, Renwick A, Fang JE, Migliaccio I, Callaway C, Nair A, Dominguez-Vidana R, Nguyen DX, Osborne CK, Schiff R, Yu-Lee LY, Jung SY, Edwards DP, Hilsenbeck SG, Rosen JM, Zhang XHF, Shaw CA, Couch FJ, Westbrook TF. The oncogenic STP axis promotes triple-negative breast cancer via degradation of the REST tumor suppressor. Cell Rep 2014; 9:1318-32. [PMID: 25453754 PMCID: PMC4427000 DOI: 10.1016/j.celrep.2014.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/28/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Defining the molecular networks that drive breast cancer has led to therapeutic interventions and improved patient survival. However, the aggressive triple-negative breast cancer subtype (TNBC) remains recalcitrant to targeted therapies because its molecular etiology is poorly defined. In this study, we used a forward genetic screen to discover an oncogenic network driving human TNBC. SCYL1, TEX14, and PLK1 ("STP axis") cooperatively trigger degradation of the REST tumor suppressor protein, a frequent event in human TNBC. The STP axis induces REST degradation by phosphorylating a conserved REST phospho-degron and bridging REST interaction with the ubiquitin-ligase βTRCP. Inhibition of the STP axis leads to increased REST protein levels and impairs TNBC transformation, tumor progression, and metastasis. Expression of the STP axis correlates with low REST protein levels in human TNBCs and poor clinical outcome for TNBC patients. Our findings demonstrate that the STP-REST axis is a molecular driver of human TNBC.
Collapse
Affiliation(s)
- Kristen L Karlin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Gourish Mondal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica K Hartman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Siddhartha Tyagi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sarah J Kurley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chris S Bland
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tiffany Y T Hsu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alexander Renwick
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Justin E Fang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ilenia Migliaccio
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Celetta Callaway
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Amritha Nair
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rocio Dominguez-Vidana
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, Yale Cancer Center, New Haven, CT 06510, USA
| | - C Kent Osborne
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rachel Schiff
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Li-Yuan Yu-Lee
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sung Y Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
46
|
C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc Natl Acad Sci U S A 2014; 111:E3929-36. [PMID: 25197063 DOI: 10.1073/pnas.1414770111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repressor element 1 (RE1) silencing transcription factor (REST) in stem cells represses hundreds of genes essential to neuronal function. During neurogenesis, REST is degraded in neural progenitors to promote subsequent elaboration of a mature neuronal phenotype. Prior studies indicate that part of the degradation mechanism involves phosphorylation of two sites in the C terminus of REST that require activity of beta-transducin repeat containing E3 ubiquitin protein ligase, βTrCP. We identify a proline-directed phosphorylation motif, at serines 861/864 upstream of these sites, which is a substrate for the peptidylprolyl cis/trans isomerase, Pin1, as well as the ERK1/2 kinases. Mutation at S861/864 stabilizes REST, as does inhibition of Pin1 activity. Interestingly, we find that C-terminal domain small phosphatase 1 (CTDSP1), which is recruited by REST to neuronal genes, is present in REST immunocomplexes, dephosphorylates S861/864, and stabilizes REST. Expression of a REST peptide containing S861/864 in neural progenitors inhibits terminal neuronal differentiation. Together with previous work indicating that both REST and CTDSP1 are expressed to high levels in stem cells and down-regulated during neurogenesis, our results suggest that CTDSP1 activity stabilizes REST in stem cells and that ERK-dependent phosphorylation combined with Pin1 activity promotes REST degradation in neural progenitors.
Collapse
|
47
|
McClelland S, Brennan GP, Dubé C, Rajpara S, Iyer S, Richichi C, Bernard C, Baram TZ. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. eLife 2014; 3:e01267. [PMID: 25117540 PMCID: PMC4129437 DOI: 10.7554/elife.01267] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The mechanisms generating epileptic neuronal networks following insults such as severe seizures are unknown. We have previously shown that interfering with the function of the neuron-restrictive silencer factor (NRSF/REST), an important transcription factor that influences neuronal phenotype, attenuated development of this disorder. In this study, we found that epilepsy-provoking seizures increased the low NRSF levels in mature hippocampus several fold yet surprisingly, provoked repression of only a subset (∼10%) of potential NRSF target genes. Accordingly, the repressed gene-set was rescued when NRSF binding to chromatin was blocked. Unexpectedly, genes selectively repressed by NRSF had mid-range binding frequencies to the repressor, a property that rendered them sensitive to moderate fluctuations of NRSF levels. Genes selectively regulated by NRSF during epileptogenesis coded for ion channels, receptors, and other crucial contributors to neuronal function. Thus, dynamic, selective regulation of NRSF target genes may play a role in influencing neuronal properties in pathological and physiological contexts. DOI:http://dx.doi.org/10.7554/eLife.01267.001 Epilepsy is a common brain disease that can cause disabling seizures. During a seizure, brain cells send out abnormal signals, which can mean that people having seizures may be unaware of their surroundings and may fall or otherwise injure themselves. Individuals with epilepsy develop changes in their brain cells and in the circuits that connect these cells together. Some people develop epilepsy because they have mutations in genes. Others develop the condition after an injury or a long seizure, which leads to changes in gene expression and therefore changes to the brain's cells and circuits. In 2011, researchers found that a protein that normally switches off the expression of certain genes during brain development, but which is almost absent in the adult brain, may run amok after a seizure. The level of this protein—a transcription factor called NRSF—increased in the brains of rats that had been caused to have a seizure. A long provoked seizure caused many of the rats to develop epilepsy. But, if NRSF was blocked after the original seizure, the rats were less likely to have further seizures later on. Now McClelland et al., including several of the researchers involved in the 2011 work, have examined what normally happens to the expression of genes after a seizure and what happens when the NRSF transcription factor is blocked. McClelland et al. found that only a small subset—about 10%—of the genes that can theoretically be silenced by NRSF are switched off in the brain when this protein's levels increase after a seizure. The increased NRSF levels, unexpectedly, did not affect the genes that bind tightly to this transcription factor. Nor did NRSF affect genes that bind loosely. Instead, the genes that the transcription factor binds to with an intermediate strength were the ones that were switched off. McClelland et al. suggest that this ‘mid-range binding’ to NRSF allows the expression of these genes to be increased or decreased in response to there being more or less NRSF in the cell. Genes that bind tightly to NRSF are likely to already have a lot of NRSF bound and are therefore already switched off; and loosely-binding genes would likely need even more NRSF before they are switched off. The subset of genes that were switched off by the increased levels of NRSF after a seizure code for a number of proteins that brain cells need to be able to effectively send and receive messages. Blocking the ability of NRSF to bind to these genes and switch them off may help to prevent the brain changes that cause epilepsy. DOI:http://dx.doi.org/10.7554/eLife.01267.002
Collapse
Affiliation(s)
- Shawn McClelland
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States Department of Pediatrics, University of California, Irvine, Irvine, United States Department of Neurology, University of California, Irvine, Irvine, United States
| | - Gary P Brennan
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States Department of Pediatrics, University of California, Irvine, Irvine, United States Department of Neurology, University of California, Irvine, Irvine, United States
| | - Celine Dubé
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States Department of Pediatrics, University of California, Irvine, Irvine, United States Department of Neurology, University of California, Irvine, Irvine, United States
| | - Seeta Rajpara
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States Department of Pediatrics, University of California, Irvine, Irvine, United States Department of Neurology, University of California, Irvine, Irvine, United States
| | - Shruti Iyer
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States Department of Pediatrics, University of California, Irvine, Irvine, United States Department of Neurology, University of California, Irvine, Irvine, United States
| | - Cristina Richichi
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States Department of Pediatrics, University of California, Irvine, Irvine, United States Department of Neurology, University of California, Irvine, Irvine, United States
| | - Christophe Bernard
- Laboratoire Epilepsie et Cognition, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States Department of Pediatrics, University of California, Irvine, Irvine, United States Department of Neurology, University of California, Irvine, Irvine, United States
| |
Collapse
|
48
|
RE-1 silencing transcription factor (REST): a regulator of neuronal development and neuronal/endocrine function. Cell Tissue Res 2014; 359:99-109. [PMID: 25092546 DOI: 10.1007/s00441-014-1963-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/08/2014] [Indexed: 01/04/2023]
Abstract
RE-1 silencing transcription factor (REST) is a transcriptional repressor that has been proposed to function as a master negative regulator of neurogenesis, as REST target genes encode neuronal receptors, ion channels, neuropeptides and synaptic proteins. During neuronal differentiation, REST expression levels are reduced, allowing expression of selected REST target genes. The analysis of neural stem/progenitor cells that are either devoid of REST or overexpress REST revealed that REST is not the master regulator that is solely responsible for the acquisition of the neuronal fate. Rather, REST provides a regulatory hub that coordinately regulates multiple tiers of neuronal development in vitro. In addition, REST may play an important role for maintaining the integrity of adult neurons. REST confers oxidative stress resistance and is essential for maintaining neuronal viability. Furthermore, the concentration of REST has been reported to influence the pathogenic outcome by neuronal diseases, including stroke, epilepsy and Alzheimer's disease. Experiments performed with PC12 pheochromocytoma cells indicate that REST may function as a key regulator of the neurosecretory phenotype. Moreover, transgenic mice overexpressing REST in pancreatic β-cells showed impaired insulin secretion leading to significantly reduced plasma insulin levels. Based on the fact that REST plays a prominent role in controlling stimulus-induced secretion in endocrine cells, we propose that REST may also be important for neurotransmitter release via regulation of genes that encode important proteins of the exocytotic machinery.
Collapse
|
49
|
Fernandes J, Vieira M, Carreto L, Santos MAS, Duarte CB, Carvalho AL, Santos AE. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS One 2014; 9:e99958. [PMID: 24960035 PMCID: PMC4069008 DOI: 10.1371/journal.pone.0099958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022] Open
Abstract
Transient global cerebral ischemia induces profound changes in the transcriptome of brain cells, which is partially associated with the induction or repression of genes that influence the ischemic response. However, the mechanisms responsible for the selective vulnerability of hippocampal neurons to global ischemia remain to be clarified. To identify molecular changes elicited by ischemic insults, we subjected hippocampal primary cultures to oxygen-glucose deprivation (OGD), an in vitro model for global ischemia that resulted in delayed neuronal death with an excitotoxic component. To investigate changes in the transcriptome of hippocampal neurons submitted to OGD, total RNA was extracted at early (7 h) and delayed (24 h) time points after OGD and used in a whole-genome RNA microarray. We observed that at 7 h after OGD there was a general repression of genes, whereas at 24 h there was a general induction of gene expression. Genes related with functions such as transcription and RNA biosynthesis were highly regulated at both periods of incubation after OGD, confirming that the response to ischemia is a dynamic and coordinated process. Our analysis showed that genes for synaptic proteins, such as those encoding for PICK1, GRIP1, TARPγ3, calsyntenin-2/3, SAPAP2 and SNAP-25, were down-regulated after OGD. Additionally, OGD decreased the mRNA and protein expression levels of the GluA1 AMPA receptor subunit as well as the GluN2A and GluN2B subunits of NMDA receptors, but increased the mRNA expression of the GluN3A subunit, thus altering the composition of ionotropic glutamate receptors in hippocampal neurons. Together, our results present the expression profile elicited by in vitro ischemia in hippocampal neurons, and indicate that OGD activates a transcriptional program leading to down-regulation in the expression of genes coding for synaptic proteins, suggesting that the synaptic proteome may change after ischemia.
Collapse
Affiliation(s)
- Joana Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Marta Vieira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Laura Carreto
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- * E-mail:
| | - Armanda E. Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|