1
|
Di Iacovo A, D'Agostino C, Bhatt M, Romanazzi T, Giovannardi S, Cinquetti R, Roseti C, Bossi E. The kinase LRRK2 is required for the physiological function and expression of the glial glutamate transporter EAAT2 (SLC1A2). J Neurochem 2025; 169:e16265. [PMID: 39655696 PMCID: PMC11629453 DOI: 10.1111/jnc.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
Neurotransmitter transporters (NTTs) control synaptic responses by modulating the concentration of neurotransmitters at the synaptic cleft. Glutamate is the most abundant excitatory neurotransmitter in the brain and needs to be finely tuned in time and space to maintain a healthy brain and precise neurotransmission. The glutamate transporter EAAT2 (SLC1A2) is primarily responsible for glutamate clearance. EAAT2 impairment has been associated with Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to both monogenic and sporadic forms of PD, of which the common substitution Gly2019Ser is associated with a significant deficit in EAAT2 expression. The role of pathological mutants of the LRRK2 is intensively studied and reviewed. Here we have focused the attention on the physiological role of LRRK2 on EAAT2, comparing the activity of NTTs with or without the LRRK2 kinase. By heterologous expression in Xenopus laevis oocytes and two-electrode voltage clamp, the current amplitudes of the selected NTTs and kinetic parameters have been collected in the presence and absence of LRRK2. The results show that EAAT2 expression and function are impaired in the absence of the kinase and also under its pharmacological inhibition via MLi-2 treatment. LRRK2 stabilizes EAAT2 expression increasing the amount of transporter at the plasma membrane. Interestingly, the LRRK2 action is EAAT2-specific, as we observed no significant changes in the transport current amplitude and kinetic parameters obtained for the other excitatory and inhibitory NTTs studied. This study, for the first time, demonstrates the physiological importance of LRRK2 in EAAT2 function, highlighting the specificity of LRRK2-mediated modulation of EAAT2 and suggesting a potential role for the kinase as a checkpoint for preserving neurons from excitotoxicity. In brain conditions associated with impaired glutamate clearance, targeting LRRK2 for EAAT2 regulation may offer novel therapeutic opportunities.
Collapse
Affiliation(s)
- Angela Di Iacovo
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| | - Chiara D'Agostino
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
- PhD School of Experimental and Translational MedicineUniversity of InsubriaVareseItaly
| | - Manan Bhatt
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| | - Stefano Giovannardi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
| | - Cristina Roseti
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| |
Collapse
|
2
|
Pérez-Sala D, Pajares MA. Appraising the Role of Astrocytes as Suppliers of Neuronal Glutathione Precursors. Int J Mol Sci 2023; 24:ijms24098059. [PMID: 37175763 PMCID: PMC10179008 DOI: 10.3390/ijms24098059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The metabolism and intercellular transfer of glutathione or its precursors may play an important role in cellular defense against oxidative stress, a common hallmark of neurodegeneration. In the 1990s, several studies in the Neurobiology field led to the widely accepted notion that astrocytes produce large amounts of glutathione that serve to feed neurons with precursors for glutathione synthesis. This assumption has important implications for health and disease since a reduction in this supply from astrocytes could compromise the capacity of neurons to cope with oxidative stress. However, at first glance, this shuttling would imply a large energy expenditure to get to the same point in a nearby cell. Thus, are there additional underlying reasons for this expensive mechanism? Are neurons unable to import and/or synthesize the three non-essential amino acids that are the glutathione building blocks? The rather oxidizing extracellular environment favors the presence of cysteine (Cys) as cystine (Cis), less favorable for neuronal import. Therefore, it has also been proposed that astrocytic GSH efflux could induce a change in the redox status of the extracellular space nearby the neurons, locally lowering the Cis/Cys ratio. This astrocytic glutathione release would also increase their demand for precursors, stimulating Cis uptake, which these cells can import, further impacting the local decline of the Cis/Cys ratio, in turn, contributing to a more reduced extracellular environment and subsequently favoring neuronal Cys import. Here, we revisit the experimental evidence that led to the accepted hypothesis of astrocytes acting as suppliers of neuronal glutathione precursors, considering recent data from the Human Protein Atlas. In addition, we highlight some potential drawbacks of this hypothesis, mainly supported by heterogeneous cellular models. Finally, we outline additional and more cost-efficient possibilities by which astrocytes could support neuronal glutathione levels, including its shuttling in extracellular vesicles.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
3
|
Reddy KD, Ciftci D, Scopelliti AJ, Boudker O. The archaeal glutamate transporter homologue GltPh shows heterogeneous substrate binding. J Gen Physiol 2022; 154:e202213131. [PMID: 35452090 PMCID: PMC9044058 DOI: 10.1085/jgp.202213131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Integral membrane glutamate transporters couple the concentrative substrate transport to ion gradients. There is a wealth of structural and mechanistic information about this protein family. Recent studies of an archaeal homologue, GltPh, revealed transport rate heterogeneity, which is inconsistent with simple kinetic models; however, its structural and mechanistic determinants remain undefined. Here, we demonstrate that in a mutant GltPh, which exclusively populates the outward-facing state, at least two substates coexist in slow equilibrium, binding the substrate with different apparent affinities. Wild type GltPh shows similar binding properties, and modulation of the substate equilibrium correlates with transport rates. The low-affinity substate of the mutant is transient following substrate binding. Consistently, cryo-EM on samples frozen within seconds after substrate addition reveals the presence of structural classes with perturbed helical packing of the extracellular half of the transport domain in regions adjacent to the binding site. By contrast, an equilibrated structure does not show such classes. The structure at 2.2-Å resolution details a pattern of waters in the intracellular half of the domain and resolves classes with subtle differences in the substrate-binding site. We hypothesize that the rigid cytoplasmic half of the domain mediates substrate and ion recognition and coupling, whereas the extracellular labile half sets the affinity and dynamic properties.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Tri-Institutional Training Program in Chemical Biology, New York, NY
| | | | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
4
|
Canul‐Tec JC, Kumar A, Dhenin J, Assal R, Legrand P, Rey M, Chamot‐Rooke J, Reyes N. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J 2022; 41:e108341. [PMID: 34747040 PMCID: PMC8724772 DOI: 10.15252/embj.2021108341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) maintain glutamate gradients in the brain essential for neurotransmission and to prevent neuronal death. They use ionic gradients as energy source and co-transport transmitter into the cytoplasm with Na+ and H+ , while counter-transporting K+ to re-initiate the transport cycle. However, the molecular mechanisms underlying ion-coupled transport remain incompletely understood. Here, we present 3D X-ray crystallographic and cryo-EM structures, as well as thermodynamic analysis of human EAAT1 in different ion bound conformations, including elusive counter-transport ion bound states. Binding energies of Na+ and H+ , and unexpectedly Ca2+ , are coupled to neurotransmitter binding. Ca2+ competes for a conserved Na+ site, suggesting a regulatory role for Ca2+ in glutamate transport at the synapse, while H+ binds to a conserved glutamate residue stabilizing substrate occlusion. The counter-transported ion binding site overlaps with that of glutamate, revealing the K+ -based mechanism to exclude the transmitter during the transport cycle and to prevent its neurotoxic release on the extracellular side.
Collapse
Affiliation(s)
- Juan C Canul‐Tec
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Anand Kumar
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Reda Assal
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
| | - Pierre Legrand
- Synchrotron SOLEILL'Orme des MerisiersGif‐sur‐YvetteFrance
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Julia Chamot‐Rooke
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Nicolas Reyes
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| |
Collapse
|
5
|
Qu Q, Wang J, Li G, Chen R, Qu S. The Conformationally Sensitive Spatial Distance Between the TM3-4 Loop and Transmembrane Segment 7 in the Glutamate Transporter Revealed by Paired-Cysteine Mutagenesis. Front Cell Dev Biol 2021; 9:737629. [PMID: 34621751 PMCID: PMC8490817 DOI: 10.3389/fcell.2021.737629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Excitatory amino acid transporters can maintain extracellular glutamate concentrations lower than neurotoxic levels by transferring neurotransmitters from the synaptic cleft into surrounding glial cells and neurons. Previous work regarding the structural studies of GltPh, GltTK, excitatory amino acid transporter 1 (EAAT1), EAAT3 and alanine serine cysteine transporter 2 described the transport mechanism of the glutamate transporter in depth. However, much remains unknown about the role of the loop between transmembrane segment 3 and 4 during transport. To probe the function of this loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-TM4 loop and TM7 in cysteine-less EAAT2. Here, we show that the oxidative cross-linking reagent CuPh inhibits transport activity of the paired mutant L149C/M414C, whereas DTT inhibits the effect of CuPh on transport activity of L149C/M414C. Additionally, we show that the effect of cross-linking in the mutant is due to the formation of the disulfide bond within the molecules of EAAT2. Further, L-glutamate or KCl protect, and D,L-threo-β-benzyloxy-aspartate (TBOA) increases, CuPh-induced inhibition in the L149C/M414 mutant, suggesting that the L149C and M414C cysteines are closer or farther away in the outward- or inward-facing conformations, respectively. Together, our findings provide evidence that the distance between TM3-TM4 loop and TM7 alter when substrates are transported.
Collapse
Affiliation(s)
- Qi Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Guiping Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongqing Chen
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
7
|
Wang J, Wang F, Mai D, Qu S. Molecular Mechanisms of Glutamate Toxicity in Parkinson's Disease. Front Neurosci 2020; 14:585584. [PMID: 33324150 PMCID: PMC7725716 DOI: 10.3389/fnins.2020.585584] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease, the pathological features of which include the presence of Lewy bodies and the neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta. However, until recently, research on the pathogenesis and treatment of PD have progressed slowly. Glutamate and dopamine are both important central neurotransmitters in mammals. A lack of enzymatic decomposition of extracellular glutamate results in glutamate accumulating at synapses, which is mainly absorbed by excitatory amino acid transporters (EAATs). Glutamate exerts its physiological effects by binding to and activating ligand-gated ion channels [ionotropic glutamate receptors (iGluRs)] and a class of G-protein-coupled receptors [metabotropic glutamate receptors (mGluRs)]. Timely clearance of glutamate from the synaptic cleft is necessary because high levels of extracellular glutamate overactivate glutamate receptors, resulting in excitotoxic effects in the central nervous system. Additionally, increased concentrations of extracellular glutamate inhibit cystine uptake, leading to glutathione depletion and oxidative glutamate toxicity. Studies have shown that oxidative glutamate toxicity in neurons lacking functional N-methyl-D-aspartate (NMDA) receptors may represent a component of the cellular death pathway induced by excitotoxicity. The association between inflammation and excitotoxicity (i.e., immunoexcitotoxicity) has received increased attention in recent years. Glial activation induces neuroinflammation and can stimulate excessive release of glutamate, which can induce excitotoxicity and, additionally, further exacerbate neuroinflammation. Glutamate, as an important central neurotransmitter, is closely related to the occurrence and development of PD. In this review, we discuss recent progress on elucidating glutamate as a relevant neurotransmitter in PD. Additionally, we summarize the relationship and commonality among glutamate excitotoxicity, oxidative toxicity, and immunoexcitotoxicity in order to posit a holistic view and molecular mechanism of glutamate toxicity in PD.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China.,Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
| | - Dongmei Mai
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Hall JL, Sohail A, Cabrita EJ, Macdonald C, Stockner T, Sitte HH, Angulo J, MacMillan F. Saturation transfer difference NMR on the integral trimeric membrane transport protein GltPh determines cooperative substrate binding. Sci Rep 2020; 10:16483. [PMID: 33020522 PMCID: PMC7536232 DOI: 10.1038/s41598-020-73443-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Saturation-transfer difference (STD) NMR spectroscopy is a fast and versatile method which can be applied for drug-screening purposes, allowing the determination of essential ligand binding affinities (KD). Although widely employed to study soluble proteins, its use remains negligible for membrane proteins. Here the use of STD NMR for KD determination is demonstrated for two competing substrates with very different binding affinities (low nanomolar to millimolar) for an integral membrane transport protein in both detergent-solubilised micelles and reconstituted proteoliposomes. GltPh, a homotrimeric aspartate transporter from Pyrococcus horikoshii, is an archaeal homolog of mammalian membrane transport proteins-known as excitatory amino acid transporters (EAATs). They are found within the central nervous system and are responsible for fast uptake of the neurotransmitter glutamate, essential for neuronal function. Differences in both KD's and cooperativity are observed between detergent micelles and proteoliposomes, the physiological implications of which are discussed.
Collapse
Affiliation(s)
- Jenny L Hall
- Henry Wellcome Unit for Biological EPR, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Azmat Sohail
- Institute of Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - Eurico J Cabrita
- UCIBIO, Chemistry Department, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Colin Macdonald
- Henry Wellcome Unit for Biological EPR, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thomas Stockner
- Institute of Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Fraser MacMillan
- Henry Wellcome Unit for Biological EPR, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
9
|
Braidy N, Alicajic H, Pow D, Smith J, Jugder BE, Brew BJ, Nicolazzo JA, Guillemin GJ. Potential Mechanism of Cellular Uptake of the Excitotoxin Quinolinic Acid in Primary Human Neurons. Mol Neurobiol 2020; 58:34-54. [PMID: 32894500 DOI: 10.1007/s12035-020-02046-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 01/18/2023]
Abstract
In Alzheimer's disease (AD), excessive amounts of quinolinic acid (QUIN) accumulate within the brain parenchyma and dystrophic neurons. QUIN also regulates glutamate uptake into neurons, which may be due to modulation of Na+-dependent excitatory amino acid transporters (EAATs). To determine the biological relationships between QUIN and glutamate dysfunction, we first quantified the functionality and kinetics of [3H]QUIN uptake in primary human neurons using liquid scintillation. We then measured changes in the protein expression of the glutamate transporter EAAT3 and EAAT1b in primary neurons treated with QUIN and the EAAT inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (2,4-PDC) using western blotting and immunohistochemistry. Immunohistochemistry was further used to elucidate intracellular transport of exogenous QUIN and the lysosomal-associated membrane protein 2 (LAMP2). Structural insights into the binding between QUIN and EAAT3 were further investigated using molecular docking techniques. We report significant temperature-dependent high-affinity transport leading to neuronal uptake of [3H]QUIN with a Km of 42.2 μM, and a Vmax of 9.492 pmol/2 min/mg protein, comparable with the uptake of glutamate. We also found that QUIN increases expression of the EAAT3 monomer while decreasing the functional trimer. QUIN uptake into primary neurons was shown to involve EAAT3 as uptake was significantly attenuated following EAAT inhibition. We also demonstrated that QUIN increases the expression of aberrant EAAT1b protein in neurons further implicating QUIN-induced glutamate dysfunction. Furthermore, we demonstrated that QUIN is metabolised exclusively in lysosomes. The involvement of EAAT3 as a modulator for QUIN uptake was further confirmed using molecular docking. This study is the first to characterise a mechanism for QUIN uptake into primary human neurons involving EAAT3, opening potential targets to attenuate QUIN-induced excitotoxicity in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.
- School of Medicine, Huzhou University, Wuxing District, Huzhou, Zhejiang, China.
| | - Hayden Alicajic
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, 2019, Australia
| | - David Pow
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason Smith
- Department of Chemistry and Biomolecular sciences, Macquarie University, Sydney, NSW, Australia
| | - Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Bruce J Brew
- St Vincent's Centre for Applied Medical Research, Sydney, Australia
- Department of Neurology and HIV Medicine, St Vincent's Hospital, Sydney, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gilles J Guillemin
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, 2019, Australia.
| |
Collapse
|
10
|
Functional (un)cooperativity in elevator transport proteins. Biochem Soc Trans 2020; 48:1047-1055. [PMID: 32573703 DOI: 10.1042/bst20190970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
The activity of enzymes is subject to regulation at multiple levels. Cooperativity, the interconnected behavior of active sites within a protein complex, directly affects protein activity. Cooperativity is a mode of regulation that requires neither extrinsic factors nor protein modifications. Instead, it allows enzymes themselves to modulate reaction rates. Cooperativity is an important regulatory mechanism in soluble proteins, but also examples of cooperative membrane proteins have been described. In this review, we summarize the current knowledge on interprotomer cooperativity in elevator-type proteins, a class of membrane transporters characterized by large rigid-body movements perpendicular to the membrane, and highlight well-studied examples and experimental approaches.
Collapse
|
11
|
Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer. Neurochem Res 2020; 45:1268-1286. [DOI: 10.1007/s11064-019-02934-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
12
|
Zhou W, Fiorin G, Anselmi C, Karimi-Varzaneh HA, Poblete H, Forrest LR, Faraldo-Gómez JD. Large-scale state-dependent membrane remodeling by a transporter protein. eLife 2019; 8:50576. [PMID: 31855177 PMCID: PMC6957315 DOI: 10.7554/elife.50576] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
That channels and transporters can influence the membrane morphology is increasingly recognized. Less appreciated is that the extent and free-energy cost of these deformations likely varies among different functional states of a protein, and thus, that they might contribute significantly to defining its mechanism. We consider the trimeric Na+-aspartate symporter GltPh, a homolog of an important class of neurotransmitter transporters, whose mechanism entails one of the most drastic structural changes known. Molecular simulations indicate that when the protomers become inward-facing, they cause deep, long-ranged, and yet mutually-independent membrane deformations. Using a novel simulation methodology, we estimate that the free-energy cost of this membrane perturbation is in the order of 6–7 kcal/mol per protomer. Compensating free-energy contributions within the protein or its environment must thus stabilize this inward-facing conformation for the transporter to function. We discuss these striking results in the context of existing experimental observations for this and other transporters.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Giacomo Fiorin
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Claudio Anselmi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hossein Ali Karimi-Varzaneh
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Horacio Poblete
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States.,Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
13
|
Gupta K, Toombes GE, Swartz KJ. Exploring structural dynamics of a membrane protein by combining bioorthogonal chemistry and cysteine mutagenesis. eLife 2019; 8:50776. [PMID: 31714877 PMCID: PMC6850778 DOI: 10.7554/elife.50776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The functional mechanisms of membrane proteins are extensively investigated with cysteine mutagenesis. To complement cysteine-based approaches, we engineered a membrane protein with thiol-independent crosslinkable groups using azidohomoalanine (AHA), a non-canonical methionine analogue containing an azide group that can selectively react with cycloalkynes through a strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. We demonstrate that AHA can be readily incorporated into the Shaker Kv channel in place of methionine residues and modified with azide-reactive alkyne probes in Xenopus oocytes. Using voltage-clamp fluorometry, we show that AHA incorporation permits site-specific fluorescent labeling to track voltage-dependent conformational changes similar to cysteine-based methods. By combining AHA incorporation and cysteine mutagenesis in an orthogonal manner, we were able to site-specifically label the Shaker Kv channel with two different fluorophores simultaneously. Our results identify a facile and straightforward approach for chemical modification of membrane proteins with bioorthogonal chemistry to explore their structure-function relationships in live cells. Living cells can sense cues from their environment via molecules located at the interface between the inside and the outside of the cell. These molecules are mostly proteins and are made up of building blocks known as amino acids. To understand how these proteins work, fluorescent probes can be attached to amino acids within them – which can then tell when different parts of proteins move in response to a signal. Scientists often target fluorescent probes at the amino acid cysteine, because it has a chemically reactive side group and is rare enough so that unique positions can be labeled in the protein of interest. However, being able to target other amino acids would allow scientists to ask, and potentially solve, more precise questions about these proteins. Methionine is another amino acid that has a low abundance in most proteins. Previous research has shown that the cell’s normal protein-building machinery can incorporate synthetic versions of methionine into proteins. This suggested that the introduction of chemically reactive alternatives to methionine could offer a way to label membrane proteins with fluorescent probes and free up the cysteines to be targeted with other approaches. Gupta et al. set out to develop a straightforward method to achieve this and started with a well-studied membrane protein, called Shaker, and cells from female African clawed frogs, which are widely used to study membrane proteins. Gupta et al. found that the cells could readily take up a chemically reactive methionine alternative called azidohomoalanine (AHA) from their surrounding solution and incorporate it within the Shaker protein. The AHA took the place of the methionines that are normally found in Shaker, and just like in cysteine-based methods, fluorescent probes could be easily attached to the AHAs in this membrane protein. Shaker is a protein that allows potassium ions to flow across the cell membrane by changing shape in response to the membrane voltage. The fluorescence from those probes also changed with the membrane voltage in a way that was comparable to cysteine-mediated approaches. This indicated that the AHA modification could also be used to track structural changes in the Shaker protein. Finally, Gupta et al. showed that AHA- and cysteine-mediated labeling approaches could be combined to attach two different fluorescent probes onto the Shaker protein. This method will expand the toolbox for researchers studying the relationship between the structure and function of membrane proteins in live cells. In future, it could be applied more widely once the properties of the fluorescent probes for AHA-mediated labeling can be optimized.
Collapse
Affiliation(s)
- Kanchan Gupta
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| | - Gilman Es Toombes
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
14
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|
15
|
He S, Zhang W, Zhang X, Xu P, Hong M, Qu S. The 4b-4c loop of excitatory amino acid transporter 1 containing four critical residues essential for substrate transport. J Biomol Struct Dyn 2019; 38:3599-3609. [PMID: 31496428 DOI: 10.1080/07391102.2019.1664935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the mammalians, the 4b-4c loop of excitatory amino acid transporters (EAATs) spans more than 50 amino-acid residues that are absent in glutamate transporter homologue of Pyrococcus horikoshii (GltPh). This part of insertion is unique for metazoans and indispensable to the localization of EAATs. The excitatory amino acid transporter (EAAT) 1 is one of the two glial glutamate transporters, which are responsible for efficiently clearing glutamate from the synaptic cleft to prevent neurotoxicity and cell death. Although the crystal structure of EAAT1cryst (a human thermostable EAAT1) was resolved in 2017, the structure-function relationship of the 4b-4c loop has not been elucidated in EAAT1cryst. To investigate the role of the 4b-4c loop, we performed alanine-scanning mutagenesis in the mutants and observed dramatically decreased transport activities in T192A, Y194A, N242A, and G245A mutants. The surface expression of T192A and Y194A mutants even decreased by more than 80%, and most of them were detained in the cytoplasm. However, when T192 and Y194 were substituted with conservative residues, the transport activities and the surface expressions of T192S and Y194F were largely recovered, and their kinetic parameters (Km values) were comparable to the wild-type EAAT1 as well. In contrast, N242 and G245 substituted with conservative residues could not rescue the uptake function, suggesting that N242 and G245 may play irreplaceable roles in the glutamate uptake process. These results indicate that the 4b-4c loop of EAAT1 may not only affect the glutamate uptake activity, but also influence the surface localization of EAAT1 by T192 and Y194.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suifen He
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenlong Zhang
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Hong
- College of Life Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Glutamate transporters: a broad review of the most recent archaeal and human structures. Biochem Soc Trans 2019; 47:1197-1207. [PMID: 31383819 DOI: 10.1042/bst20190316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Glutamate transporters play important roles in bacteria, archaea and eukaryotes. Their function in the mammalian central nervous system is essential for preventing excitotoxicity, and their dysregulation is implicated in many diseases, such as epilepsy and Alzheimer's. Elucidating their transport mechanism would further the understanding of these transporters and promote drug design as they provide compelling targets for understanding the pathophysiology of diseases and may have a direct role in the treatment of conditions involving glutamate excitotoxicity. This review outlines the insights into the transport cycle, uncoupled chloride conductance and modulation, as well as identifying areas that require further investigation.
Collapse
|
17
|
Qu S, Zhang W, He S, Zhang X. Paired-Cysteine Scanning Reveals Conformationally Sensitive Proximity between the TM4b-4c Loop and TM8 of the Glutamate Transporter EAAT1. ACS Chem Neurosci 2019; 10:2541-2550. [PMID: 30802031 DOI: 10.1021/acschemneuro.9b00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate from the synaptic cleft and maintain glutamate concentrations below neurotoxic levels. Recently, the crystal structures of thermostable EAAT1 variants have been reported; however, little is understood regarding the functional mechanism of the transmembrane domain (TM) 4b-4c loop, which contains more than 50 amino acids in mammalian EAATs that are absent in prokaryotic homologues. To explore the spatial position and function of TM4 during the transport cycle, we introduced pairwise cysteine substitutions between the TM4b-4c loop and TM8 in a cysteine-less version of EAAT1, CL-EAAT1. We observed pronounced inhibition of transport by Cu(II)(1,10-phenanthroline)3 (CuPh) for doubly substituted V238C/I469C and A243C/I469C variants, but not for corresponding singly substituted CL-EAAT1 or for more than 20 other double-cysteine variants. Dithiothreitol treatment partially restored the uptake activity of the CuPh-treated V238C/I469C and A243C/I469C doubly substituted variants, confirming that the effects of CuPh on these variants were due to the formation of intramolecular disulfide bonds. Glutamate, KCl, and d,l-threo-β-benzyloxy-aspartate weakened CuPh inhibition of the V238C/I469C variant, but only KCl weakened CuPh inhibition of the V243C/I469C variant, suggesting that the TM4b-4c loop and TM8 are separated from each other in the inward-facing conformations of EAAT1. Our results suggest that the TM4b-4c loop and TM8 are positioned in close proximity during the transport cycle and are less closely spaced in the inward-facing conformation.
Collapse
Affiliation(s)
- Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenlong Zhang
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Suifen He
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
18
|
Zhang W, Zhang X, Qu S. Substrate-Induced Motion between TM4 and TM7 of the Glutamate Transporter EAAT1 Revealed by Paired Cysteine Mutagenesis. Mol Pharmacol 2018; 95:33-42. [PMID: 30348896 DOI: 10.1124/mol.118.113183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
To maintain efficient synaptic communication, glutamate transporters reuptake glutamate from the synaptic cleft and prevent glutamate concentrations from reaching neurotoxic levels. The number of amino acid residues of the transmembrane (TM) domain 4b-4c loop of mammalian excitatory amino acid transporters (EAATs) is 50 amino acids more than that of the prokaryotic homolog. To investigate the spatial proximity and functional significance of residues in glutamate transporters, cysteine pairs were introduced at positions A243 of the TM4b-4c loop and T396 or A414 of TM7, respectively. The transport activity of double mutants A243C/T396C and A243C/A414C was inhibited by Cu(II) (1,10-phenanthroline)3 [copper phenanthroline (CuPh)] and cadmium ions, but the uptake activity of corresponding single mutants remained unchanged. Treatment with dithiothreitol after CuPh restored much of the transport activity. The inhibitory effects of CuPh and cadmium could only be detected when cysteine pairs are in the same polypeptide. Therefore, we suggest that the formation of these disulfide bonds occurs intramolecularly. Glutamate, potassium, and DL-threo-β-benzyloxyaspartate facilitated crosslinking in the A243C/T396C transporter and this suggests that the TM4b-4c loop and β-bridge region in TM7 were drawn into close proximity to each other in the inward- and outward-facing conformation of EAAT1. Thus, these data provide evidence that substrate-induced structural rearrangements occur between the TM4b-4c loop and TM7 during the transport cycle.
Collapse
Affiliation(s)
- Wenlong Zhang
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China (W.Z., S.Q.); and Key Laboratory of Mental Health of the Ministry of Education (W.Z., S.Q.) and Teaching Center of Experimental Medicine, School of Basic Medical Sciences (X.Z.), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuping Zhang
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China (W.Z., S.Q.); and Key Laboratory of Mental Health of the Ministry of Education (W.Z., S.Q.) and Teaching Center of Experimental Medicine, School of Basic Medical Sciences (X.Z.), Southern Medical University, Guangzhou, Guangdong, China
| | - Shaogang Qu
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China (W.Z., S.Q.); and Key Laboratory of Mental Health of the Ministry of Education (W.Z., S.Q.) and Teaching Center of Experimental Medicine, School of Basic Medical Sciences (X.Z.), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Silverstein N, Sliman A, Stockner T, Kanner BI. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity. J Biol Chem 2018; 293:14200-14209. [PMID: 30026234 DOI: 10.1074/jbc.ra118.003261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
In the brain, glutamate transporters terminate excitatory neurotransmission by removing this neurotransmitter from the synapse via cotransport with three sodium ions into the surrounding cells. Structural studies have identified the binding sites of the three sodium ions in glutamate transporters. The residue side-chains directly interact with the sodium ions at the Na1 and Na3 sites and are fully conserved from archaeal to eukaryotic glutamate transporters. The Na2 site is formed by three main-chain oxygens on the extracellular reentrant hairpin loop HP2 and one on transmembrane helix 7. A glycine residue on HP2 is located closely to the three main-chain oxygens in all glutamate transporters, except for the astroglial transporter GLT-1, which has a serine residue at that position. Unlike for WT GLT-1, substitution of the serine residue to glycine enables sustained glutamate transport also when sodium is replaced by lithium. Here, using functional and simulation studies, we studied the role of this serine/glycine switch on cation selectivity of substrate transport. Our results indicate that the side-chain oxygen of the serine residues can form a hydrogen bond with a main-chain oxygen on transmembrane helix 7. This leads to an expansion of the Na2 site such that water can participate in sodium coordination at Na2. Furthermore, we found other molecular determinants of cation selectivity on the nearby HP1 loop. We conclude that subtle changes in the composition of the two reentrant hairpin loops determine the cation specificity of acidic amino acid transport by glutamate transporters.
Collapse
Affiliation(s)
- Nechama Silverstein
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Alaa Sliman
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Thomas Stockner
- From the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr. 13A, 1090 Vienna, Austria and
| | - Baruch I Kanner
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
20
|
Riederer EA, Focke PJ, Georgieva ER, Akyuz N, Matulef K, Borbat PP, Freed JH, Blanchard SC, Boudker O, Valiyaveetil FI. A facile approach for the in vitro assembly of multimeric membrane transport proteins. eLife 2018; 7:36478. [PMID: 29889023 PMCID: PMC6025958 DOI: 10.7554/elife.36478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.
Collapse
Affiliation(s)
- Erika A Riederer
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Paul J Focke
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Kimberly Matulef
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Olga Boudker
- Weill Cornell Medicine, New York, United States.,Howard Hughes Medical Institute, Maryland, United States
| | - Francis I Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
21
|
Zhang W, Zhang X, Qu S. Cysteine Scanning Mutagenesis of TM4b-4c Loop of Glutamate Transporter EAAT1 Reveals Three Conformationally Sensitive Residues. Mol Pharmacol 2018; 94:713-721. [PMID: 29654220 DOI: 10.1124/mol.117.111245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic synaptic transmitters are cleared from the synaptic cleft through excitatory amino acid transporters (EAATs) that are responsible for recycling glutamate and transporting it into neurons and glial cells. To probe the structural role of the TM4b-4c loop of EAAT1 (Rattus norvegicus), each of the 57 amino acid residues was mutated to cysteine. Thirteen of the single mutants have very low transport activity. Aqueous accessibility of the introduced cysteines from the remaining mutants was then explored by membrane-permeant and membrane-impermeant sulfhydryl reagents in different conditions. F190C, V238C, and A243C were affected by MTSET, whereas Q189C, F190C, V238C, A243C, and L244C were sensitive to MTSEA. Q189C and L244C transport activity was diminished in the presence of potassium, which is expected to favor the inward-facing conformation of the transporter. Inversely, L244C was protected by glutamate. The modification of A243C by MTSEA was enhanced by either potassium and glutamate or dl-threo-β-benzyloxyaspartate. From these results, we suggest that residues F190C, V238C, and A243C may be located near the extracellular surface, and the TM4b-4c loop forms multiple reentrant membrane loops on the cell surface. Alternatively, F190C, V238C, and A243C may function in the transport pathway, which is exposed to MTSET. In addition, Q189C, A243C, and L244C are conformationally sensitive and may play a role in the transport cycle.
Collapse
Affiliation(s)
- Wenlong Zhang
- Clinical Medicine Research Centre (W.Z., S.Q.) and Department of Neurology (W.Z., S.Q.), Shunde Hospital, Southern Medical University, Foshan, Guangdong, People's Republic of China; and Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China (X.Z.)
| | - Xiuping Zhang
- Clinical Medicine Research Centre (W.Z., S.Q.) and Department of Neurology (W.Z., S.Q.), Shunde Hospital, Southern Medical University, Foshan, Guangdong, People's Republic of China; and Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China (X.Z.)
| | - Shaogang Qu
- Clinical Medicine Research Centre (W.Z., S.Q.) and Department of Neurology (W.Z., S.Q.), Shunde Hospital, Southern Medical University, Foshan, Guangdong, People's Republic of China; and Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China (X.Z.)
| |
Collapse
|
22
|
Abstract
Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter.
Collapse
|
23
|
Divito CB, Borowski JE, Glasgow NG, Gonzalez-Suarez AD, Torres-Salazar D, Johnson JW, Amara SG. Glial and Neuronal Glutamate Transporters Differ in the Na + Requirements for Activation of the Substrate-Independent Anion Conductance. Front Mol Neurosci 2017; 10:150. [PMID: 28611584 PMCID: PMC5447070 DOI: 10.3389/fnmol.2017.00150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/04/2017] [Indexed: 01/12/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3) and EAAT4. To date, no difference has been observed for the substrate dependence of anion channel gating between the glial, EAAT1 and EAAT2, and the neuronal isoforms EAAT3, EAAT4 and EAAT5. Here we describe a difference in the Na+-dependence of anion channel gating between glial and neuronal isoforms. Chloride flux through transporters without glutamate binding has previously been described as substrate-independent or "leak" channel activity. Choline or N-methyl-D-glucamine replacement of external Na+ ions significantly reduced or abolished substrate-independent EAAT channel activity in EAAT3 and EAAT4 yet has no effect on EAAT1 or EAAT2. The interaction of Na+ with the neuronal carrier isoforms was concentration dependent, consistent with previous data. The presence of substrate and Na+-independent open states in the glial EAAT isoforms is a novel finding in the field of EAAT function. Our results reveal an important divergence in anion channel function between glial and neuronal glutamate transporters and highlight new potential roles for the EAAT-associated anion channel activity based on transporter expression and localization in the central nervous system.
Collapse
Affiliation(s)
- Christopher B Divito
- Center for Neuroscience, Department of Neurobiology, University of PittsburghPittsburgh, PA, United States
| | - Jenna E Borowski
- Center for Neuroscience, Department of Neurobiology, University of PittsburghPittsburgh, PA, United States
| | - Nathan G Glasgow
- Center for Neuroscience, Department of Neuroscience, University of PittsburghPittsburgh, PA, United States
| | - Aneysis D Gonzalez-Suarez
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, National Institutes of HealthBethesda, MD, United States
| | - Delany Torres-Salazar
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, National Institutes of HealthBethesda, MD, United States
| | - Jon W Johnson
- Center for Neuroscience, Department of Neuroscience, University of PittsburghPittsburgh, PA, United States
| | - Susan G Amara
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
24
|
Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. Proc Natl Acad Sci U S A 2017; 114:1584-1588. [PMID: 28137870 DOI: 10.1073/pnas.1616413114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glutamate transporters are essential for recovery of the neurotransmitter glutamate from the synaptic cleft. Crystal structures in the outward- and inward-facing conformations of a glutamate transporter homolog from archaebacterium Pyrococcus horikoshii, sodium/aspartate symporter GltPh, suggested the molecular basis of the transporter cycle. However, dynamic studies of the transport mechanism have been sparse and indirect. Here we present high-speed atomic force microscopy (HS-AFM) observations of membrane-reconstituted GltPh at work. HS-AFM movies provide unprecedented real-space and real-time visualization of the transport dynamics. Our results show transport mediated by large amplitude 1.85-nm "elevator" movements of the transport domains consistent with previous crystallographic and spectroscopic studies. Elevator dynamics occur in the absence and presence of sodium ions and aspartate, but stall in sodium alone, providing a direct visualization of the ion and substrate symport mechanism. We show unambiguously that individual protomers within the trimeric transporter function fully independently.
Collapse
|
25
|
Rong X, Tan F, Wu X, Zhang X, Lu L, Zou X, Qu S. TM4 of the glutamate transporter GLT-1 experiences substrate-induced motion during the transport cycle. Sci Rep 2016; 6:34522. [PMID: 27698371 PMCID: PMC5048300 DOI: 10.1038/srep34522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2), also known as glial glutamate transporter type 1 (GLT-1), plays an important role in maintaining the extracellular glutamate concentrations below neurotoxic levels. The highly conserved TM2 transmembrane domain of GLT-1 maintains a stable position during the transport cycle; however, the effect of the transport cycle on the topology of TM4 in not well established. To further reveal the function of TM4, two cysteine pairs between TM2 and TM4 were introduced using site-directed mutagenesis. A significant decrease of transport activity was observed in the I93C/V241C and I97C/V241C mutants upon application of the oxidative cross-linking reagent, copper (II) (1,10-phenanthroline)3 (CuPh), which suggests that a conformational shift is essential for transporter activity. Furthermore, the decrease in activity by CuPh crosslinking was enhanced in external media with glutamate or potassium, which suggests that TM2 and TM4 assume closer proximity in the inward-facing conformation of the transporter. Our results suggest that the TM4 domain of GLT-1, and potentially other glutamate transporters, undergoes a complex conformational shift during substrate translocation, which involves an increase in the proximity of the TM2 and TM4 domains in the inward-facing conformation.
Collapse
Affiliation(s)
- Xiuliang Rong
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.,Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530003, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, China
| | - Xiaojuan Wu
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lingli Lu
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoming Zou
- Department of Thoracic Cardiovascular Surgical, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Shaogang Qu
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
26
|
LeVine MV, Cuendet MA, Khelashvili G, Weinstein H. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 2016; 116:6552-87. [PMID: 26892914 DOI: 10.1021/acs.chemrev.5b00627] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane.
Collapse
Affiliation(s)
- Michael V LeVine
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Michel A Cuendet
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| |
Collapse
|
27
|
Dempski RE. Voltage Clamp Fluorometry of P-Type ATPases. Methods Mol Biol 2016; 1377:281-291. [PMID: 26695040 PMCID: PMC4717471 DOI: 10.1007/978-1-4939-3179-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Voltage clamp fluorometry has become a powerful tool to compare partial reactions of P-type ATPases such as the Na(+),K(+)-ATPase and H(+),K(+)-ATPase with conformational dynamics of these ion pumps. Here, we describe the methodology to heterologously express membrane proteins in X. laevis oocytes and site-specifically label these proteins with one or more fluorophores. Fluorescence changes are measured simultaneously with current measurements under two-electrode voltage clamp conditions.
Collapse
Affiliation(s)
- Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
28
|
Simonin A, Montalbetti N, Gyimesi G, Pujol-Giménez J, Hediger MA. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2. J Biol Chem 2015; 290:30464-74. [PMID: 26483543 DOI: 10.1074/jbc.m115.689836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates L-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for L-aspartate over D-aspartate and L-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.
Collapse
Affiliation(s)
- Alexandre Simonin
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Nicolas Montalbetti
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Gergely Gyimesi
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Jonai Pujol-Giménez
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Matthias A Hediger
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
29
|
Rong X, Zhang X, Qu S. A complex relative motion between hairpin loop 2 and transmembrane domain 5 in the glutamate transporter GLT-1. Int J Biochem Cell Biol 2015; 60:1-7. [DOI: 10.1016/j.biocel.2014.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
|
30
|
Correlating charge movements with local conformational changes of a Na(+)-coupled cotransporter. Biophys J 2014; 106:1618-29. [PMID: 24739161 DOI: 10.1016/j.bpj.2014.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/13/2014] [Accepted: 02/28/2014] [Indexed: 11/23/2022] Open
Abstract
To gain insight into the steady-state and dynamic characteristics of structural rearrangements of an electrogenic secondary-active cotransporter during its transport cycle, two measures of conformational change (pre-steady-state current relaxations and intensity of fluorescence emitted from reporter fluorophores) were investigated as a function of membrane potential and external substrate. Cysteines were substituted at three believed-new sites in the type IIb Na(+)-coupled inorganic phosphate cotransporter (SLC34A2 flounder isoform) that were predicted to be involved in conformational changes. Labeling at one site resulted in substantial suppression of transport activity, whereas for the other sites, function remained comparable to the wild-type. For these mutants, the properties of the pre-steady-state charge relaxations were similar for each, whereas fluorescence intensity changes differed significantly. Fluorescence changes could be accounted for by simulations using a five-state model with a unique set of apparent fluorescence intensities assigned to each state according to the site of labeling. Fluorescence reported from one site was associated with inward and outward conformations, whereas for the other sites, including four previously indentified sites, emissions were associated principally with one or the other orientation of the transporter. The same membrane potential change induced complementary changes in fluorescence at some sites, which suggested that the microenvironments of the respective fluorophores experience concomitant changes in polarity. In response to step changes in voltage, the pre-steady-state current relaxation and the time course of change in fluorescence intensity were described by single exponentials. For one mutant the time constants matched well with and without external Na(+), providing direct evidence that this label reports conformational changes accompanying intrinsic charge movement and cation interactions.
Collapse
|
31
|
Rong X, Zomot E, Zhang X, Qu S. Investigating Substrate-Induced Motion between the Scaffold and Transport Domains in the Glutamate Transporter EAAT1. Mol Pharmacol 2014; 86:657-64. [DOI: 10.1124/mol.114.094995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Heinzelmann G, Kuyucak S. Molecular dynamics simulations of the mammalian glutamate transporter EAAT3. PLoS One 2014; 9:e92089. [PMID: 24643009 PMCID: PMC3958442 DOI: 10.1371/journal.pone.0092089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are membrane proteins that enable sodium-coupled uptake of glutamate and other amino acids into neurons. Crystal structures of the archaeal homolog GltPh have been recently determined both in the inward- and outward-facing conformations. Here we construct homology models for the mammalian glutamate transporter EAAT3 in both conformations and perform molecular dynamics simulations to investigate its similarities and differences from GltPh. In particular, we study the coordination of the different ligands, the gating mechanism and the location of the proton and potassium binding sites in EAAT3. We show that the protonation of the E374 residue is essential for binding of glutamate to EAAT3, otherwise glutamate becomes unstable in the binding site. The gating mechanism in the inward-facing state of EAAT3 is found to be different from that of GltPh, which is traced to the relocation of an arginine residue from the HP1 segment in GltPh to the TM8 segment in EAAT3. Finally, we perform free energy calculations to locate the potassium binding site in EAAT3, and find a high-affinity site that overlaps with the Na1 and Na3 sites in GltPh.
Collapse
Affiliation(s)
| | - Serdar Kuyucak
- School of Physics, University of Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
33
|
Asymmetric perturbations of signalling oligomers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:153-69. [PMID: 24650570 DOI: 10.1016/j.pbiomolbio.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on rapid and reversible noncovalent interactions for symmetric oligomers of signalling proteins. Symmetry mismatch, transient symmetry breaking and asymmetric perturbations via chemical (ligand binding) and physical (electric or mechanic) effects can initiate the signalling events. Advanced biophysical methods can reveal not only structural symmetries of stable membrane-bound signalling proteins but also asymmetric functional transition states. Relevant techniques amenable to distinguish between symmetric and asymmetric architectures are discussed including those with the capability of capturing low-populated transient conformational states. Typical examples of signalling proteins are overviewed for symmetry breaking in dimers (GPCRs, growth factor receptors, transcription factors); trimers (acid-sensing ion channels); tetramers (voltage-gated cation channels, ionotropic glutamate receptor, CNG and CHN channels); pentameric ligand-gated and mechanosensitive channels; higher order oligomers (gap junction channel, chaperonins, proteasome, virus capsid); as well as primary and secondary transporters. In conclusion, asymmetric perturbations seem to play important functional roles in a broad range of communicating networks.
Collapse
|
34
|
Shabaneh M, Rosental N, Kanner BI. Disulfide cross-linking of transport and trimerization domains of a neuronal glutamate transporter restricts the role of the substrate to the gating of the anion conductance. J Biol Chem 2014; 289:11175-11182. [PMID: 24584931 DOI: 10.1074/jbc.m114.550277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Excitatory amino acid transporters remove synaptically released glutamate and maintain its concentrations below neurotoxic levels. EAATs also mediate a thermodynamically uncoupled substrate-gated anion conductance that may modulate cell excitability. A structure of an archeal homologue, which reflects an early intermediate on the proposed substrate translocation path, has been suggested to be similar to an anion conducting conformation. To probe this idea by functional studies, we have introduced two cysteine residues in the neuronal glutamate transporter EAAC1 at positions predicted to be close enough to form a disulfide bond only in outward-facing and early intermediate conformations of the homologue. Upon treatment of Xenopus laevis oocytes expressing the W441C/K269C double mutant with dithiothreitol, radioactive transport was stimulated >2-fold but potently inhibited by low micromolar concentrations of the oxidizing reagent copper(II)(1,10-phenanthroline)3. The substrate-induced currents by the untreated double mutant, reversed at approximately -20 mV, close to the reversal potential of chloride, but treatment with dithiothreitol resulted in transport currents with the same voltage dependence as the wild type. It appears therefore that in the oocyte expression system the introduced cysteine residues in many of the mutant transporters are already cross-linked and are only capable of mediating the substrate-gated anion conductance. Reduction of the disulfide bond now allows these transporters to execute the full transport cycle. Our functional data support the idea that the anion conducting conformation of the neuronal glutamate transporter is associated with an early step of the transport cycle.
Collapse
Affiliation(s)
- Mustafa Shabaneh
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Noa Rosental
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Baruch I Kanner
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
35
|
Neurotransmitter transporters: structure meets function. Structure 2014; 21:694-705. [PMID: 23664361 DOI: 10.1016/j.str.2013.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 12/22/2022]
Abstract
At synapses, sodium-coupled transporters remove released neurotransmitters, thereby recycling them and maintaining a low extracellular concentration of the neurotransmitter. The molecular mechanism underlying sodium-coupled neurotransmitter uptake is not completely understood. Several structures of homologs of human neurotransmitter transporters have been solved with X-ray crystallography. These crystal structures have spurred a plethora of computational and experimental work to elucidate the molecular mechanism underlying sodium-coupled transport. Here, we compare the structures of GltPh, a glutamate transporter homolog, and LeuT, a homolog of neurotransmitter transporters for the biogenic amines and inhibitory molecules GABA and glycine. We relate these structures to data obtained from experiments and computational simulations, to draw conclusions about the mechanism of uptake by sodium-coupled neurotransmitter transporters. Here, we propose how sodium and substrate binding is coupled and how binding of sodium and substrate opens and closes the gates in these transporters, thereby leading to an efficient coupled transport.
Collapse
|
36
|
Anderluh A, Klotzsch E, Reismann AWAF, Brameshuber M, Kudlacek O, Newman AH, Sitte HH, Schütz GJ. Single molecule analysis reveals coexistence of stable serotonin transporter monomers and oligomers in the live cell plasma membrane. J Biol Chem 2014; 289:4387-94. [PMID: 24394416 DOI: 10.1074/jbc.m113.531632] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human serotonin transporter (hSERT) is responsible for the termination of synaptic serotonergic signaling. Although there is solid evidence that SERT forms oligomeric complexes, the exact stoichiometry of the complexes and the fractions of different coexisting oligomeric states still remain enigmatic. Here we used single molecule fluorescence microscopy to obtain the oligomerization state of the SERT via brightness analysis of single diffraction-limited fluorescent spots. Heterologously expressed SERT was labeled either with the fluorescent inhibitor JHC 1-64 or via fusion to monomeric GFP. We found a variety of oligomerization states of membrane-associated transporters, revealing molecular associations larger than dimers and demonstrating the coexistence of different degrees of oligomerization in a single cell; the data are in agreement with a linear aggregation model. Furthermore, oligomerization was found to be independent of SERT surface density, and oligomers remained stable over several minutes in the live cell plasma membrane. Together, the results indicate kinetic trapping of preformed SERT oligomers at the plasma membrane.
Collapse
Affiliation(s)
- Andreas Anderluh
- From the Institute of Applied Physics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Boudker O, Akyuz N. Dance Lessons for Proteins: The Dynamics and Thermodynamics of a Sodium/Aspartate Symporter. SPRINGER SERIES IN BIOPHYSICS 2014. [DOI: 10.1007/978-3-642-53839-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
38
|
Erkens GB, Hänelt I, Goudsmits JMH, Slotboom DJ, van Oijen AM. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 2013; 502:119-23. [DOI: 10.1038/nature12538] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022]
|
39
|
Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain. J Neurosci 2013; 33:1068-87. [PMID: 23325245 DOI: 10.1523/jneurosci.3396-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the "trimerization domain" of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its "transport domain."
Collapse
|
40
|
Subunit interactions during cooperative opening of voltage-gated proton channels. Neuron 2013; 77:288-98. [PMID: 23352165 DOI: 10.1016/j.neuron.2012.12.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2012] [Indexed: 11/24/2022]
Abstract
Voltage-gated proton (Hv1) channels are dimers, where each subunit has a separate permeation pathway. However, opening of the two pathways is highly cooperative. It is unclear how Hv1 channels open their permeation pathways, because Hv1 channels lack a classic pore domain. Using voltage-clamp fluorometry, we here detect two conformational changes reported by a fluorophore attached to the voltage sensor S4 in Hv1 channels. The first is voltage dependent and precedes channel opening, with properties consistent with reporting on independent S4 charge movements in the two subunits. The second is less voltage dependent and closely correlates with channel opening. Mutations that reduce dimerization or alter the intersubunit interface affect both the second conformational change and channel opening. These observations suggest that, following an initial S4 charge movement in the two subunits, there is a second, cooperative conformational change, involving interactions between subunits, that opens both pathways in Hv1 channels.
Collapse
|
41
|
Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 2013; 20:215-21. [PMID: 23334289 PMCID: PMC3565060 DOI: 10.1038/nsmb.2494] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 12/17/2012] [Indexed: 01/03/2023]
Abstract
Sodium and aspartate symporter from Pyrococcus horikoshii, GltPh, is a homologue of the mammalian glutamate transporters, homotrimeric integral membrane proteins controlling the neurotransmitter levels in brain synapses. These transporters function by alternating between outward and inward facing states, in which the substrate binding site is oriented toward the extracellular space and the cytoplasm, respectively. Here we employ double electron-electron resonance (DEER) spectroscopy to probe the structure and the state distribution of the subunits in the trimer within distinct hydrophobic environments of detergent micelles and lipid bilayers. Our experiments reveal a conformational ensemble of protomers sampling the outward and inward facing states with nearly equal probabilities, indicative of comparable energies, and independently of each other. On average, the distributions vary only modestly in detergent and in bilayers, but in several mutants unique conformations are stabilized by the latter.
Collapse
|
42
|
Silverstein N, Crisman TJ, Forrest LR, Kanner BI. Cysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions. J Biol Chem 2012. [PMID: 23188832 DOI: 10.1074/jbc.m112.403576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate transporters in the brain remove the neurotransmitter from the synapse by cotransport with three sodium ions into the surrounding cells. Recent structural work on an archaeal homolog suggests that, during substrate translocation, the transport domain, including the peripheral transmembrane helix 3 (TM3), moves relative to the trimerization domain in an elevator-like process. Moreover, two TM3 residues have been proposed to form part of a transient Na3' site, and another, Tyr-124, appears close to both Na3' and Na1. To obtain independent evidence for the role of TM3 in glutamate transport, each of its 31 amino acid residues from the glial GLT-1 transporter was individually mutated to cysteine. Except for six mutants, substantial transport activity was detected. Aqueous accessibility of the introduced cysteines was probed with membrane-permeant and membrane-impermeant sulfhydryl reagents under a variety of conditions. Transport of six single cysteine mutants, all located on the intracellular side of TM3, was affected by membrane-permeant sulfhydryl reagents. However, only at two positions could ligands modulate the reactivity. A120C reactivity was diminished under conditions expected to favor the outward-facing conformation of the transporter. Sulfhydryl modification of Y124C by 2-aminoethyl methanethiosulfonate, but not by N-ethylmaleimide, was fully protected in the presence of sodium. Our data are consistent with the idea that TM3 moves during transport. Moreover, computational modeling indicated that electrostatic repulsion between the positive charge introduced at position 124 and the sodium ions bound at Na3' and Na1 underlies the protection by sodium.
Collapse
Affiliation(s)
- Nechama Silverstein
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
43
|
Hotzy J, Machtens JP, Fahlke C. Neutralizing aspartate 83 modifies substrate translocation of excitatory amino acid transporter 3 (EAAT3) glutamate transporters. J Biol Chem 2012; 287:20016-26. [PMID: 22532568 DOI: 10.1074/jbc.m112.344077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission by removing glutamate from the synaptic cleft into neuronal and glial cells. EAATs are not only secondary active glutamate transporters but also function as anion channels. Gating of EAAT anion channels is tightly coupled to transitions within the glutamate uptake cycle, resulting in Na(+)- and glutamate-dependent anion currents. A point mutation neutralizing a conserved aspartic acid within the intracellular loop close to the end of transmembrane domain 2 was recently shown to modify the substrate dependence of EAAT anion currents. To distinguish whether this mutation affects transitions within the uptake cycle or directly modifies the opening/closing of the anion channel, we used voltage clamp fluorometry. Using three different sites for fluorophore attachment, V120C, M205C, and A430C, we observed time-, voltage-, and substrate-dependent alterations of EAAT3 fluorescence intensities. The voltage and substrate dependence of fluorescence intensities can be described by a 15-state model of the transport cycle in which several states are connected to branching anion channel states. D83A-mediated changes of fluorescence intensities, anion currents, and secondary active transport can be explained by exclusive modifications of substrate translocation rates. In contrast, sole modification of anion channel opening and closing is insufficient to account for all experimental data. We conclude that D83A has direct effects on the glutamate transport cycle and that these effects result in changed anion channel function.
Collapse
Affiliation(s)
- Jasmin Hotzy
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | |
Collapse
|
44
|
Teichman S, Qu S, Kanner BI. Conserved asparagine residue located in binding pocket controls cation selectivity and substrate interactions in neuronal glutamate transporter. J Biol Chem 2012; 287:17198-17205. [PMID: 22493292 DOI: 10.1074/jbc.m112.355040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transporters of the major excitatory neurotransmitter glutamate play a crucial role in glutamatergic neurotransmission by removing their substrate from the synaptic cleft. The transport mechanism involves co-transport of glutamic acid with three Na(+) ions followed by countertransport of one K(+) ion. Structural work on the archeal homologue Glt(Ph) indicates a role of a conserved asparagine in substrate binding. According to a recent proposal, this residue may also participate in a novel Na(+) binding site. In this study, we characterize mutants of this residue from the neuronal transporter EAAC1, Asn-451. None of the mutants, except for N451S, were able to exhibit transport. However, the K(m) of this mutant for l-aspartate was increased ∼30-fold. Remarkably, the increase for d-aspartate and l-glutamate was 250- and 400-fold, respectively. Moreover, the cation specificity of N451S was altered because sodium but not lithium could support transport. A similar change in cation specificity was observed with a mutant of a conserved threonine residue, T370S, also implicated to participate in the novel Na(+) site together with the bound substrate. In further contrast to the wild type transporter, only l-aspartate was able to activate the uncoupled anion conductance by N451S, but with an almost 1000-fold reduction in apparent affinity. Our results not only provide experimental support for the Na(+) site but also suggest a distinct orientation of the substrate in the binding pocket during the activation of the anion conductance.
Collapse
Affiliation(s)
- Shlomit Teichman
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Shaogang Qu
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Baruch I Kanner
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
45
|
Taraska JW. Mapping membrane protein structure with fluorescence. Curr Opin Struct Biol 2012; 22:507-13. [PMID: 22445227 DOI: 10.1016/j.sbi.2012.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 01/07/2023]
Abstract
Membrane proteins regulate many cellular processes including signaling cascades, ion transport, membrane fusion, and cell-to-cell communications. Understanding the architecture and conformational fluctuations of these proteins is critical to understanding their regulation and functions. Fluorescence methods including intensity mapping, fluorescence resonance energy transfer (FRET), and photo-induced electron transfer, allow for targeted measurements of domains within membrane proteins. These methods can reveal how a protein is structured and how it transitions between different conformational states. Here, I will review recent work done using fluorescence to map the structures of membrane proteins, focusing on how each of these methods can be applied to understanding the dynamic nature of individual membrane proteins and protein complexes.
Collapse
Affiliation(s)
- Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
46
|
Lezon TR, Bahar I. Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh. Biophys J 2012; 102:1331-40. [PMID: 22455916 DOI: 10.1016/j.bpj.2012.02.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 11/16/2022] Open
Abstract
Substrate transport in sodium-coupled amino acid symporters involves a large-scale conformational change that shifts the access to the substrate-binding site from one side of the membrane to the other. The structural change is particularly substantial and entails a unique piston-like quaternary rearrangement in glutamate transporters, as evidenced by the difference between the outward-facing and inward-facing structures resolved for the archaeal aspartate transporter Glt(Ph). These structural changes occur over time and length scales that extend beyond the reach of current fully atomic models, but are regularly explored with the use of elastic network models (ENMs). Despite their success with other membrane proteins, ENM-based approaches for exploring the collective dynamics of Glt(Ph) have fallen short of providing a plausible mechanism. This deficiency is attributed here to the anisotropic constraints imposed by the membrane, which are not incorporated into conventional ENMs. Here we employ two novel (to our knowledge) ENMs to demonstrate that one can largely capture the experimentally observed structural change using only the few lowest-energy modes of motion that are intrinsically accessible to the transporter, provided that the surrounding lipid molecules are incorporated into the ENM. The presence of the membrane reduces the overall energy of the transition compared with conventional models, showing that the membrane not only guides the selected mechanism but also acts as a facilitator. Finally, we show that the dynamics of Glt(Ph) is biased toward transitions of individual subunits of the trimer rather than cooperative transitions of all three subunits simultaneously, suggesting a mechanism of transport that exploits the intrinsic dynamics of individual subunits. Our software is available online at http://www.membranm.csb.pitt.edu.
Collapse
Affiliation(s)
- Timothy R Lezon
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
47
|
Zhang X, Qu S. The accessibility in the external part of the TM5 of the glutamate transporter EAAT1 is conformationally sensitive during the transport cycle. PLoS One 2012; 7:e30961. [PMID: 22292083 PMCID: PMC3264643 DOI: 10.1371/journal.pone.0030961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/30/2011] [Indexed: 11/19/2022] Open
Abstract
Background Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter which is a key element in the termination of the synaptic actions of glutamate. It serves to keep the extracellular glutamate concentration below neurotoxic level. However the functional significance and the change of accessibility of residues in transmembrane domain (TM) 5 of the EAAT1 are not clear yet. Methodology/Principal Findings We used cysteine mutagenesis with treatments with membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium) methanethiosulfonate] to investigate the change of accessibility of TM5. Cysteine mutants were introduced from position 291 to 300 of the cysteine-less version of EAAT1. We checked the activity and kinetic parameters of the mutants before and after treatments with MTSET, furthermore we analyzed the effect of the substrate and blocker on the inhibition of the cysteine mutants by MTSET. Inhibition of transport by MTSET was observed in the mutants L296C, I297C and G299C, while the activity of K300C got higher after exposure to MTSET. Vmax of L296C and G299C got lower while that of K300C got higher after treated by MTSET. The L296C, G299C, K300C single cysteine mutants showed a conformationally sensitive reactivity pattern. The sensitivity of L296C to MTSET was potentiated by glutamate and TBOA,but the sensitivity of G299C to MTSET was potentiated only by TBOA. Conclusions/Significance All these facts suggest that the accessibility of some positions of the external part of the TM5 is conformationally sensitive during the transport cycle. Our results indicate that some residues of TM5 take part in the transport pathway during the transport cycle.
Collapse
Affiliation(s)
- Xiuping Zhang
- China-America Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, China
| | - Shaogang Qu
- Department of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
48
|
Grazioso G, Limongelli V, Branduardi D, Novellino E, De Micheli C, Cavalli A, Parrinello M. Investigating the Mechanism of Substrate Uptake and Release in the Glutamate Transporter Homologue GltPh through Metadynamics Simulations. J Am Chem Soc 2011; 134:453-63. [DOI: 10.1021/ja208485w] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Vittorio Limongelli
- Department of Chemistry and Applied Biosciences, Eidgenössiche Technische Hochschule (ETH), Zurich, Switzerland
- Institute of Computational Science (ICS), Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, I-80131 Napoli, Italy
| | - Davide Branduardi
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, I-16163 Genoa, Italy
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, I-80131 Napoli, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Andrea Cavalli
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, I-16163 Genoa, Italy
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, Eidgenössiche Technische Hochschule (ETH), Zurich, Switzerland
- Institute of Computational Science (ICS), Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
| |
Collapse
|
49
|
Rosental N, Gameiro A, Grewer C, Kanner BI. A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters. J Biol Chem 2011; 286:41381-41390. [PMID: 21984827 DOI: 10.1074/jbc.m111.291021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the brain, transporters of the major excitatory neurotransmitter glutamate remove their substrate from the synaptic cleft to allow optimal glutamatergic neurotransmission. Their transport cycle consists of two sequential translocation steps, namely cotransport of glutamic acid with three Na(+) ions, followed by countertransport of K(+). Recent studies, based on several crystal structures of the archeal homologue Glt(Ph), indicate that glutamate translocation occurs by an elevator-like mechanism. The resolution of these structures was not sufficiently high to unambiguously identify the sites of Na(+) binding, but functional and computational studies suggest some candidate sites. In the Glt(Ph) structure, a conserved aspartate residue (Asp-390) is located adjacent to a conserved tyrosine residue, previously shown to be a molecular determinant of ion selectivity in the brain glutamate transporter GLT-1. In this study, we characterize mutants of Asp-440 of the neuronal transporter EAAC1, which is the counterpart of Asp-390 of Glt(Ph). Except for substitution by glutamate, this residue is functionally irreplaceable. Using biochemical and electrophysiological approaches, we conclude that although D440E is intrinsically capable of net flux, this mutant behaves as an exchanger under physiological conditions, due to increased and decreased apparent affinities for Na(+) and K(+), respectively. Our present and previous data are compatible with the idea that the conserved tyrosine and aspartate residues, located at the external end of the binding pocket, may serve as a transient or stable cation binding site in the glutamate transporters.
Collapse
Affiliation(s)
- Noa Rosental
- Department of Biochemistry and Molecular Biology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Armanda Gameiro
- Department of Chemistry, Binghamton University, Binghamton, New York 13902
| | - Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, New York 13902
| | - Baruch I Kanner
- Department of Biochemistry and Molecular Biology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
50
|
Large collective motions regulate the functional properties of glutamate transporter trimers. Proc Natl Acad Sci U S A 2011; 108:15141-6. [PMID: 21876140 DOI: 10.1073/pnas.1112216108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamate transporters clear synaptically released glutamate to maintain precise communication between neurons and limit glutamate neurotoxicity. Although much progress has been made on the topology, structure, and function of these carriers, few studies have addressed large-scale structural motions collectively associated with substrate transport. Here we show that a series of single cysteine substitutions in the helical hairpin HP2 of excitatory amino acid transporter 1 form intersubunit disulfide cross-links within the trimer. After cross-linking, substrate uptake, but not substrate-activated anion conductance, is completely inhibited in these mutants. These disulfide bridges link residue pairs > 40 Å apart in the outward-facing crystal structure, and can be explained by concerted subunit movements predicted by the anisotropic network model (ANM). The existence of these global motions is further supported by the observation that single cysteine substitutions at the extracellular part of the transmembrane domain 8 can also be cross-linked by copper phenanthroline as predicted by the ANM. Interestingly, the transport domain in the un-cross-linked subunit of the trimer assumes an inward-facing orientation, suggesting that individual subunits potentially undergo separate transitions between outward- and inward-facing forms, rather than an all-or-none transition of the three subunits, a mechanism also supported by ANM-predicted intrinsic dynamics. These results shed light on how large collective motions contribute to the functional dynamics of glutamate transporters.
Collapse
|