1
|
Duppen CP, Sachdeva N, Wrona H, Dayan E, Browner N, Lewek MD. Blending motor learning approaches for short-term adjustments to gait in people with Parkinson disease. Exp Brain Res 2024; 242:2853-2863. [PMID: 39361030 DOI: 10.1007/s00221-024-06933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Rhythmic auditory cueing (RAC) using an isochronous metronome is an effective approach to immediately enhance spatiotemporal aspects of gait for people with Parkinson disease (PwPD). Whereas entraining to RAC typically occurs subconsciously via cerebellar pathways, the use of metronome frequencies that deviate from one's typical cadence, such as those used in rehabilitation, may require conscious awareness. This heightened awareness may increase cognitive load and limit the persistence of gait training gains. Here, we explore the immediate effects of incorporating an implicit motor learning approach (i.e., error-based recalibration) to gait training with RAC. Twenty older adults (10 with PD and 10 controls) were asked to match their footfalls to both isochronous and subtly varying metronomes while walking on a treadmill and overground. Our findings revealed intriguing differences between treadmill and overground walking. During treadmill walking to a slower metronome frequency, both groups reduced their cadence and increased step lengths, but did not make the necessary adjustments to match the subtly varying metronome. During overground walking, both groups modified their cadence in response to a 3-4% change in metronome frequency (p < 0.05). Both metronomes yielded evidence of implicit and explicit retention during overground and treadmill walking. Furthermore, during overground walking the PD group showed greater implicit retention of cadence changes following the varying metronome, compared to the isochronous metronome. Our results suggest that incorporating implicit motor learning approaches to gait training during a single session of overground walking may enhance short term implicit retention of gait behaviors for PwPD.
Collapse
Affiliation(s)
- Chelsea Parker Duppen
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikhil Sachdeva
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hailey Wrona
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- NC and North Carolina State University, Raleigh, NC, USA
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nina Browner
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael D Lewek
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Physical Therapy, Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Spomer AM, Conner BC, Schwartz MH, Lerner ZF, Steele KM. Multi-session adaptation to audiovisual and sensorimotor biofeedback is heterogeneous among adolescents with cerebral palsy. PLoS One 2024; 19:e0313617. [PMID: 39556530 PMCID: PMC11573209 DOI: 10.1371/journal.pone.0313617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND There is growing interest in the use of biofeedback-augmented gait training in cerebral palsy (CP). Audiovisual, sensorimotor, and immersive biofeedback paradigms are commonly used to elicit short-term gait improvements; however, outcomes remain variable. Because biofeedback training requires that individuals have the capacity to both adapt their gait in response to feedback and retain improvements across sessions, changes in either capacity may affect outcomes. Yet, neither has been explored extensively in CP. METHODS In this study, we evaluated the extent to which adolescents with CP (7M/1F; 14 years (12.5,15.26)) could adapt gait and retain improvements across four, 20-minute sessions using combined audiovisual and sensorimotor biofeedback. Both systems were designed to target plantarflexor activity. Audiovisual biofeedback displayed real-time soleus activity and sensorimotor biofeedback was provided using a bilateral resistive ankle exoskeleton. We quantified the time-course of change in muscle activity within and across sessions and overground walking function before and after the four sessions. RESULTS All individuals were able to significantly increase soleus activity from baseline using multimodal biofeedback (p < 0.031) but demonstrated heterogeneous adaptation strategies. In-session soleus adaptation had a moderate positive correlation with short-term retention of the adapted gait patterns (0.40 ≤ ρ ≤ 0.81), but generally weak correlations with baseline walking function (GMFCS Level) and motor control complexity (ρ ≤ 0.43). The latter indicates that adaptation capacity may be a critical and unique metric underlying response to biofeedback. Notably, in-session gains did not correspond to significant improvements in overground walking function (p > 0.11). CONCLUSIONS This work suggests that individuals with CP have the capacity to adapt their gait using biofeedback, but responses are highly variable. Characterizing the factors driving adaptation to biofeedback may be a promising avenue to understand the heterogeneity of existing biofeedback training outcomes and inform future system optimization for integration into clinical care.
Collapse
Affiliation(s)
- Alyssa M. Spomer
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Benjamin C. Conner
- College of Medicine – Phoenix, University of Arizona, Phoenix, Arizona, United States of America
| | - Michael H. Schwartz
- James R. Gage Center for Gait & Motion Analysis, Gillette Children’s, Saint Paul, Minnesota, United States of America
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zachary F. Lerner
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Seethapathi N, Clark BC, Srinivasan M. Exploration-based learning of a stabilizing controller predicts locomotor adaptation. Nat Commun 2024; 15:9498. [PMID: 39489737 PMCID: PMC11532365 DOI: 10.1038/s41467-024-53416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Humans adapt their locomotion seamlessly in response to changes in the body or the environment. It is unclear how such adaptation improves performance measures like energy consumption or symmetry while avoiding falling. Here, we model locomotor adaptation as interactions between a stabilizing controller that reacts quickly to perturbations and a reinforcement learner that gradually improves the controller's performance through local exploration and memory. This model predicts time-varying adaptation in many settings: walking on a split-belt treadmill (i.e. with both feet at different speeds), with asymmetric leg weights, or using exoskeletons - capturing learning and generalization phenomena in ten prior experiments and two model-guided experiments conducted here. The performance measure of energy minimization with a minor cost for asymmetry captures a broad range of phenomena and can act alongside other mechanisms such as reducing sensory prediction error. Such a model-based understanding of adaptation can guide rehabilitation and wearable robot control.
Collapse
Affiliation(s)
- Nidhi Seethapathi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | - Manoj Srinivasan
- Department of Mechanical and Aerospace Engineering, the Ohio State University, Columbus, OH, USA
- Program in Biophysics, the Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Rossi C, Roemmich RT, Bastian AJ. Understanding mechanisms of generalization following locomotor adaptation. NPJ SCIENCE OF LEARNING 2024; 9:48. [PMID: 39043679 PMCID: PMC11266392 DOI: 10.1038/s41539-024-00258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Our nervous system has the remarkable ability to adapt our gait to accommodate changes in our body or surroundings. However, our adapted walking patterns often generalize only partially (or not at all) between different contexts. Here, we sought to understand how the nervous system generalizes adapted gait patterns from one context to another. Through a series of split-belt treadmill walking experiments, we evaluated different mechanistic hypotheses to explain the partial generalization of adapted gait patterns from split-belt treadmill to overground walking. In support of the credit assignment hypothesis, our experiments revealed the central finding that adaptation involves recalibration of two distinct forward models. Recalibration of the first model generalizes to overground walking, suggesting that the model represents the general movement dynamics of our body. On the other hand, recalibration of the second model does not generalize to overground walking, suggesting the model represents dynamics specific to treadmill walking. These findings reveal that there is a predefined portion of forward model recalibration that generalizes across context, leading to overall partial generalization of walking adaptation.
Collapse
Affiliation(s)
- Cristina Rossi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Ryan T Roemmich
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Jeffcoat S, Aragon A, Kuch A, Farrokhi S, Sanchez N. Perception of task duration affects metabolic cost during split-belt adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595558. [PMID: 38826397 PMCID: PMC11142228 DOI: 10.1101/2024.05.24.595558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Humans continuously adapt locomotor patterns. Whether metabolic cost reduction is the primary objective or a by-product of the observed biomechanical changes during adaptation is not known. The main goal of our study is to determine if perception of task duration affects the adaptation of locomotor patterns to reduce energetic cost during split-belt walking. We tested the hypothesis that individuals who believe they will sustain a locomotor adaptation task for a prolonged time will reduce metabolic cost by adapting toward a walking pattern associated with lower mechanical work. N=14 participants walked on a split-belt treadmill for 10 minutes with knowledge of task duration (group K), while N=15 participants performed the task under the assumption that they would walk for 30 minutes (group U). Both groups walked for 10 minutes with the belts moving at 1.5 and 0.5 m/s, followed by 6 minutes of walking with both belts at 1.0 m/s. We observed a significant main effect of Time (p<0.001, observed power 1.0) and the interaction of Time×Group (p=0.004, observed power 0.84) on metabolic cost. Participants in the U group had a metabolic cost that was 12% lower during adaptation compared to the K group, which did not reduce metabolic cost during adaptation. The metabolic cost reduction observed in group U was not associated with biomechanical changes during adaptation. Our results indicate that metabolic cost reduction has a primary role in tasks that need to be sustained for a prolonged time, and this reduction is not only related to biomechanical factors.
Collapse
Affiliation(s)
- S.N. Jeffcoat
- Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Chapman University
| | - A. Aragon
- Department of Applied Human Physiology, Crean College of Health and Behavioral Sciences, Chapman University
| | - A. Kuch
- Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Chapman University
| | - S. Farrokhi
- Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Chapman University
| | - N. Sanchez
- Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Chapman University
- Department of Electrical Engineering and Computer Science, Fowler School of Engineering, Chapman University
| |
Collapse
|
6
|
Jouybari AF, Ferraroli N, Bouri M, Alaoui SH, Kannape OA, Blanke O. Augmenting locomotor perception by remapping tactile foot sensation to the back. J Neuroeng Rehabil 2024; 21:65. [PMID: 38678291 PMCID: PMC11055306 DOI: 10.1186/s12984-024-01344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Sensory reafferents are crucial to correct our posture and movements, both reflexively and in a cognitively driven manner. They are also integral to developing and maintaining a sense of agency for our actions. In cases of compromised reafferents, such as for persons with amputated or congenitally missing limbs, or diseases of the peripheral and central nervous systems, augmented sensory feedback therefore has the potential for a strong, neurorehabilitative impact. We here developed an untethered vibrotactile garment that provides walking-related sensory feedback remapped non-invasively to the wearer's back. Using the so-called FeetBack system, we investigated if healthy individuals perceive synchronous remapped feedback as corresponding to their own movement (motor awareness) and how temporal delays in tactile locomotor feedback affect both motor awareness and walking characteristics (adaptation). METHODS We designed the system to remap somatosensory information from the foot-soles of healthy participants (N = 29), using vibrotactile apparent movement, to two linear arrays of vibrators mounted ipsilaterally on the back. This mimics the translation of the centre-of-mass over each foot during stance-phase. The intervention included trials with real-time or delayed feedback, resulting in a total of 120 trials and approximately 750 step-cycles, i.e. 1500 steps, per participant. Based on previous work, experimental delays ranged from 0ms to 1500ms to include up to a full step-cycle (baseline stride-time: µ = 1144 ± 9ms, range 986-1379ms). After each trial participants were asked to report their motor awareness. RESULTS Participants reported high correspondence between their movement and the remapped feedback for real-time trials (85 ± 3%, µ ± σ), and lowest correspondence for trials with left-right reversed feedback (22 ± 6% at 600ms delay). Participants further reported high correspondence of trials delayed by a full gait-cycle (78 ± 4% at 1200ms delay), such that the modulation of motor awareness is best expressed as a sinusoidal relationship reflecting the phase-shifts between actual and remapped tactile feedback (cos model: 38% reduction of residual sum of squares (RSS) compared to linear fit, p < 0.001). The temporal delay systematically but only moderately modulated participant stride-time in a sinusoidal fashion (3% reduction of RSS compared a linear fit, p < 0.01). CONCLUSIONS We here demonstrate that lateralized, remapped haptic feedback modulates motor awareness in a systematic, gait-cycle dependent manner. Based on this approach, the FeetBack system was used to provide augmented sensory information pertinent to the user's on-going movement such that they reported high motor awareness for (re)synchronized feedback of their movements. While motor adaptation was limited in the current cohort of healthy participants, the next step will be to evaluate if individuals with a compromised peripheral nervous system, as well as those with conditions of the central nervous system such as Parkinson's Disease, may benefit from the FeetBack system, both for maintaining a sense of agency over their movements as well as for systematic gait-adaptation in response to the remapped, self-paced, rhythmic feedback.
Collapse
Affiliation(s)
- Atena Fadaei Jouybari
- Laboratory of Cognitive Neuroscience, Faculty of Life Sciences, Neuro-X Institute, Swiss Federal Institute of Technology (EPFL), Geneva, 1012, Switzerland
| | - Nathanael Ferraroli
- Laboratory of Cognitive Neuroscience, Faculty of Life Sciences, Neuro-X Institute, Swiss Federal Institute of Technology (EPFL), Geneva, 1012, Switzerland
| | - Mohammad Bouri
- REHAssist Group, EPFL, Station 9, STI IMT MED, Lausanne, Switzerland
| | - Selim Habiby Alaoui
- Laboratory of Cognitive Neuroscience, Faculty of Life Sciences, Neuro-X Institute, Swiss Federal Institute of Technology (EPFL), Geneva, 1012, Switzerland
| | - Oliver Alan Kannape
- Laboratory of Cognitive Neuroscience, Faculty of Life Sciences, Neuro-X Institute, Swiss Federal Institute of Technology (EPFL), Geneva, 1012, Switzerland
- Virtual Medicine Center, HUG-NeuroCentre, Department of Clinical Neurosciences, University Hospitals Geneva, Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Faculty of Life Sciences, Neuro-X Institute, Swiss Federal Institute of Technology (EPFL), Geneva, 1012, Switzerland.
| |
Collapse
|
7
|
Hill CM, Sebastião E, Barzi L, Wilson M, Wood T. Reinforcement feedback impairs locomotor adaptation and retention. Front Behav Neurosci 2024; 18:1388495. [PMID: 38720784 PMCID: PMC11076767 DOI: 10.3389/fnbeh.2024.1388495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Locomotor adaptation is a motor learning process used to alter spatiotemporal elements of walking that are driven by prediction errors, a discrepancy between the expected and actual outcomes of our actions. Sensory and reward prediction errors are two different types of prediction errors that can facilitate locomotor adaptation. Reward and punishment feedback generate reward prediction errors but have demonstrated mixed effects on upper extremity motor learning, with punishment enhancing adaptation, and reward supporting motor memory. However, an in-depth behavioral analysis of these distinct forms of feedback is sparse in locomotor tasks. Methods For this study, three groups of healthy young adults were divided into distinct feedback groups [Supervised, Reward, Punishment] and performed a novel locomotor adaptation task where each participant adapted their knee flexion to 30 degrees greater than baseline, guided by visual supervised or reinforcement feedback (Adaptation). Participants were then asked to recall the new walking pattern without feedback (Retention) and after a washout period with feedback restored (Savings). Results We found that all groups learned the adaptation task with external feedback. However, contrary to our initial hypothesis, enhancing sensory feedback with a visual representation of the knee angle (Supervised) accelerated the rate of learning and short-term retention in comparison to monetary reinforcement feedback. Reward and Punishment displayed similar rates of adaptation, short-term retention, and savings, suggesting both types of reinforcement feedback work similarly in locomotor adaptation. Moreover, all feedback enhanced the aftereffect of locomotor task indicating changes to implicit learning. Discussion These results demonstrate the multi-faceted nature of reinforcement feedback on locomotor adaptation and demonstrate the possible different neural substrates that underly reward and sensory prediction errors during different motor tasks.
Collapse
Affiliation(s)
- Christopher M. Hill
- Department of Kinesiology and Physical Education, Northern Illinois University, Dekalb, IL, United States
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Emerson Sebastião
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Leo Barzi
- Department of Kinesiology and Physical Education, Northern Illinois University, Dekalb, IL, United States
| | - Matt Wilson
- School of Allied Health and Communicative Disorders, Northern Illinois University, Dekalb, IL, United States
| | - Tyler Wood
- Department of Kinesiology and Physical Education, Northern Illinois University, Dekalb, IL, United States
| |
Collapse
|
8
|
Darcy B, Rashford L, Tsai NT, Huizenga D, Reed KB, Bamberg SJM. One-year retention of gait speed improvement in stroke survivors after treatment with a wearable home-use gait device. Front Neurol 2024; 14:1089083. [PMID: 38274885 PMCID: PMC10808505 DOI: 10.3389/fneur.2023.1089083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Background Gait impairments after stroke are associated with numerous physical and psychological consequences. Treatment with the iStride® gait device has been shown to facilitate improvements to gait function, including gait speed, for chronic stroke survivors with hemiparesis. This study examines the long-term gait speed changes up to 12 months after treatment with the gait device. Methods Eighteen individuals at least one-year post-stroke completed a target of 12, 30-minute treatment sessions with the gait device in their home environment. Gait speed was measured at baseline and five follow-up sessions after the treatment period: one week, one month, three months, six months, and 12 months. Gait speed changes were analyzed using repeated-measures ANOVA from baseline to each follow-up time frame. Additional analysis included comparison to the minimal clinically important difference (MCID), evaluation of gait speed classification changes, and review of subjective questionnaires. Results Participants retained an average gait speed improvement >0.21 m/s compared to baseline at all post-treatment time frames. Additionally, 94% of participants improved their gait speed beyond the MCID during one or more post-treatment measurements, and 88% subjectively reported a gait speed improvement. Conclusion Treatment with the gait device may result in meaningful, long-term gait speed improvement for chronic stroke survivors with hemiparetic gait impairments. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT03649217, identifier NCT03649217.
Collapse
Affiliation(s)
- Brianne Darcy
- Moterum Technologies, Inc., Salt Lake City, UT, United States
| | - Lauren Rashford
- Moterum Technologies, Inc., Salt Lake City, UT, United States
| | - Nancey T. Tsai
- Moterum Technologies, Inc., Salt Lake City, UT, United States
| | - David Huizenga
- Moterum Technologies, Inc., Salt Lake City, UT, United States
| | - Kyle B. Reed
- Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States
| | | |
Collapse
|
9
|
Refy O, Blanchard B, Miller-Peterson A, Dalrymple AN, Bedoy EH, Zaripova A, Motaghedi N, Mo O, Panthangi S, Reinhart A, Torres-Oviedo G, Geyer H, Weber DJ. Dynamic spinal reflex adaptation during locomotor adaptation. J Neurophysiol 2023; 130:1008-1014. [PMID: 37701940 DOI: 10.1152/jn.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
The dynamics and interaction of spinal and supraspinal centers during locomotor adaptation remain vaguely understood. In this work, we use Hoffmann reflex measurements to investigate changes in spinal reflex gains during split-belt locomotor adaptation. We show that spinal reflex gains are dynamically modulated during split-belt locomotor adaptation. During first exposure to split-belt transitions, modulation occurs mostly on the leg ipsilateral to the speed change and constitutes rapid suppression or facilitation of the reflex gains, followed by slow recovery to baseline. Over repeated exposure, the modulation pattern washes out. We further show that reflex gain modulation strongly correlates with correction of leg asymmetry, and cannot be explained by speed modulation solely. We argue that reflex modulation is likely of supraspinal origins and constitutes an integral part of the neural substrate underlying split-belt locomotor adaptation.NEW & NOTEWORTHY This work presents direct evidence for spinal reflex modulation during locomotor adaptation. In particular, we show that reflexes can be modulated on-demand unilaterally during split-belt locomotor adaptation and speculate about reflex modulation as an underlying mechanism for adaptation of gait asymmetry in healthy adults.
Collapse
Affiliation(s)
- Omar Refy
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Legged Systems Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Belle Blanchard
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Abigail Miller-Peterson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, Utah, United States
| | - Ernesto H Bedoy
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Amelia Zaripova
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Nadim Motaghedi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Owen Mo
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Shalini Panthangi
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Alex Reinhart
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Gelsy Torres-Oviedo
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hartmut Geyer
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Legged Systems Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Mariscal DM, Sombric CJ, Torres-Oviedo G. Age-specific walking speed during locomotor adaptation leads to more generalization across contexts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552802. [PMID: 37645865 PMCID: PMC10461905 DOI: 10.1101/2023.08.10.552802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Previous work has shown that compared with young adults, older adults generalize their walking patterns more across environments that impose different motor demands (i.e., split-belt treadmill vs. overground). However, in this previous study, all participants walked at a speed that was more comfortable for older adults than young participants, which leads to the question of whether young adults would generalize more their walking patterns than older adults when exposed to faster speeds that are more comfortable for them. To address this question, we examined the interaction between healthy aging and walking speed on the generalization of a pattern learned on a split-belt treadmill (i.e., legs moving at different speeds) to overground. We hypothesized that walking speed during split-belt walking regulates the generalization of walking patterns in an age-specific manner. To this end, groups of young (<30 y/o) and older (65+ y/o) adults adapted their gait on a split-belt treadmill at either slower or faster walking speeds. We assessed the generalization of movements between the groups by quantifying their aftereffects during overground walking, where larger overground aftereffects represent more generalization, and zero aftereffects represent no generalization. We found an interaction between age and walking speed in the generalization of walking patterns. More specifically, older adults generalized more when adapted at slower speeds, whereas younger adults did so when adapted at faster speeds. These results suggest that comfortable walking speeds lead to more generalization of newly acquired motor patterns beyond the training contexts.
Collapse
Affiliation(s)
- Dulce M. Mariscal
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA, 15260
| | - Carly J. Sombric
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, 15260
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA, 15260
| |
Collapse
|
11
|
Mahon CE, Hendershot BD, Gaskins C, Hatfield BD, Shaw EP, Gentili RJ. A mental workload and biomechanical assessment during split-belt locomotor adaptation with and without optic flow. Exp Brain Res 2023:10.1007/s00221-023-06609-6. [PMID: 37358569 DOI: 10.1007/s00221-023-06609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/27/2023] [Indexed: 06/27/2023]
Abstract
Adaptive human performance relies on the central nervous system to regulate the engagement of cognitive-motor resources as task demands vary. Despite numerous studies which employed a split-belt induced perturbation to examine biomechanical outcomes during locomotor adaptation, none concurrently examined the cerebral cortical dynamics to assess changes in mental workload. Additionally, while prior work suggests that optic flow provides critical information for walking regulation, a few studies have manipulated visual inputs during adaption to split-belt walking. This study aimed to examine the concurrent modulation of gait and Electroencephalography (EEG) cortical dynamics underlying mental workload during split-belt locomotor adaptation, with and without optic flow. Thirteen uninjured participants with minimal inherent walking asymmetries at baseline underwent adaptation, while temporal-spatial gait and EEG spectral metrics were recorded. The results revealed a reduction in step length and time asymmetry from early to late adaptation, accompanied by an elevated frontal and temporal theta power; the former being well corelated to biomechanical changes. While the absence of optic flow during adaptation did not affect temporal-spatial gait metrics, it led to an increase of theta and low-alpha power. Thus, as individuals adapt their locomotor patterns, the cognitive-motor resources underlying the encoding and consolidation processes of the procedural memory were recruited to acquire a new internal model of the perturbation. Also, when adaption occurs without optic flow, a further reduction of arousal is accompanied with an elevation of attentional engagement due to enhanced neurocognitive resources likely to maintain adaptive walking patterns.
Collapse
Affiliation(s)
- Caitlin E Mahon
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Brad D Hendershot
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher Gaskins
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, room #2138, College Park, MD, 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Bradley D Hatfield
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, room #2138, College Park, MD, 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Emma P Shaw
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, room #2138, College Park, MD, 20742, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
| | - Rodolphe J Gentili
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, room #2138, College Park, MD, 20742, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
12
|
Hao J, Buster TW, Cesar GM, Burnfield JM. Virtual reality augments effectiveness of treadmill walking training in patients with walking and balance impairments: A systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2023; 37:603-619. [PMID: 36366806 DOI: 10.1177/02692155221138309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To systematically summarize and examine current evidence regarding the combination of virtual reality and treadmill training in patients with walking and balance impairments. DATA SOURCES English language randomized controlled trials, participants with walking and balance impairments, intervention group used virtual reality and treadmill, control group only used treadmill with the same training frequency and number of sessions. Six bioscience and engineering databases were searched. METHODS Two independent reviewers conducted study selection, data extraction, and quality assessment. Methodological quality was assessed using the Physiotherapy Evidence Database (PEDro) scale. RESULTS Sixteen randomized controlled trials including 829 participants were identified. Compared to treadmill-only training, virtual reality augmented treadmill training induced significantly faster walking (p < 0.001; standardized mean difference (SMD) = 0.55, 95%CI: 0.30 to 0.81), longer step length (p < 0.001; SMD = 0.74, 95%CI: 0.42 to 1.06), narrower step width (p = 0.03; SMD = -0.52, 95%CI: -0.97 to -0.06), longer single leg stance period (p = 0.003; SMD = 0.77, 95%CI: 0.27 to 1.27), better functional mobility (p = 0.003; SMD = -0.44, 95%CI: - 0.74 to -0.15), improved balance function (p = 0.04; SMD = 0.24, 95%CI: 0.01 to 0.47), and enhanced balance confidence (p = 0.03; SMD = 0.73, 95%CI: 0.08 to 1.37). Walking endurance did not differ significantly between groups (p = 0.21; SMD = 0.13, 95%CI: -0.07 to 0.34). CONCLUSIONS Virtual reality augmented treadmill walking training enhances outcomes compared to treadmill-only training in patients with walking and balance impairments. The results of this review support the clinical significance of combining virtual reality with treadmill training with level 1A empirical evidence.
Collapse
Affiliation(s)
- Jie Hao
- Institute for Rehabilitation Science and Engineering, 20936Madonna Rehabilitation Hospitals, Lincoln, NE, USA
- Division of Physical Therapy Education, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Thad W Buster
- Institute for Rehabilitation Science and Engineering, 20936Madonna Rehabilitation Hospitals, Lincoln, NE, USA
| | - Guilherme M Cesar
- Institute for Rehabilitation Science and Engineering, 20936Madonna Rehabilitation Hospitals, Lincoln, NE, USA
| | - Judith M Burnfield
- Institute for Rehabilitation Science and Engineering, 20936Madonna Rehabilitation Hospitals, Lincoln, NE, USA
| |
Collapse
|
13
|
Lin CC, Bair WN, Willson J. Age differences in brain activity in dorsolateral prefrontal cortex and supplementary motor areas during three different walking speed tasks. Hum Mov Sci 2022; 85:102982. [DOI: 10.1016/j.humov.2022.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
|
14
|
Jiang B, Kim J, Park H. Palatal Electrotactile Display Outperforms Visual Display in Tongue Motor learning. IEEE Trans Neural Syst Rehabil Eng 2022; 30:529-539. [PMID: 35245197 DOI: 10.1109/tnsre.2022.3156398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Incomplete tongue motor control is a common yet challenging issue among individuals with neurotraumas and neurological disorders. In development of the training protocols, multiple sensory modalities including visual, auditory, and tactile feedback have been employed. However, the effectiveness of each sensory modality in tongue motor learning is still in question. The object of this study was to test the effectiveness of visual and electrotactile assistance on tongue motor learning, respectively. Eight healthy subjects performed the tongue pointing task, in which they were visually instructed to touch the target on the palate by their tongue tip as accurately as possible. Each subject wore a custom-made dental retainer with 12 electrodes distributed over the palatal area. For visual training, 3×4 LED array on the computer screen, corresponding to the electrode layout, was turned on with different colors according to the tongue contact. For electrotactile training, electrical stimulation was applied to the tongue with frequencies depending on the distance between the tongue contact and the target, along with a small protrusion on the retainer as an indicator of the target. One baseline session, one training session, and three post-training sessions were conducted over four-day duration. Experimental result showed that the error was decreased after both visual and electrotactile trainings, from 3.56±0.11 (Mean±STE) to 1.27±0.16, and from 3.97±0.11 to 0.53±0.19, respectively. The result also showed that electrotactile training leads to stronger retention than visual training, as the improvement was retained as 62.68±1.81% after electrotactile training and 36.59±2.24% after visual training, at 3-day post training.
Collapse
|
15
|
Mariscal DM, Vasudevan EVL, Malone LA, Torres-Oviedo G, Bastian AJ. Context-Specificity of Locomotor Learning Is Developed during Childhood. eNeuro 2022; 9:ENEURO.0369-21.2022. [PMID: 35346963 PMCID: PMC9036623 DOI: 10.1523/eneuro.0369-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Humans can perform complex movements with speed and agility in the face of constantly changing task demands. To accomplish this, motor plans are adapted to account for errors in our movements because of changes in our body (e.g., growth or injury) or in the environment (e.g., walking on sand vs ice). It has been suggested that adaptation that occurs in response to changes in the state of our body will generalize across different movement contexts and environments, whereas adaptation that occurs with alterations in the external environment will be context-specific. Here, we asked whether the ability to form generalizable versus context-specific motor memories develops during childhood. We performed a cross-sectional study of context-specific locomotor adaptation in 35 children (3-18 years old) and 7 adults (19-31 years old). Subjects first adapted their gait and learned a new walking pattern on a split-belt treadmill, which has two belts that move each leg at a different speed. Then, subjects walked overground to assess the generalization of the adapted walking pattern across different environments. Our results show that the generalization of treadmill after-effects to overground walking decreases as subjects' age increases, indicating that age and experience are critical factors regulating the specificity of motor learning. Our results suggest that although basic locomotor patterns are established by two years of age, brain networks required for context-specific locomotor learning are still being developed throughout youth.
Collapse
Affiliation(s)
- Dulce M Mariscal
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213
| | - Erin V L Vasudevan
- Kennedy Krieger Institute, Baltimore, MD, 21205
- School of Health Technology and Management, Stony Brook University, Stony Brook, NY, 11794
| | - Laura A Malone
- Neurology Department, Johns Hopkins University, Baltimore, MD, 21205
- Physical Medicine, and Rehabilitation Department, Johns Hopkins University, Baltimore, MD, 21205
- Kennedy Krieger Institute, Baltimore, MD, 21205
| | - Gelsy Torres-Oviedo
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213
| | - Amy J Bastian
- Neuroscience Department, Johns Hopkins University, Baltimore, MD, 21205
- Kennedy Krieger Institute, Baltimore, MD, 21205
| |
Collapse
|
16
|
Stone AE, Hockman AC, Roper JA, Hass CJ. Incremental Visual Occlusion During Split-Belt Treadmill Walking Has No Gradient Effect on Adaptation or Retention. Percept Mot Skills 2021; 128:2490-2506. [PMID: 34590936 DOI: 10.1177/00315125211050322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Split-belt treadmills have become an increasingly popular means of quantifying ambulation adaptability. Multiple sensory feedback mechanisms, including vision, contribute to task execution and adaptation success. No studies have yet explored visual feedback effects on locomotor adaptability across a spectrum of available visual information. In this study, we sought to better understand the effects of visual information on locomotor adaptation and retention by directly comparing incremental levels of visual occlusion. Sixty healthy young adults completed a split-belt adaptation protocol, including a baseline, asymmetric walking condition (adapt), a symmetric walking condition (de-adapt), and another asymmetric walking condition (re-adapt). We randomly assigned participants into conditions with varied visual occlusion (i.e., complete and lower visual field occlusion, or normal vision). We captured kinematic data, and outcome measures included magnitude of asymmetry, spatial and temporal contributions to step length asymmetry, variability of the final adapted pattern, and magnitude of adaptation. We used repeated measures and four-way MANOVAs to examine the influence of visual occlusion and walking condition. Participants with complete, compared to lower visual field visual occlusion displayed less consistency in their walking pattern, evident via increased step length standard deviation (p = .007, d = 0.89), and compared to normal vision groups (p = .003 d = 0.81). We found no other group differences, indicating that varying levels of visual occlusion did not significantly affect locomotor adaptation or retention. This study offers insight into the role vision plays in locomotor adaptation and retention with clinical utility for improving variability in step control.
Collapse
Affiliation(s)
- Amanda E Stone
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| | - Adam C Hockman
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| | - Jaimie A Roper
- School of Kinesiology, College of Education, Auburn University, Auburn, Alabama, United States
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
17
|
Sombric CJ, Torres-Oviedo G. Cognitive and Motor Perseveration Are Associated in Older Adults. Front Aging Neurosci 2021; 13:610359. [PMID: 33986654 PMCID: PMC8110726 DOI: 10.3389/fnagi.2021.610359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Aging causes perseveration (difficulty to switch between actions) in motor and cognitive tasks, suggesting that the same neural processes could govern these abilities in older adults. To test this, we evaluated the relation between independently measured motor and cognitive perseveration in young (21.4 ± 3.7 y/o) and older participants (76.5 ± 2.9 y/o). Motor perseveration was measured with a locomotor task in which participants had to transition between distinct walking patterns. Cognitive perseveration was measured with a card matching task in which participants had to switch between distinct matching rules. We found that perseveration in the cognitive and motor domains were positively related in older, but not younger individuals, such that participants exhibiting greater perseveration in the motor task also perseverated more in the cognitive task. Additionally, exposure reduces motor perseveration: older adults who had practiced the motor task could transition between walking patterns as proficiently as naïve, young individuals. Our results suggest an overlap in neural processes governing cognitive and motor perseveration with aging and that exposure can counteract the age-related motor perseveration.
Collapse
Affiliation(s)
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Gregory DL, Sup FC, Choi JT. Contributions of spatial and temporal control of step length symmetry in the transfer of locomotor adaptation from a motorized to a non-motorized split-belt treadmill. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202084. [PMID: 33972880 PMCID: PMC8074624 DOI: 10.1098/rsos.202084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Walking requires control of where and when to step for stable interlimb coordination. Motorized split-belt treadmills which constrain each leg to move at different speeds lead to adaptive changes to limb coordination that result in after-effects (e.g. gait asymmetry) on return to normal treadmill walking. These after-effects indicate an underlying neural adaptation. Here, we assessed the transfer of motorized split-belt treadmill adaptations with a custom non-motorized split-belt treadmill where each belt can be self-propelled at different speeds. Transfer was indicated by the presence of after-effects in step length, foot placement and step timing differences. Ten healthy participants adapted on a motorized split-belt treadmill (2 : 1 speed ratio) and were then assessed for after-effects during subsequent non-motorized treadmill and motorized tied-belt treadmill walking. We found that after-effects in step length difference during transfer to non-motorized split-belt walking were primarily associated with step time differences. Conversely, residual after-effects during motorized tied-belt walking following transfer were associated with foot placement differences. Our data demonstrate decoupling of adapted spatial and temporal locomotor control during transfer to a novel context, suggesting that foot placement and step timing control can be independently modulated during walking.
Collapse
Affiliation(s)
- Daniel L. Gregory
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Frank C. Sup
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia T. Choi
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL 32611-8205, USA
| |
Collapse
|
19
|
Roper JA, Stone AE, Raffegeau TE, Terza MJ, Altmann LJ, Hass CJ. Higher relative effort of the knee relates to faster adaptation in older adults at risk for mobility disability. Exp Gerontol 2021; 144:111192. [PMID: 33290863 DOI: 10.1016/j.exger.2020.111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023]
Abstract
Gait adaptation is crucial for adults at risk for mobility disability, and executive function and physical function may be important for adaptation performance. Gait adaptation can be measured using a treadmill with two belts, known as a split-belt treadmill. Increasing evidence supports that gait adaptability, executive function, and physical function are interrelated in older adults. The purpose of this study was to determine if: a) executive function and measures of relative effort of the ankle and knee relate to split-belt treadmill adaptation; b) older adults classified as fast adapters display differences in relative effort, executive function, and propulsive impulse (push-off) compared to slow adapters; and c) spatial and temporal control differ between individuals with faster rate of adaptation compared to those with slower rates of adaptation. Greater effort of the knee on the slow belt was related to faster early adaptation (r = 0.650, p = 0.005) indicating its importance for adapting quickly to the perturbation. We did not observe a relationship between cognitive tests and adaptation performance. We did not detect any statistical differences in cognitive tests performance, push-off, spatial or temporal control between fast adapters compared to slow adapters. Our results suggest that in older adults at risk for mobility disability, higher effort at the knee is important for early split-belt adaptation.
Collapse
Affiliation(s)
- Jaimie A Roper
- School of Kinesiology, Auburn University, 301 Wire Rd, Auburn, AL 36849, USA.
| | - Amanda E Stone
- RR&D Center for Limb Loss and MoBility, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA 98195, USA.
| | - Tiphanie E Raffegeau
- Department of Health, Kinesiology, and Recreation, University of Utah, 383 Colorow Dr. Suite 260, Salt Lake City, UT 84108, USA.
| | - Matthew J Terza
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Rd, Gainesville, FL 32611, USA.
| | - Lori J Altmann
- Department of Speech, Language, and Hearing Sciences, College of Public Health and Health Professions, University of Florida, 1225 Center Dr., Gainesville, FL 32611, USA.
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Rd, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Sánchez N, Simha SN, Donelan JM, Finley JM. Using asymmetry to your advantage: learning to acquire and accept external assistance during prolonged split-belt walking. J Neurophysiol 2021; 125:344-357. [PMID: 33296612 PMCID: PMC7948143 DOI: 10.1152/jn.00416.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022] Open
Abstract
People can learn to exploit external assistance during walking to reduce energetic cost. For example, walking on a split-belt treadmill affords the opportunity for people to redistribute the mechanical work performed by the legs to gain assistance from the difference in belts' speed and reduce energetic cost. Though we know what people should do to acquire this assistance, this strategy is not observed during typical adaptation studies. We hypothesized that extending the time allotted for adaptation would result in participants adopting asymmetric step lengths to increase the assistance they can acquire from the treadmill. Here, participants walked on a split-belt treadmill for 45 min while we measured spatiotemporal gait variables, metabolic cost, and mechanical work. We show that when people are given sufficient time to adapt, they naturally learn to step further forward on the fast belt, acquire positive mechanical work from the treadmill, and reduce the positive work performed by the legs. We also show that spatiotemporal adaptation and energy optimization operate over different timescales: people continue to reduce energetic cost even after spatiotemporal changes have plateaued. Our findings support the idea that walking with symmetric step lengths, which is traditionally thought of as the endpoint of adaptation, is only a point in the process by which people learn to take advantage of the assistance provided by the treadmill. These results provide further evidence that reducing energetic cost is central in shaping adaptive locomotion, but this process occurs over more extended timescales than those used in typical studies.NEW & NOTEWORTHY Split-belt treadmill adaptation can be seen as a process where people learn to acquire positive work from the treadmill to reduce energetic cost. Though we know what people should do to reduce energetic cost, this strategy is not observed during adaptation studies. We extended the duration of adaptation and show that people continuously adapt their gait to acquire positive work from the treadmill to reduce energetic cost. This process requires longer exposure than traditionally allotted.
Collapse
Affiliation(s)
- Natalia Sánchez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Surabhi N Simha
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - J Maxwell Donelan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - James M Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| |
Collapse
|
21
|
French MA, Morton SM, Reisman DS. Use of explicit processes during a visually guided locomotor learning task predicts 24-h retention after stroke. J Neurophysiol 2021; 125:211-222. [PMID: 33174517 PMCID: PMC8087382 DOI: 10.1152/jn.00340.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023] Open
Abstract
Implicit and explicit processes can occur within a single locomotor learning task. The combination of these learning processes may impact how individuals acquire/retain the task. Because these learning processes rely on distinct neural pathways, neurological conditions may selectively impact the processes that occur, thus, impacting learning and retention. Thus, our purpose was to examine the contribution of implicit and explicit processes during a visually guided walking task and characterize the relationship between explicit processes and performance/retention in stroke survivors and age-matched healthy adults. Twenty chronic stroke survivors and twenty healthy adults participated in a 2-day treadmill study. Day 1 included baseline, acquisition1, catch, acquisition2, and immediate retention phases, and day 2 included 24-h retention. During acquisition phases, subjects learned to take a longer step with one leg through distorted visual feedback. During catch and retention phases, visual feedback was removed and subjects were instructed to walk normally (catch) or how they walked during the acquisition phases (retention). Change in step length from baseline to catch represented implicit processes. Change in step length from catch to the end of acquisition2 represented explicit processes. A mixed ANOVA found no difference in the type of learning between groups (P = 0.74). There was a significant relationship between explicit processes and 24-h retention in stroke survivors (r = 0.47, P = 0.04) but not in healthy adults (r = 0.34, P = 0.15). These results suggest that stroke may not affect the underlying learning mechanisms used during locomotor learning, but that these mechanisms impact how well stroke survivors retain the new walking pattern.NEW & NOTEWORTHY This study found that stroke survivors used implicit and explicit processes similar to age-matched healthy adults during a visually guided locomotion learning task. The amount of explicit processes was related to how well stroke survivors retained the new walking pattern but not to how well they performed during the task. This work illustrates the importance of understanding the underlying learning mechanisms to maximize retention of a newly learned motor behavior.
Collapse
Affiliation(s)
- Margaret A French
- Department of Physical Therapy, University of Delaware, Newark, Delaware
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, Delaware
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, Delaware
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware
| |
Collapse
|
22
|
Unilateral step training can drive faster learning of novel gait patterns. Sci Rep 2020; 10:18628. [PMID: 33122783 PMCID: PMC7596053 DOI: 10.1038/s41598-020-75839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Humans are capable of learning many new walking patterns. People have learned to snowshoe up mountains, racewalk marathons, and march in precise synchrony. But what is required to learn a new walking pattern? Here, we demonstrate that people can learn new walking patterns without actually walking. Through a series of experiments, we observe that stepping with only one leg can facilitate learning of an entirely new walking pattern (i.e., split-belt treadmill walking). We find that the nervous system learns from the relative speed difference between the legs-whether or not both legs are moving-and can transfer this learning to novel gaits. We also show that locomotor learning requires active movement: observing another person adapt their gait did not result in significantly faster learning. These findings reveal that people can learn new walking patterns without bilateral gait training, as stepping with one leg can facilitate adaptive learning that transfers to novel gait patterns.
Collapse
|
23
|
Research thematic and emerging trends of contextual cues: a bibliometrics and visualization approach. LIBRARY HI TECH 2020. [DOI: 10.1108/lht-11-2019-0237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe paper aims to clarify the importance of the psychological processing of contextual cues in the mining of individual attention resources. In recent years, the research of more open spatial perspective, such as spatial and scene perception, has gradually turned to the recognition of contextual cues, accumulating rich literature and becoming a hotspot of interdisciplinary research. Nevertheless, besides the fields of psychology and neuroscience, researchers in other fields lack systematic knowledge of contextual cues. The purpose of this study is to expand the research field of contextual cues.Design/methodology/approachWe retrieved 494 papers on contextual cues from SCI/SSCI core database of the Web of Science in 1992–2019. Then, we used several bibliometric and sophisticated network analysis tools, such as HistCite, CiteSpace, VOSviewe and Pajek, to identify the time-and-space knowledge map, research hotspots, evolution process, emerging trends and primary path of contextual cues.FindingsThe paper found the core scholars, major journals, research institutions, and the popularity of citation to be closely related to the research of contextual cues. In addition, we constructed a co-word network of contextual cues, confirming the concept of behavior implementation intentions and filling in the research gap in the field of behavior science. Then, the quantitative analysis of the burst literature on contextual cues revealed that the research on it that focused more on multi-objective cues. Furthermore, an analysis of the main path helped researchers clearly understand and grasp in the development trend and evolution track of contextual cues.Originality/valueGiven academic research usually lags behind management practice, our systematic review of the literature to a certain extent make a bridge between theory and practice.
Collapse
|
24
|
Sombric CJ, Torres-Oviedo G. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths. J Neuroeng Rehabil 2020; 17:69. [PMID: 32493440 PMCID: PMC7268294 DOI: 10.1186/s12984-020-00698-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Background Promising studies have shown that the gait symmetry of individuals with hemiparesis due to brain lesions, such as stroke, can improve through motor adaptation protocols forcing patients to use their affected limb more. However, little is known about how to facilitate this process. Here we asked if increasing propulsion demands during split-belt walking (i.e., legs moving at different speeds) leads to more motor adaptation and more symmetric gait in survivors of a stroke, as we previously observed in subjects without neurological disorders. Methods We investigated the effect of propulsion forces on locomotor adaptation during and after split-belt walking in the asymmetric motor system post-stroke. To test this, 12 subjects in the chronic phase post-stroke experienced a split-belt protocol in a flat and incline session so as to contrast the effects of two different propulsion demands. Step length asymmetry and propulsion forces were used to compare the motor behavior between the two sessions because these are clinically relevant measures that are altered by split-belt walking. Results The incline session resulted in more symmetric step lengths during late split-belt walking and larger after-effects following split-belt walking. In both testing sessions, subjects who have had a stroke adapted to regain speed and slope-specific leg orientations similarly to young, intact adults. Importantly, leg orientations, which were set by kinetic demands, during baseline walking were predictive of those achieved during split-belt walking, which in turn predicted each individual’s post-adaptation behavior. These results are relevant because they provide evidence that survivors of a stroke can generate the leg-specific forces to walk more symmetrically, but also because we provide insight into factors underlying the therapeutic effect of split-belt walking. Conclusions Individuals post-stroke at a chronic stage can adapt more during split-belt walking and have greater after-effects when propulsion demands are augmented by inclining the treadmill surface. Our results are promising since they suggest that increasing propulsion demands during paradigms that force patients to use their paretic side more could correct gait asymmetries post-stroke more effectively.
Collapse
Affiliation(s)
- Carly J Sombric
- Department of Bioengineering, University of Pittsburgh, 4420 Bayard Street, Suite 110, Pitt, Pittsburgh, PA, USA
| | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, 4420 Bayard Street, Suite 110, Pitt, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Mariscal DM, Iturralde PA, Torres-Oviedo G. Altering attention to split-belt walking increases the generalization of motor memories across walking contexts. J Neurophysiol 2020; 123:1838-1848. [PMID: 32233897 DOI: 10.1152/jn.00509.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the impact of attention during motor adaptation tasks on how movements adapted in one context generalize to another. We investigated this by manipulating subjects' attention to their movements while exposing them to split-belt walking (i.e., legs moving at different speeds), which is known to induce locomotor adaptation. We hypothesized that reducing subjects' attention to their movements by distracting them as they adapted their walking pattern would facilitate the generalization of recalibrated movements beyond the training environment. We reasoned that awareness of the novel split-belt condition could be used to consciously contextualize movements to that particular situation. To test this hypothesis, young adults adapted their gait on a split-belt treadmill while they observed visual information that either distracted them or made them aware of the belt's speed difference. We assessed adaptation and aftereffects of spatial and temporal gait features known to adapt and generalize differently in different environments. We found that all groups adapted similarly by reaching the same steady-state values for all gait parameters at the end of the adaptation period. In contrast, both groups with altered attention to the split-belts environment (distraction and awareness groups) generalized their movements from the treadmill to overground more than controls, who walked without altered attention. This was specifically observed in the generalization of step time (temporal gait feature), which might be less susceptible to online corrections during walking overground. These results suggest that altering attention to one's movements during sensorimotor adaptation facilitates the generalization of movement recalibration.NEW & NOTEWORTHY Little is known about how attention affects the generalization of motor recalibration induced by sensorimotor adaptation paradigms. We showed that altering attention to movements on a split-belt treadmill led to greater adaptation effects in subjects walking overground. Thus our results suggest that altering patients' attention to their actions during sensorimotor adaptation protocols could lead to greater generalization of corrected movements when moving without the training device.
Collapse
Affiliation(s)
- Dulce M Mariscal
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pablo A Iturralde
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Aucie Y, Zhang X, Sargent R, Torres-Oviedo G. Motorized Shoes Induce Robust Sensorimotor Adaptation in Walking. Front Neurosci 2020; 14:174. [PMID: 32210750 PMCID: PMC7069354 DOI: 10.3389/fnins.2020.00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/17/2020] [Indexed: 11/27/2022] Open
Abstract
The motor system has the flexibility to update motor plans according to systematic changes in the environment or the body. This capacity is studied in the laboratory through sensorimotor adaptation paradigms imposing sustained and predictable motor demands specific to the task at hand. However, these studies are tied to the laboratory setting. Thus, we asked if a portable device could be used to elicit locomotor adaptation outside the laboratory. To this end, we tested the extent to which a pair of motorized shoes could induce similar locomotor adaptation to split-belt walking, which is a well-established sensorimotor adaptation paradigm in locomotion. We specifically compared the adaptation effects (i.e. after-effects) between two groups of young, healthy participants walking with the legs moving at different speeds by either a split-belt treadmill or a pair of motorized shoes. The speeds at which the legs moved in the split-belt group was set by the belt speed under each foot, whereas in the motorized shoes group were set by the combined effect of the actuated shoes and the belts' moving at the same speed. We found that the adaptation of joint motions and measures of spatial and temporal asymmetry, which are commonly used to quantify sensorimotor adaptation in locomotion, were indistinguishable between groups. We only found small differences in the joint angle kinematics during baseline walking between the groups - potentially due to the weight and height of the motorized shoes. Our results indicate that robust sensorimotor adaptation in walking can be induced with a paired of motorized shoes, opening the exciting possibility to study sensorimotor adaptation during more realistic situations outside the laboratory.
Collapse
Affiliation(s)
- Yashar Aucie
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Randy Sargent
- The Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gelsy Torres-Oviedo
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Sombric C, Gonzalez-Rubio M, Torres-Oviedo G. Split-Belt walking induces changes in active, but not passive, perception of step length. Sci Rep 2019; 9:16442. [PMID: 31712598 PMCID: PMC6848101 DOI: 10.1038/s41598-019-52860-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022] Open
Abstract
Successful motor control requires accurate estimation of our body in space for planning, executing, and evaluating the outcome of our actions. It has been shown that the estimation of limb position is susceptible to motor adaptation. However, a similar effect has not been found in locomotion, possibly due to how it was tested. We hypothesized that split-belt walking with the legs moving at different speeds changes the estimation of the legs' position when taking a step. Thus, we assessed young subjects' perception of step length (i.e., inter-feet distance at foot landing) when they moved their legs (active perception) or when the legs were moved by the experimenter (passive perception). We found that the active perception of step length was substantially altered following split-belt walking, whereas passive perception exhibited minor changes. This suggests that split-belt walking induced the adaptation of efferent signals, without altering sensory signals. We also found that active perceptual shifts were sensitive to how they were tested: they were most salient in the trailing leg and at short step lengths. Our results suggest that split-belt walking could modulate the deficient perception of step length post-stroke, which may contribute to gait asymmetries impairing patients' mobility.
Collapse
Affiliation(s)
- Carly Sombric
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Charalambous CC, French MA, Morton SM, Reisman DS. A single high-intensity exercise bout during early consolidation does not influence retention or relearning of sensorimotor locomotor long-term memories. Exp Brain Res 2019; 237:2799-2810. [PMID: 31444538 PMCID: PMC6801096 DOI: 10.1007/s00221-019-05635-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/19/2019] [Indexed: 01/05/2023]
Abstract
A single exercise bout has been found to improve the retention of a skill-based upper extremity motor task up to a week post-practice. This effect is the greatest when exercise intensity is high and exercise is administered immediately after motor practice (i.e., early in consolidation). Whether exercise can affect other motor learning types (e.g., sensorimotor adaptation) and tasks (e.g., walking) is still unclear as previous studies have not optimally refined the exercise parameters and long-term retention testing. Therefore, we investigated whether a single high-intensity exercise bout during early consolidation would improve the long-term retention and relearning of sensorimotor adaptation during split-belt treadmill walking. Twenty-six neurologically intact adults attended three sessions; sessions 2 and 3 were 1 day and 7 days after session 1, respectively. Participants were allocated either to Rest (REST) or to Exercise (EXE) group. In session 1, all groups walked on a split-belt treadmill in a 2:1 speed ratio (1.5:0.75 m/s). Then, half of the participants exercised for 5 min (EXE), while the other half rested for 5 min (REST). A short exercise bout during early consolidation did not improve retention or relearning of locomotor memories one or seven days after session 1. This result reinforces previous findings that the effect of exercise on motor learning may differ between sensorimotor locomotor adaptation and skilled-based upper extremity tasks; thus, the utility of exercise as a behavioral booster of motor learning may depend on the type of motor learning and task.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, New York University School of Medicine, 222 E 41st St, 10th Floor, New York, NY, 10017, USA
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Margaret A French
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA.
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA.
| |
Collapse
|
29
|
Conradsson D, Hinton DC, Paquette C. The effects of dual-tasking on temporal gait adaptation and de-adaptation to the split-belt treadmill in older adults. Exp Gerontol 2019; 125:110655. [PMID: 31299212 DOI: 10.1016/j.exger.2019.110655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND It has been well established that with aging, walking becomes more challenging when dividing attention towards other tasks (i.e. dual-tasks) and when adapting walking to environmental demands. Although these gait-related features are believed to contribute to an increased risk of falling in older adults, little is known about the interplay between dual-tasking and gait adaptation. OBJECTIVE To investigate whether the rate and variability of temporal gait adaptation to a split-belt treadmill and ensuing aftereffects are altered by dual-tasking in healthy older adults. METHODS Split-belt walking was assessed in 28 healthy older adults (mean age 69 years) who were free of any ongoing medical conditions affecting gait. Participants adapted their walking pattern to a split-belt treadmill at a 2:1 speed ratio (10 min) followed by 3 min of de-adaptation (both belts at the same speed) to assess aftereffects. Half of the participants performed an intermittent dual-task (auditory cognitive task) during the adaptation period, whereas the other half completed the adaptation period as a single task. Double support symmetry magnitude and variability were used to compare group differences in rate of adaptation to the split-belt condition and retention of aftereffects during de-adaptation. RESULTS During adaptation, the presence of a dual-task slowed the rate of adaptation to the split-belts and was characterized by greater variability in the dual-task group compared to the single-task group. During the first minute of de-adaptation, both groups similarly decreased their double support asymmetry towards baseline performance. Still, the dual-task group had a significant decrease in asymmetry during the end of de-adaptation and spent less steps within baseline performance during the entire de-adaptation period compared to the single-task group (35% vs 50%). CONCLUSION Dual-tasking led to slower and more variable temporal gait adaptation to the split-belt treadmill and larger variability during de-adaptation. Our findings indicate that in older adults, gait adaptation is affected by a competing cognitive task and highlights the importance of being aware of the influence of dual-task on short-term learning when developing rehabilitation programs for cognitive-motor interference.
Collapse
Affiliation(s)
- David Conradsson
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave West, Montreal, Quebec, H2W 1S4, Canada; Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Function Area Occupational Therapy & Physiotherapy, Allied Health Professionals Function, Karolinska University Hospital, Stockholm, Sweden; Centre de Recherche Interdisciplinaire en Réadaptation de Montréal (CRIR), Montreal, Canada.
| | - Dorelle C Hinton
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave West, Montreal, Quebec, H2W 1S4, Canada; Centre de Recherche Interdisciplinaire en Réadaptation de Montréal (CRIR), Montreal, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave West, Montreal, Quebec, H2W 1S4, Canada; Centre de Recherche Interdisciplinaire en Réadaptation de Montréal (CRIR), Montreal, Canada
| |
Collapse
|
30
|
Kim SH, Huizenga DE, Handzic I, Ditwiler RE, Lazinski M, Ramakrishnan T, Bozeman A, Rose DZ, Reed KB. Relearning functional and symmetric walking after stroke using a wearable device: a feasibility study. J Neuroeng Rehabil 2019; 16:106. [PMID: 31455358 PMCID: PMC6712835 DOI: 10.1186/s12984-019-0569-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gait impairment is a common consequence of stroke and typically involves a hemiparetic or asymmetric walking pattern. Asymmetric gait patterns are correlated with decreased gait velocity and efficiency as well as increased susceptibility to serious falls and injuries. RESEARCH QUESTION This paper presents an innovative device worn on a foot for gait rehabilitation post stroke. The device generates a backward motion to the foot, which is designed to exaggerate the existing step length asymmetry while walking over ground. We hypothesize this motion will decrease gait asymmetry and improve functional walking in individuals with chronic stroke. METHODS Six participants with chronic stroke, more than one year post stroke, received four weeks of gait training with three sessions per week. Each session included 30 min of walking over ground using the wearable device. Gait symmetry and functional walking were assessed before and after training. RESULTS All participants improved step length symmetry, and four participants improved double limb support symmetry. All participants improved on all three functional outcomes (gait velocity, Timed Up and Go Test, and 6-Minute Walk Test), and five participants improved beyond the minimal detectable change or meaningful change in at least one functional outcome. CONCLUSION The results indicate that the presented device may help improve stroke patients' walking ability and warrant further study. A gait training approach using this new device may enable and expand long-term continuous gait rehabilitation outside the clinic following stroke. TRIAL REGISTRATION NCT02185404. Registered July 9, 2014, https://clinicaltrials.gov/ct2/show/NCT02185404.
Collapse
Affiliation(s)
- Seok Hun Kim
- University of South Florida, School of Physical Therapy and Rehabilitation Sciences, Tampa, FL, USA
| | | | - Ismet Handzic
- Moterum Technologies Inc., Greenville, SC, USA
- University of South Florida, Department of Mechanical Engineering, Tampa, FL, USA
| | | | - Matthew Lazinski
- University of South Florida, School of Physical Therapy and Rehabilitation Sciences, Tampa, FL, USA
| | - Tyagi Ramakrishnan
- Northern New Mexico College, Espanola, NM, USA
- University of South Florida, Department of Mechanical Engineering, Tampa, FL, USA
| | - Andrea Bozeman
- University of South Florida Department of Neurology, Tampa, FL, USA
| | - David Z Rose
- University of South Florida Department of Neurology, Tampa, FL, USA
| | - Kyle B Reed
- University of South Florida, Department of Mechanical Engineering, Tampa, FL, USA.
| |
Collapse
|
31
|
Gonzalez-Rubio M, Velasquez NF, Torres-Oviedo G. Explicit Control of Step Timing During Split-Belt Walking Reveals Interdependent Recalibration of Movements in Space and Time. Front Hum Neurosci 2019; 13:207. [PMID: 31333429 PMCID: PMC6619396 DOI: 10.3389/fnhum.2019.00207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Split-belt treadmills that move the legs at different speeds are thought to update internal representations of the environment, such that this novel condition generates a new locomotor pattern with distinct spatio-temporal features compared to those of regular walking. It is unclear the degree to which such recalibration of movements in the spatial and temporal domains is interdependent. In this study, we explicitly altered subjects' limb motion in either space or time during split-belt walking to determine its impact on the adaptation of the other domain. Interestingly, we observed that motor adaptation in the spatial domain was susceptible to altering the temporal domain, whereas motor adaptation in the temporal domain was resilient to modifying the spatial domain. This non-reciprocal relation suggests a hierarchical organization such that the control of timing in locomotion has an effect on the control of limb position. This is of translational interest because clinical populations often have a greater deficit in one domain compared to the other. Our results suggest that explicit changes to temporal deficits cannot occur without modifying the spatial control of the limb.
Collapse
Affiliation(s)
| | | | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration. eNeuro 2019; 6:ENEURO.0358-18.2019. [PMID: 31043463 PMCID: PMC6497908 DOI: 10.1523/eneuro.0358-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 12/04/2022] Open
Abstract
Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system’s adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new “normal” and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.
Collapse
|
33
|
Spatial and Temporal Locomotor Learning in Mouse Cerebellum. Neuron 2019; 102:217-231.e4. [DOI: 10.1016/j.neuron.2019.01.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/16/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
34
|
Alingh JF, Weerdesteyn V, Nienhuis B, van Asseldonk EHF, Geurts ACH, Groen BE. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects. J Neuroeng Rehabil 2019; 16:40. [PMID: 30876445 PMCID: PMC6420738 DOI: 10.1186/s12984-019-0506-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Recovery of walking is a primary rehabilitation goal of most stroke survivors. Control of pelvic movements is one of the essential determinants of gait, yet surprisingly, conventional robot-assisted gait trainers constrain pelvic movements. Novel robot-assisted gait trainers, such as LOPES II, are able to support pelvic movements during gait. The aim of this cross-over study was to investigate the immediate after-effects of pelvic support (PS) or pelvic constraint (PC) gait training with LOPES II on overground walking in healthy subjects. Methods Thirteen able-bodied subjects (22.8 ± 2.1 years) participated in two 20-min gait training sessions with LOPES II; one with PS and one with PC. During the PS-training, the LOPES II actively guided the lateral displacement of the pelvis, while pelvic rotations were free. During the PC-condition, both lateral displacement and pelvic rotations were constrained and reduced to a minimum. The training sessions were separated by a 30-min resting period. Lateral displacement of the pelvis, hip and knee kinematics, and spatiotemporal parameters during overground walking were determined at baseline and immediately following the training using 3D gait analysis. Results During the PS-condition in LOPES II the lateral pelvic displacement was significantly greater (105.6 ± 0 .5 mm) than during the PC-condition (10.8 ± 0 .7 mm; p < 0.001). Analysis of the first five steps of overground walking immediately following PC-condition showed significantly smaller lateral displacements of the pelvis (32.3 ± 12.0 mm) compared to PS-condition (40.1 ± 9 .8 mm; p < 0.01). During the first five steps, step width was significantly smaller after PC-condition (0.17 ± 0. 04 m) compared to PS-condition (0.20 ± 0.04 m; p = 0.01) and baseline (0.19 ± 0. 03 m; p = 0.01). Lateral displacement of the pelvis and step width post training returned to baseline levels within 10 steps. PC- nor PS-condition affected kinematics, gait velocity, cadence, stride length or stance time. Conclusions In healthy subjects, robot-assisted gait training with pelvic constraint had immediate negative after-effects on the overground walking pattern, as compared to robot-assisted gait training with pelvic support. Gait training including support of the lateral displacement of the pelvis better resembles the natural gait pattern. It remains to be identified whether pelvic support during robot-assisted gait training is superior to pelvic constraint to promote gait recovery in individuals with neurological disorders.
Collapse
Affiliation(s)
- J F Alingh
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands. .,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - V Weerdesteyn
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands.,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Nienhuis
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands
| | - E H F van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - A C H Geurts
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands.,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B E Groen
- Sint Maartenskliniek Research, PO BOX 9011, 6500, GM, Nijmegen, The Netherlands.,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
McCrum C, Karamanidis K, Willems P, Zijlstra W, Meijer K. Retention, savings and interlimb transfer of reactive gait adaptations in humans following unexpected perturbations. Commun Biol 2018; 1:230. [PMID: 30564751 PMCID: PMC6294781 DOI: 10.1038/s42003-018-0238-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/28/2018] [Indexed: 11/09/2022] Open
Abstract
Reactive locomotor adaptations are crucial for safe mobility, but remain relatively unexplored. Here we assess reactive gait adaptations, and their retention, savings and interlimb transfer. Using new methods to normalise walking speed and perturbation magnitude, we expose eighteen healthy adults to ten unexpected treadmill belt accelerations during walking (the first and last perturbing the right leg, the others perturbing the left leg) on two days, one month apart. Analysis of the margins of stability using kinematic data reveals that humans reactively adapt gait, improving stability and taking fewer recovery steps, and fully retain these adaptations over time. On re-exposure, retention and savings lead to further improvements in stability. Currently, the role of interlimb transfer is unclear. Our findings show that humans utilise retention and savings in reactive gait adaptations to benefit stability, but that interlimb transfer may not be exclusively responsible for improvements following perturbations to the untrained limb.
Collapse
Affiliation(s)
- Christopher McCrum
- 1Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht, 6200 MD The Netherlands.,2Institute of Movement and Sport Gerontology, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933 Germany
| | - Kiros Karamanidis
- 3Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, 103 Borough Road, London, SE1 0AA UK
| | - Paul Willems
- 1Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| | - Wiebren Zijlstra
- 2Institute of Movement and Sport Gerontology, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933 Germany
| | - Kenneth Meijer
- 1Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| |
Collapse
|
36
|
Stone AE, Terza MJ, Raffegeau TE, Hass CJ. Walking through the looking glass: Adapting gait patterns with mirror feedback. J Biomech 2018; 83:104-109. [PMID: 30503256 DOI: 10.1016/j.jbiomech.2018.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Clinical locomotor research seeks to facilitate adaptation or retention of new walking patterns by providing feedback. Within a split-belt treadmill paradigm, sagittal plane feedback improves adaptation but does not affect retention. Representation of error in this manner is cognitively demanding. However, it is unknown in this paradigm how frontal plane feedback, which may utilize a unique learning process, impacts locomotor adaptation. Frontal plane movement feedback has been shown to impact retention of novel running mechanics but has yet to be evaluated in gait conditions widely applicable within neurorehabilitation, such as walking. The purpose of this study was to investigate the effects of frontal plane mirror feedback on gait adaptation and retention during split-belt treadmill walking. Forty healthy young adults were divided into two groups: one group received mirror feedback during the first split-belt exposure and the other received no mirror feedback. Individuals in the mirror feedback group were asked to look at their legs in the mirror, but no further instructions were given. Individuals with mirror feedback displayed more symmetric stance time during the first strides of adaptation and maintained this pattern into the second split-belt exposure when no feedback was provided. Individuals with mirror feedback also demonstrated more symmetric double support time upon returning to normal walking. Lastly, the mirror feedback also allowed individuals to walk with smaller gait variability during the final steps of both split-belt exposures. Overall, mirror feedback allowed individuals to reduce their stance time asymmetry and led to a more consistent adapted pattern, suggesting this type of feedback may have utility in gait training that targets symmetry and consistency in movement.
Collapse
Affiliation(s)
- Amanda E Stone
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Rd, P.O. Box 118205, Gainesville, FL 32611, United States.
| | - Matthew J Terza
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Rd, P.O. Box 118205, Gainesville, FL 32611, United States.
| | - Tiphanie E Raffegeau
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Rd, P.O. Box 118205, Gainesville, FL 32611, United States.
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Rd, P.O. Box 118205, Gainesville, FL 32611, United States.
| |
Collapse
|
37
|
Abstract
The fields of human motor control, motor learning, and neurorehabilitation have long been linked by the intuition that understanding how we move (and learn to move) leads to better rehabilitation. In reality, these fields have remained largely separate. Our knowledge of the neural control of movement has expanded, but principles that can directly impact rehabilitation efficacy remain somewhat sparse. This raises two important questions: What can basic studies of motor learning really tell us about rehabilitation, and are we asking the right questions to improve the lives of patients? This review aims to contextualize recent advances in computational and behavioral studies of human motor learning within the framework of neurorehabilitation. We also discuss our views of the current challenges facing rehabilitation and outline potential clinical applications from recent theoretical and basic studies of motor learning and control.
Collapse
Affiliation(s)
- Ryan T Roemmich
- Center for Movement Studies, The Kennedy Krieger Institute, Baltimore, Maryland 21205, USA.,Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Amy J Bastian
- Center for Movement Studies, The Kennedy Krieger Institute, Baltimore, Maryland 21205, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
38
|
Yokoyama H, Sato K, Ogawa T, Yamamoto SI, Nakazawa K, Kawashima N. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans. PLoS One 2018; 13:e0194875. [PMID: 29694404 PMCID: PMC5918641 DOI: 10.1371/journal.pone.0194875] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan.,Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.,Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Koji Sato
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.,Department of Bioscience and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Minuma, Saitama, Japan
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Shin-Ichiro Yamamoto
- Department of Bioscience and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Minuma, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
39
|
Sorrento GU, Archambault PS, Fung J. Adaptation and post-adaptation effects of haptic forces on locomotion in healthy young adults. J Neuroeng Rehabil 2018. [PMID: 29534731 PMCID: PMC5851092 DOI: 10.1186/s12984-018-0364-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Developing rehabilitation strategies to improve functional walking and postural control in patients is a priority for rehabilitation clinicians and researchers alike. One possible strategy is the use of sensory modalities to elicit adaptive locomotor gait patterns. This study aimed to explore to what extent haptic inputs, in the form of forward-leading tensile forces delivered to the hand, compared to no force, may lead to adaptation and post-adaptation effects on gait parameters, during and after the haptic exposure, respectively. METHODS Thirteen healthy young individuals were recruited for this study. We developed an innovative system combining virtual reality and haptic tensile forces in the direction of locomotion to simulate walking with a dog. A robotic arm generated forces via an adapted leash to the participant's hand while they walked on a self-paced treadmill immersed in a virtual environment with scene progression synchronized to the treadmill. RESULTS All participants showed significant increases in instantaneous gait velocity and stride length, with accompanying decreases in double-limb support time (p < 0.05) when walking with a haptic tensile force of either 10 or 20 N, relative to pre-force epoch levels, indicating an adaptation effect. When the 10 or 20 N force was removed, gait measures generally remained changed relative to baseline pre-force levels (p < 0.05), providing evidence of a post-adaptation effect. CONCLUSIONS Changes in spatiotemporal outcomes provide evidence that both adaptation and post-adaptation effects were present in response to the application and removal of a haptic force. Future studies will investigate whether similar changes in elderly and post-stroke populations can be actualized during steady-state walking.
Collapse
Affiliation(s)
- Gianluca U Sorrento
- School of Physical & Occupational Therapy, McGill University, Laval, Québec, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Jewish Rehabilitation Hospital, site of CISSS-Laval, Laval, Québec, Canada.
| | - Philippe S Archambault
- School of Physical & Occupational Therapy, McGill University, Laval, Québec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Jewish Rehabilitation Hospital, site of CISSS-Laval, Laval, Québec, Canada
| | - Joyce Fung
- School of Physical & Occupational Therapy, McGill University, Laval, Québec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Jewish Rehabilitation Hospital, site of CISSS-Laval, Laval, Québec, Canada
| |
Collapse
|
40
|
Gama GL, Savin DN, Keenan T, Waller SM, Whitall J. Comparing the effects of adapting to a weight on one leg during treadmill and overground walking: A pilot study. Gait Posture 2018; 59:35-39. [PMID: 28987764 DOI: 10.1016/j.gaitpost.2017.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Locomotor adaptation has been suggested as a way to improve gait symmetry in individuals post-stroke. Most perturbation methods utilize costly, specialized equipment. The use of a unilateral leg weight may provide a low cost, clinically translatable alternative. Furthermore, previous studies have suggested that adaptation context may affect movement outcomes. The purpose of this study was to assess the ability of a unilaterally applied ankle weight to drive locomotor adaptation and determine the effect of context (treadmill versus overground) in young, non-disabled participants. METHODS Eighteen young non-disabled adults were randomly assigned to receive 10min of walking on a treadmill with a weight (TG), overground with a weight (OG) or as a control on a treadmill/overground without a weight (CG). Outcomes measured before, during and after adaptation were: step length symmetry, single limb support symmetry and gait speed. RESULTS After adding the weight, single limb support immediately became asymmetrical for all participants without changes in step length symmetry. After walking for 10min, TG step length became asymmetrical. After weight removal, both TG and OG had increased step length asymmetry. TG decreased single limb support asymmetry while OG did not. After walking overground without the weight, walking parameters eventually returned to baseline in both weighted groups. The control group showed no changes. CONCLUSION A unilaterally applied ankle weight appears able to cause gait adaptation in young, non-disabled participants. However different adaptive changes in the gait pattern are made by the nervous system when the perturbation is applied in different contexts.
Collapse
Affiliation(s)
- Gabriela Lopes Gama
- Institute of Physical Activity and Sport Sciences, Universidade Cruzeiro do Sul, 686 Galvão Bueno St., São Paulo, SP, 01506-000, Brazil
| | - Douglas N Savin
- University of Maryland, School of Medicine, Department of Physical Therapy and Rehabilitation Science, 100 Penn St., Baltimore, MD, 21201, United States.
| | - Taylor Keenan
- University of Maryland, College Park, MD, 20742, United States
| | - Sandy McCombe Waller
- University of Maryland, School of Medicine, Department of Physical Therapy and Rehabilitation Science, 100 Penn St., Baltimore, MD, 21201, United States
| | - Jill Whitall
- University of Maryland, School of Medicine, Department of Physical Therapy and Rehabilitation Science, 100 Penn St., Baltimore, MD, 21201, United States; Faculty of Health Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
41
|
Vasudevan EVL, Hamzey RJ, Kirk EM. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation. J Vis Exp 2017. [PMID: 28872105 DOI: 10.3791/55424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.
Collapse
Affiliation(s)
- Erin V L Vasudevan
- Physical Therapy, School of Health Technology and Management, Stony Brook University; Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network;
| | - Rami J Hamzey
- Physical Therapy, School of Health Technology and Management, Stony Brook University; Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network
| | - Eileen M Kirk
- Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network
| |
Collapse
|
42
|
Darter BJ, Bastian AJ, Wolf EJ, Husson EM, Labrecque BA, Hendershot BD. Locomotor adaptability in persons with unilateral transtibial amputation. PLoS One 2017; 12:e0181120. [PMID: 28704467 PMCID: PMC5507533 DOI: 10.1371/journal.pone.0181120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Background Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.
Collapse
Affiliation(s)
- Benjamin J. Darter
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Research, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, Virginia, United States of America
- * E-mail:
| | - Amy J. Bastian
- Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erik J. Wolf
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- DoD-VA Extremity Trauma and Amputation Center of Excellence (EACE), Bethesda, Maryland, United States of America
| | - Elizabeth M. Husson
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- BADER Consortium, University of Delaware, Newark, Delaware, United States of America
| | - Bethany A. Labrecque
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Brad D. Hendershot
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- DoD-VA Extremity Trauma and Amputation Center of Excellence (EACE), Bethesda, Maryland, United States of America
- Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
43
|
Luu TP, He Y, Nakagome S, Nathan K, Brown S, Gorges J, Contreras-Vidal JL. Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations. Front Hum Neurosci 2017; 11:320. [PMID: 28676750 PMCID: PMC5476704 DOI: 10.3389/fnhum.2017.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Optimizing rehabilitation strategies requires understanding the effects of contextual cues on adaptation learning. Prior studies have examined these effects on the specificity of split-belt walking adaptation, showing that contextual visual cues can be manipulated to modulate the magnitude, transfer, and washout of split-belt-induced learning in humans. Specifically, manipulating the availability of vision during training or testing phases of learning resulted in differences in adaptive mechanisms for temporal and spatial features of walking. However, multi-trial locomotor training has been rarely explored when using visual kinematic gait perturbations. In this study, we investigated multi-trial locomotor adaptation in ten healthy individuals while applying visual kinematic perturbations. Subjects were instructed to control a moving cursor, which represented the position of their heel, to follow a prescribed heel path profile displayed on a monitor. The perturbations were introduced by scaling all of the lower limb joint angles by a factor of 0.7 (i.e., a gain change), resulting in visual feedback errors between subjects' heel trajectories and the prescribed path profiles. Our findings suggest that, with practice, the subjects learned, albeit with different strategies, to reduce the tracking errors and showed faster response time in later trials. Moreover, the gait symmetry indices, in both the spatial and temporal domains, changed significantly during gait adaptation (P < 0.001). After-effects were present in the temporal gait symmetry index whens the visual perturbations were removed in the post-exposure period (P < 0.001), suggesting adaptation learning. These findings may have implications for developing novel gait rehabilitation interventions.
Collapse
Affiliation(s)
- Trieu Phat Luu
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of HoustonHouston, TX, United States
| | - Yongtian He
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of HoustonHouston, TX, United States
| | - Sho Nakagome
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of HoustonHouston, TX, United States
| | - Kevin Nathan
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of HoustonHouston, TX, United States
| | - Samuel Brown
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of HoustonHouston, TX, United States
| | - Jeffrey Gorges
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of HoustonHouston, TX, United States
| | - Jose L Contreras-Vidal
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of HoustonHouston, TX, United States
| |
Collapse
|
44
|
Shimada H, Ishii K, Makizako H, Ishiwata K, Oda K, Suzukawa M. Effects of exercise on brain activity during walking in older adults: a randomized controlled trial. J Neuroeng Rehabil 2017; 14:50. [PMID: 28558817 PMCID: PMC5450147 DOI: 10.1186/s12984-017-0263-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Physical activity may preserve neuronal plasticity, increase synapse formation, and cause the release of hormonal factors that promote neurogenesis and neuronal function. Previous studies have reported enhanced neurocognitive function following exercise training. However, the specific cortical regions activated during exercise training remain largely undefined. In this study, we quantitatively and objectively evaluated the effects of exercise on brain activity during walking in healthy older adults. METHODS A total of 24 elderly women (75-83 years old) were randomly allocated to either an intervention group or a control group. Those in the intervention group attended 3 months of biweekly 90-min sessions focused on aerobic exercise, strength training, and physical therapy. We monitored changes in regional cerebral glucose metabolism during walking in both groups using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). RESULTS All subjects completed the 3-month experiment and the adherence to the exercise program was 100%. Compared with the control group, the intervention group showed a significantly greater step length in the right foot after 3 months of physical activity. The FDG-PET assessment revealed a significant post-intervention increase in regional glucose metabolism in the left posterior entorhinal cortex, left superior temporal gyrus, and right superior temporopolar area in the intervention group. Interestingly, the control group showed a relative increase in regional glucose metabolism in the left premotor and supplemental motor areas, left and right somatosensory association cortex, and right primary visual cortex after the 3-month period. We found no significant differences in FDG uptake between the intervention and control groups before vs. after the intervention. CONCLUSION Exercise training increased activity in specific brain regions, such as the precuneus and entorhinal cortices, which play an important role in episodic and spatial memory. Further investigation is required to confirm whether alterations in glucose metabolism within these regions during walking directly promote physical and cognitive performance. TRIAL REGISTRATION UMIN-CTR ( UMIN000021829 ). Retrospectively registered 10 April 2016.
Collapse
Affiliation(s)
- Hiroyuki Shimada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-0038, Japan.
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hyuma Makizako
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-0038, Japan.,Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.,Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Megumi Suzukawa
- Department of Physical Therapy, University of Human Sciences, 1288 Magome, Iwatsuki-ku, Saitama, 339-8539, Japan
| |
Collapse
|
45
|
Sombric CJ, Harker HM, Sparto PJ, Torres-Oviedo G. Explicit Action Switching Interferes with the Context-Specificity of Motor Memories in Older Adults. Front Aging Neurosci 2017; 9:40. [PMID: 28321188 PMCID: PMC5337495 DOI: 10.3389/fnagi.2017.00040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Healthy aging impairs the ability to adapt movements to novel situations and to switch choices according to the context in cognitive tasks, indicating resistance to changes in motor and cognitive behaviors. Here we examined if this lack of “flexibility” in old subjects observed in motor and cognitive domains were related. To this end, we evaluated subjects' performance in a motor task that required switching walking patterns and its relation to performance in a cognitive switching task. Specifically, a group of old (>73 years old) and young subjects learned a new locomotor pattern on a split-belt treadmill, which drives the legs at different speeds. In both groups, we assessed the ability to disengage the walking pattern learned on the treadmill when walking overground. Then, we determined if this motor context-specificity was related to subjects' cognitive ability to switch actions in a set-shift task. Motor and cognitive behaviors were tested twice on separate visits to determine if age-related differences were maintained with exposure. Consistent with previous studies, we found that old adults adapted slower and had deficits in retention. Most importantly, we found that older subjects could not switch locomotor patterns when transitioning across walking contexts. Interestingly, cognitive switching performance was inversely related to subjects' ability to switch walking patterns. Thus, cognitive mediated switching interfered with locomotor switching. These findings were maintained across testing sessions. Our results suggest that distinct neural substrates mediate motor and cognitive action selection, and that these processes interfere with each other as we age.
Collapse
Affiliation(s)
- Carly J Sombric
- Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA
| | - Harrison M Harker
- Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA
| | - Patrick J Sparto
- Department of Physical Therapy, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|
46
|
Selgrade BP, Toney ME, Chang YH. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation. J Biomech 2017; 53:136-143. [PMID: 28126335 DOI: 10.1016/j.jbiomech.2017.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/19/2016] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Abstract
Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work.
Collapse
Affiliation(s)
- Brian P Selgrade
- Comparative Neuromechanics Laboratory School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Megan E Toney
- Comparative Neuromechanics Laboratory School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Young-Hui Chang
- Comparative Neuromechanics Laboratory School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
47
|
Sugiyama T, Liew SL. The Effects of Sensory Manipulations on Motor Behavior: From Basic Science to Clinical Rehabilitation. J Mot Behav 2016; 49:67-77. [PMID: 27935445 DOI: 10.1080/00222895.2016.1241740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Modifying sensory aspects of the learning environment can influence motor behavior. Although the effects of sensory manipulations on motor behavior have been widely studied, there still remains a great deal of variability across the field in terms of how sensory information has been manipulated or applied. Here, the authors briefly review and integrate the literature from each sensory modality to gain a better understanding of how sensory manipulations can best be used to enhance motor behavior. Then, they discuss 2 emerging themes from this literature that are important for translating sensory manipulation research into effective interventions. Finally, the authors provide future research directions that may lead to enhanced efficacy of sensory manipulations for motor learning and rehabilitation.
Collapse
Affiliation(s)
- Taisei Sugiyama
- a Mrs. T. H. Chan Division of Occupational Science and Occupational Therapy , University of Southern California , Los Angeles , California
| | - Sook-Lei Liew
- a Mrs. T. H. Chan Division of Occupational Science and Occupational Therapy , University of Southern California , Los Angeles , California.,b Division of Biokinesiology and Physical Therapy , University of Southern California , Los Angeles , California.,c Department of Neurology , University of Southern California , Los Angeles , California
| |
Collapse
|
48
|
Roemmich RT, Long AW, Bastian AJ. Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning. Curr Biol 2016; 26:2707-2716. [PMID: 27666970 DOI: 10.1016/j.cub.2016.08.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/08/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change.
Collapse
Affiliation(s)
- Ryan T Roemmich
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Movement Studies, The Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | - Andrew W Long
- Center for Movement Studies, The Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Movement Studies, The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Long AW, Roemmich RT, Bastian AJ. Blocking trial-by-trial error correction does not interfere with motor learning in human walking. J Neurophysiol 2016; 115:2341-8. [PMID: 26912598 DOI: 10.1152/jn.00941.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/18/2016] [Indexed: 01/08/2023] Open
Abstract
Movements can be learned implicitly in response to new environmental demands or explicitly through instruction and strategy. The former is often studied in an environment that perturbs movement so that people learn to correct the errors and store a new motor pattern. Here, we demonstrate in human walking that implicit learning of foot placement occurs even when an explicit strategy is used to block changes in foot placement during the learning process. We studied people learning a new walking pattern on a split-belt treadmill with and without an explicit strategy through instruction on where to step. When there is no instruction, subjects implicitly learn to place one foot in front of the other to minimize step-length asymmetry during split-belt walking, and the learned pattern is maintained when the belts are returned to the same speed, i.e., postlearning. When instruction is provided, we block expression of the new foot-placement pattern that would otherwise naturally develop from adaptation. Despite this appearance of no learning in foot placement, subjects show similar postlearning effects as those who were not given any instruction. Thus locomotor adaptation is not dependent on a change in action during learning but instead can be driven entirely by an unexpressed internal recalibration of the desired movement.
Collapse
Affiliation(s)
- Andrew W Long
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, Maryland; and
| | - Ryan T Roemmich
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, Maryland; and Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Amy J Bastian
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, Maryland; and Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
50
|
Wymbs NF, Bastian AJ, Celnik PA. Motor Skills Are Strengthened through Reconsolidation. Curr Biol 2016; 26:338-43. [PMID: 26832444 DOI: 10.1016/j.cub.2015.11.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/28/2015] [Accepted: 11/27/2015] [Indexed: 12/28/2022]
Abstract
Newly acquired motor skills become stabilized through consolidation [1]. However, we know from daily life that consolidated skills are modified over multiple bouts of practice and in response to newfound challenges [2]. Recent evidence has shown that memories can be modified through reconsolidation, in which previously consolidated memories can re-enter a temporary state of instability through retrieval, and in order to persist, undergo re-stabilization [3-8]. Although observed in other memory domains [5, 6], it is unknown whether reconsolidation leads to strengthened motor skills over multiple episodes of practice. Using a novel intervention after the retrieval of a consolidated skill, we found that skill can be modified and enhanced through exposure to increased sensorimotor variability. This improvement was greatest in those participants who could rapidly adjust their sensorimotor output in response to the relatively large fluctuations presented during the intervention. Importantly, strengthening required the reactivation of the consolidated skill and time for changes to reconsolidate. These results provide a key demonstration that consolidated motor skills continue to change as needed through the remapping of motor command to action goal, with strong implications for rehabilitation.
Collapse
Affiliation(s)
- Nicholas F Wymbs
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins Medical Institution, Baltimore, MD 21205, USA; The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins Medical Institution, Baltimore, MD 21205, USA.
| |
Collapse
|