1
|
Chung M, Park YS. Hyperkinetic Rat Model Induced by Optogenetic Parafascicular Nucleus Stimulation. J Korean Neurosurg Soc 2023; 66:121-132. [PMID: 36239081 PMCID: PMC10009241 DOI: 10.3340/jkns.2022.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The parafascicular nucleus (PF) plays important roles in controlling the basal ganglia. It is not well known whether the PF affects the development of abnormal involuntary movements (AIMs). This study was aimed to find a role of the PF in development of AIMs using optogenetic methods in an animal model. METHODS Fourteen rats were underwent stereotactic operation, in which they were injected with an adeno-associated virus with channelrhodopsin (AAV2-hSyn-ChR2-mCherry) to the lateral one third of the PF. Behavior test was performed with and without optical stimulation 14 days after the injection of the virus. AIM of rat was examined using AIM score. After the behavior test, rat's brain was carefully extracted and the section was examined using a fluorescence microscope to confirm transfection of the PF. RESULTS Of the 14 rats, seven rats displayed evident involuntary abnormal movements. AIM scores were increased significantly after the stimulation compared to those at baseline. In rats with AIMs, mCherry expression was prominent in the PF, while the rats without AIM lacked with the mCherry expression. CONCLUSION AIMs could be reversibly induced by stimulating the PF through an optogenetic method.
Collapse
Affiliation(s)
- Moonyoung Chung
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Korea
| | - Young Seok Park
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
2
|
Li YH, Zhao K, Wang MQ, Wang J, Gao BL. Effects of stereotactic radiofrequency thermocoagulation in the globus pallidus internus on refractory tic disorders. Int J Hyperthermia 2021; 37:1404-1411. [PMID: 33342326 DOI: 10.1080/02656736.2020.1859145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To investigate the effect of stereotactic radiofrequency thermocoagulation in the globus pallidus internus on refractory tic disorders. MATERIALS AND METHODS Forty patients with refractory tic disorders were enrolled between January 2015 and July 2017 to experience stereotactic radiofrequency thermocoagulation in the globus pallidus internus. All clinical data, Yale Global Tic Severity Scale (YGTSS) scores, serum dopamine (SDA), and 5-hydroxytryptamine (5-HT) were analyzed. RESULTS Radiofrequency thermocoagulation was successfully performed in all patients. Periprocedural complications occurred in two patients (5.0%), one with fever (2.5%) and one with a urination disorder (2.5%); both returned to normal after treatment. After 12 months of follow-ups, excellent improvement was exhibited in 18 patients (45.0%), marked improvement in 10 (25.0%), good improvement in 9 (22.5%), and invalid in 3 (7.5%), with a total efficacy rate of 92.5% (37/40). Twenty-eight patients (70%) showed excellent or marked improvement without additional treatment after surgery. YGTSS scores were significantly (p < 0.05) decreased after compared with before thermocoagulation. SDA was significantly (p < 0.05) decreased 6 months (80.78 ± 18.82 ng/ml) and 12 months (75.65 ± 15.23 ng/ml) after compared with before (125.63 ± 35.26 ng/ml) surgery, whereas 5-HT was significantly (p < 0.05) increased 6 months (58.93 ± 16.88 ng/ml) and 12 months (62.63 ± 15.21 ng/ml) after compared with before (35.62 ± 3.41 ng/ml) surgery. CONCLUSION Stereotactic radiofrequency thermocoagulation can be safely applied in the globus pallidus internus to treat refractory tic disorders, resulting in significant tic symptom relief and a decrease in SDA but increase in 5-HT.
Collapse
Affiliation(s)
- Yu-Hui Li
- Department of Neurosurgery, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Kai Zhao
- Department of Neurosurgery, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Mei-Qing Wang
- Department of Neurosurgery, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jing Wang
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Bu-Lang Gao
- Department of Medical Research, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
3
|
Abstract
It becomes increasingly clear that (non-)invasive neurostimulation is an effective treatment for obsessive-compulsive disorder (OCD). In this chapter we review the available evidence on techniques and targets, clinical results including a meta-analysis, mechanisms of action, and animal research. We focus on deep brain stimulation (DBS), but also cover non-invasive neurostimulation including transcranial magnetic stimulation (TMS). Data shows that most DBS studies target the ventral capsule/ventral striatum (VC/VS), with an overall 76% response rate in treatment-refractory OCD. Also TMS holds clinical promise. Increased insight in the normalizing effects of neurostimulation on cortico-striatal-thalamic-cortical (CSTC) loops - through neuroimaging and animal research - provides novel opportunities to further optimize treatment strategies. Advancing clinical implementation of neurostimulation techniques is essential to ameliorate the lives of the many treatment-refractory OCD patients.
Collapse
|
4
|
Johnson KA, Duffley G, Anderson DN, Ostrem JL, Welter ML, Baldermann JC, Kuhn J, Huys D, Visser-Vandewalle V, Foltynie T, Zrinzo L, Hariz M, Leentjens AFG, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Foote KD, Okun MS, Butson CR. Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain 2020; 143:2607-2623. [PMID: 32653920 DOI: 10.1093/brain/awaa188] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Daria Nesterovich Anderson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Marie-Laure Welter
- Institut du Cerveau et de la Moelle Epiniere, Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Foltynie
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Marwan Hariz
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,Department of Clinical Neuroscience, Umea University, Umea, Sweden
| | - Albert F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alon Y Mogilner
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Range of voluntary neck motility predicts outcome of pallidal DBS for cervical dystonia. Acta Neurochir (Wien) 2019; 161:2491-2498. [PMID: 31659440 DOI: 10.1007/s00701-019-04076-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/13/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND The effectiveness of pallidal deep brain stimulation (GPi DBS) for cervical dystonia has been extensively described, but controversies exist about which prognostic factor is clinically useful. We previously reported that classification of tonic- or phasic-type cervical dystonia is useful for predicting clinical prognosis; however, the approach used by physicians to distinguish between the two types remains subjective. OBJECTIVE The aim of this study was to develop a prognostic factor of GPi DBS for cervical dystonia. METHODS By identifying distributions of range of motion scores between phasic- and tonic-type cervical dystonia, a new prognostic factor group was developed based on whether the patients could voluntarily move their head to the opposite side against dystonic motions. The prognosis for GPi DBS in the two groups was analyzed according to the time sequence. RESULTS Patients who were able to move their head past the midline had a better long-term prognosis after GPi DBS than did those who could not. In the early post-operative phase, there were no significant differences in the clinical outcomes between the two groups. CONCLUSION A range of voluntary neck motility with respect to the midline is an objective factor that is useful in predicting the prognosis of patients with cervical dystonia. This result renders needs for future study addressing neuroplastic changes in the brain network caused by GPi DBS.
Collapse
|
6
|
Vissani M, Cordella R, Micera S, Eleopra R, Romito LM, Mazzoni A. Spatio-temporal structure of single neuron subthalamic activity identifies DBS target for anesthetized Tourette syndrome patients. J Neural Eng 2019; 16:066011. [PMID: 31370042 DOI: 10.1088/1741-2552/ab37b4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of basal ganglia effectively tackles motor symptoms of movement disorders such as Tourette syndrome (TS). The precise location of target stimulation site determines the range of clinical outcome in DBS patients, and the occurrence of side-effects of DBS. DBS implant procedures currently localize stimulation target relying on a combination of pre-surgical imaging, standardized brain atlases and on-the-spot clinical tests. Here we show that temporal structure of single unit activity in subthalamic nucleus (STN) of patients affected by pure TS can contribute to identify the optimal target location of DBS. APPROACH Neural activity was recorded at different depths within STN with microelectrodes during DBS implant surgery. Depth specific neural features were extracted and correlated with the optimal depth for tic control. MAIN RESULTS We describe for the first time temporal spike patterns of single neurons from sensorimotor STN of anesthetized TS patients. A large fraction of units (31.2%) displayed intense bursting in the delta band (<4 Hz). The highest firing irregularity and hence the higher density of bursting units (42%) were found at the optimal spot for tic control. Discharge patterns irregularity and dominant oscillations frequency (but not firing rate) carried significant information on optimal target. SIGNIFICANCE We found single unit activity features in the STN of TS patients reliably associated to optimal DBS target site for tic control. In future works measures of firing irregularity could be integrated with current target localization methods leading to a more effective and safer DBS for TS patients.
Collapse
Affiliation(s)
- Matteo Vissani
- The Biorobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Johnson KA, Fletcher PT, Servello D, Bona A, Porta M, Ostrem JL, Bardinet E, Welter ML, Lozano AM, Baldermann JC, Kuhn J, Huys D, Foltynie T, Hariz M, Joyce EM, Zrinzo L, Kefalopoulou Z, Zhang JG, Meng FG, Zhang C, Ling Z, Xu X, Yu X, Smeets AY, Ackermans L, Visser-Vandewalle V, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Hu W, Foote KD, Okun MS, Butson CR. Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. J Neurol Neurosurg Psychiatry 2019; 90:1078-1090. [PMID: 31129620 PMCID: PMC6744301 DOI: 10.1136/jnnp-2019-320379] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting. METHODS We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases. RESULTS Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi. CONCLUSION The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - P Thomas Fletcher
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,School of Computing, University of Utah, Salt Lake City, Utah, USA
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Alberto Bona
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Eric Bardinet
- Institut du Cerveau et de la Moelle Epiniere, Paris, Île-de-France, France
| | - Marie-Laure Welter
- Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Thomas Foltynie
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Marwan Hariz
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Eileen M Joyce
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Zinovia Kefalopoulou
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Jian-Guo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - ChenCheng Zhang
- Department of Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhipei Ling
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xin Xu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Anouk Yjm Smeets
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Alon Y Mogilner
- Center for Neuromodulation, Departments of Neurology and Neurosurgery, New York University Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, Departments of Neurology and Neurosurgery, New York University Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Wei Hu
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA .,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology, Neurosurgery, and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Globus Pallidus Internus Electric High-Frequency Stimulation Modulates Dopaminergic Activity in the Striatum of a Rat Model of Tourette Syndrome. World Neurosurg 2019; 127:e881-e887. [DOI: 10.1016/j.wneu.2019.03.290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/20/2022]
|
9
|
Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Parkinsonism Relat Disord 2019; 59:9-20. [PMID: 30658883 DOI: 10.1016/j.parkreldis.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease. METHODS We will focus on deep brain stimulation (DBS) - the most common form of basal ganglia neuromodulation - however, similar principles can apply to other neuromodulation modalities. We start with a brief review of DBS for Parkinson's disease, essential tremor, dystonia, and Tourette syndrome. We then review hallmark studies on basal ganglia circuits and electrophysiology resulting from decades of experience in neuromodulation. The organization and content of this paper follow Dr. Okun's Lecture from the 2018 Parkinsonism and Related Disorders World Congress. RESULTS Information gained from neuromodulation has led to an expansion of the basal ganglia rate model, an enhanced understanding of nuclei dynamics, an emerging focus on pathological oscillations, a revision of the tripartite division of the basal ganglia, and a redirected focus toward individualized symptom-specific stimulation. Though there have been many limitations of the basal ganglia "box model," the construct provided the necessary foundation to advance the field. We now understand that information in the basal ganglia is encoded through complex neural responses that can be reliably measured and used to infer disease states for clinical translation. CONCLUSIONS Our deepened understanding of basal ganglia physiology will drive new neuromodulation strategies such as adaptive DBS or cell-specific neuromodulation through the use of optogenetics.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stephanie Cernera
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Aryn Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Casagrande SCB, Cury RG, Alho EJL, Fonoff ET. Deep brain stimulation in Tourette's syndrome: evidence to date. Neuropsychiatr Dis Treat 2019; 15:1061-1075. [PMID: 31114210 PMCID: PMC6497003 DOI: 10.2147/ndt.s139368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder that comprises vocal and motor tics associated with a high frequency of psychiatric comorbidities, which has an important impact on quality of life. The onset is mainly in childhood and the symptoms can either fade away or require pharmacological therapies associated with cognitive-behavior therapies. In rare cases, patients experience severe and disabling symptoms refractory to conventional treatments. In these cases, deep brain stimulation (DBS) can be considered as an interesting and effective option for symptomatic control. DBS has been studied in numerous trials as a therapy for movement disorders, and currently positive data supports that DBS is partially effective in reducing the motor and non-motor symptoms of TS. The average response, mostly from case series and prospective cohorts and only a few controlled studies, is around 40% improvement on tic severity scales. The ventromedial thalamus has been the preferred target, but more recently the globus pallidus internus has also gained some notoriety. The mechanism by which DBS is effective on tics and other symptoms in TS is not yet understood. As refractory TS is not common, even reference centers have difficulties in performing large controlled trials. However, studies that reproduce the current results in larger and multicenter randomized controlled trials to improve our knowledge so as to support the best target and stimulation settings are still lacking. This article will discuss the selection of the candidates, DBS targets and mechanisms on TS, and clinical evidence to date reviewing current literature about the use of DBS in the treatment of TS.
Collapse
Affiliation(s)
- Sara C B Casagrande
- Department of Neurology, School of Medicine, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Rubens G Cury
- Department of Neurology, School of Medicine, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Eduardo J L Alho
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil,
| | - Erich Talamoni Fonoff
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
11
|
Jo HJ, McCairn KW, Gibson WS, Testini P, Zhao CZ, Gorny KR, Felmlee JP, Welker KM, Blaha CD, Klassen BT, Min HK, Lee KH. Global network modulation during thalamic stimulation for Tourette syndrome. NEUROIMAGE-CLINICAL 2018; 18:502-509. [PMID: 29560306 PMCID: PMC5857897 DOI: 10.1016/j.nicl.2018.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Background and objectives Deep brain stimulation (DBS) of the thalamus is a promising therapeutic alternative for treating medically refractory Tourette syndrome (TS). However, few human studies have examined its mechanism of action. Therefore, the networks that mediate the therapeutic effects of thalamic DBS remain poorly understood. Methods Five participants diagnosed with severe medically refractory TS underwent bilateral thalamic DBS stereotactic surgery. Intraoperative fMRI characterized the blood oxygen level-dependent (BOLD) response evoked by thalamic DBS and determined whether the therapeutic effectiveness of thalamic DBS, as assessed using the Modified Rush Video Rating Scale test, would correlate with evoked BOLD responses in motor and limbic cortical and subcortical regions. Results Our results reveal that thalamic stimulation in TS participants has wide-ranging effects that impact the frontostriatal, limbic, and motor networks. Thalamic stimulation induced suppression of motor and insula networks correlated with motor tic reduction, while suppression of frontal and parietal networks correlated with vocal tic reduction. These regions mapped closely to major regions of interest (ROI) identified in a nonhuman primate model of TS. Conclusions Overall, these findings suggest that a critical factor in TS treatment should involve modulation of both frontostriatal and motor networks, rather than be treated as a focal disorder of the brain. Using the novel combination of DBS-evoked tic reduction and fMRI in human subjects, we provide new insights into the basal ganglia-cerebellar-thalamo-cortical network-level mechanisms that influence the effects of thalamic DBS. Future translational research should identify whether these network changes are cause or effect of TS symptoms.
Collapse
Affiliation(s)
- Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin W McCairn
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - William S Gibson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Paola Testini
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Cong Zhi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bryan T Klassen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
12
|
Giorni A, Windels F, Stratton PG, Cook R, Silberstein P, Coyne T, Silburn PA, Sah P. Single-unit activity of the anterior Globus pallidus internus in Tourette patients and posterior Globus pallidus internus in dystonic patients. Clin Neurophysiol 2017; 128:2510-2518. [PMID: 29101846 DOI: 10.1016/j.clinph.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/30/2017] [Accepted: 10/07/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Our goal was to provide a detailed analysis of neurons' electrophysiological activity recorded in sub-territories of Globus pallidus internus (GPi) used as Deep Brain Stimulation (DBS) targets for these clinical conditions to potentially assist electrode targeting. METHODS We used intra-operative microelectrode recording during stereotactic neurosurgery to guide implantation of DBS lead. RESULTS Units in the medial anterior part of GPi of 7 Tourette's syndrome patients under general anesthesia were firing at mean and median rate of 32.1 and 21 Hz respectively (n = 101), with 45% of spikes fired during bursts and 21.3 bursts per minute. In the latero-posterior part of GPi of 7 dystonic patients under local anesthesia the mean and median activity were 46.1 and 30.6 Hz respectively (n = 27), and a mean of 21.7 bursts per minute was observed, with 30% of all spikes occurring during these bursts. CONCLUSION Units activity pattern - slow-regular, fast-irregular or fast-regular were present in different proportions between the two targets. SIGNIFICANCE The electrophysiological characteristics of the medial-anterior part of GPi and its latero-posterior portion can be used to assist DBS electrode targeting and also support the refinement of pathophysiological models of Tourette's syndrome and Dystonia.
Collapse
Affiliation(s)
- Andrea Giorni
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - François Windels
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia.
| | - Peter G Stratton
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - Raymond Cook
- Royal North Shore and North Shore Private Hospitals, Sydney, New South Wales, Australia
| | - Paul Silberstein
- Royal North Shore and North Shore Private Hospitals, Sydney, New South Wales, Australia
| | - Terrence Coyne
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia; St. Andrews War Memorial Hospital, Spring Hill, Queensland, Australia
| | - Peter A Silburn
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia; St. Andrews War Memorial Hospital, Spring Hill, Queensland, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Akbarian-Tefaghi L, Zrinzo L, Foltynie T. The Use of Deep Brain Stimulation in Tourette Syndrome. Brain Sci 2016; 6:brainsci6030035. [PMID: 27548235 PMCID: PMC5039464 DOI: 10.3390/brainsci6030035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Tourette syndrome (TS) is a childhood neurobehavioural disorder, characterised by the presence of motor and vocal tics, typically starting in childhood but persisting in around 20% of patients into adulthood. In those patients who do not respond to pharmacological or behavioural therapy, deep brain stimulation (DBS) may be a suitable option for potential symptom improvement. This manuscript attempts to summarise the outcomes of DBS at different targets, explore the possible mechanisms of action of DBS in TS, as well as the potential of adaptive DBS. There will also be a focus on the future challenges faced in designing optimized trials.
Collapse
Affiliation(s)
- Ladan Akbarian-Tefaghi
- Institute of Neurology, University College London (UCL), Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
14
|
McCairn KW, Iriki A, Isoda M. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. J Neurophysiol 2015; 114:2090-104. [PMID: 26180116 PMCID: PMC4595610 DOI: 10.1152/jn.00223.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles.
Collapse
Affiliation(s)
- Kevin W McCairn
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu, Republic of Korea;
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; and
| | - Masaki Isoda
- Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| |
Collapse
|
15
|
Yael D, Vinner E, Bar-Gad I. Pathophysiology of tic disorders. Mov Disord 2015; 30:1171-8. [PMID: 26179434 DOI: 10.1002/mds.26304] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022] Open
Abstract
Tics are the defining symptom of Tourette syndrome and other tic disorders (TDs); however, they form only a part of their overall symptoms. The recent surge of studies addressing the underlying pathophysiology of tics has revealed an intricate picture involving multiple brain areas and complex pathways. The myriad of pathophysiological findings stem, at least partially, from the multifaceted properties of tics and the disorders that express them. Distinct brain pathways mediate the expression of tics, whereas others are involved in the generation of the premonitory urge, associated comorbidities, and other changes in brain state. Expression of these symptoms is controlled by additional networks underlying voluntary suppression by the patient or those reflecting overall behavioral state. This review aims to simplify the complex picture of tic pathophysiology by dividing it into these key components based on converging data from human and animal model studies. Thus, involvement of the corticobasal ganglia pathway and its interaction with motor, sensory, limbic, and executive networks in each of the components as well as their control by different neuromodulators is described. This division enables a focused definition of the neuronal systems involved in each of these processes and allows a better understanding of the pathophysiology of TDs as a whole.
Collapse
Affiliation(s)
- Dorin Yael
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Esther Vinner
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
16
|
Israelashvili M, Loewenstern Y, Bar-Gad I. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation. J Neurophysiol 2015; 114:6-20. [PMID: 25925326 PMCID: PMC4493664 DOI: 10.1152/jn.00277.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/29/2015] [Indexed: 12/26/2022] Open
Abstract
Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders.
Collapse
Affiliation(s)
- Michal Israelashvili
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Yocheved Loewenstern
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
17
|
McCairn KW, Turner RS. Pallidal stimulation suppresses pathological dysrhythmia in the parkinsonian motor cortex. J Neurophysiol 2015; 113:2537-48. [PMID: 25652922 DOI: 10.1152/jn.00701.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023] Open
Abstract
Although there is general consensus that deep brain stimulation (DBS) yields substantial clinical benefit in patients with Parkinson's disease (PD), the therapeutic mechanism of DBS remains a matter of debate. Recent studies demonstrate that DBS targeting the globus pallidus internus (GPi-DBS) suppresses pathological oscillations in firing rate and between-cell spike synchrony in the vicinity of the electrode but has negligible effects on population-level firing rate or the prevalence of burst firing. The present investigation examines the downstream consequences of GPi-DBS at the level of the primary motor cortex (M1). Multielectrode, single cell recordings were conducted in the M1 of two parkinsonian nonhuman primates (Macaca fasicularis). GPi-DBS that induced significant reductions in muscular rigidity also reduced the prevalence of both beta (12-30 Hz) oscillations in single unit firing rates and of coherent spiking between pairs of M1 neurons. In individual neurons, GPi-DBS-induced increases in mean firing rate were three times more common than decreases; however, averaged across the population of M1 neurons, GPi-DBS induced no net change in mean firing rate. The population-level prevalence of burst firing was also not affected by GPi-DBS. The results are consistent with the hypothesis that suppression of both pathological, beta oscillations and synchronous activity throughout the cortico-basal ganglia network is a major therapeutic mechanism of GPi-DBS.
Collapse
Affiliation(s)
- Kevin W McCairn
- Department of Neurological Surgery, University of California, San Francisco, California; Department of Biological Sciences, Milton Keynes, The Open University, Buckinghamshire, United Kingdom; and
| | - Robert S Turner
- Department of Neurological Surgery, University of California, San Francisco, California; Department of Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
|
19
|
Bour LJ, Ackermans L, Foncke EMJ, Cath D, van der Linden C, Visser Vandewalle V, Tijssen MA. Tic related local field potentials in the thalamus and the effect of deep brain stimulation in Tourette syndrome: Report of three cases. Clin Neurophysiol 2014; 126:1578-88. [PMID: 25435514 DOI: 10.1016/j.clinph.2014.10.217] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/14/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Three patients with intractable Tourette syndrome (TS) underwent thalamic deep brain stimulation (DBS). To investigate the role of thalamic electrical activity in tic generation, local field potentials (LFP), EEG and EMG simultaneously were recorded. METHODS Event related potentials and event related spectral perturbations of EEG and LFP, event related cross-coherences between EEG/LFP and LFP/LFP were analyzed. As time locking events, the tic onsets were used. Spontaneous tics were compared to voluntary tic mimicking. The effect of tic suppression and DBS on thalamic LFPs was evaluated. RESULTS All three patients showed time-locked and prior to onset of spontaneous motor tics thalamic synchronization and thalamo-cortical cross-coherence. Also in three patients, not time-locked to motor tics, increased intra-thalamic coherences in the 1-8Hz frequency band were found. In one patient it was demonstrated that voluntary mimicked tics were preceded by premotor cortical and thalamic potentials. In this patient unilateral thalamic DBS contralaterally decreased the background thalamic activity. CONCLUSIONS The present study in three cases with TS shows that spontaneous tics in TS are preceded by repetitive coherent thalamo-cortical discharges, indicating that preceding a tic the basal ganglia circuits are "charged up", ultimately leading to a motor tic. SIGNIFICANCE Thalamic LFP recording may lead to more insight in underlying pathophysiological mechanisms in TS.
Collapse
Affiliation(s)
- L J Bour
- Department of Neurology and Clinical Neurophysiology of the Academic Medical Center, University of Amsterdam, The Netherlands.
| | - L Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, The Netherlands; MIND (Maastricht Institute for Neuromodulative Development), The Netherlands
| | - E M J Foncke
- Department of Neurology of the Free University of Amsterdam, The Netherlands
| | - D Cath
- Department of Clinical and Health Psychology, Utrecht University/Altrecht, Anxiety Outpatient Program, Utrecht, The Netherlands
| | - C van der Linden
- Center for Movement Disorders, St. Lucas Hospital Ghent, Ghent, Belgium
| | - V Visser Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, Germany
| | - M A Tijssen
- Department of Neurology, University of Groningen, The Netherlands
| |
Collapse
|
20
|
Comparative characterization of single cell activity in the globus pallidus internus of patients with dystonia or Tourette syndrome. J Neural Transm (Vienna) 2014; 122:687-99. [DOI: 10.1007/s00702-014-1277-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
21
|
|