1
|
Looschen K, Khatri SN, Maulik M, Salisbury C, Carman AF, Corriveau K, Smith C, Manetti D, Romanelli MN, Arias HR, Gipson CD, Mitra S. Novel psychoplastogen DM506 reduces cue-induced heroin-seeking and inhibits tonic GABA currents in the Prelimbic Cortex. Neurochem Int 2024; 178:105785. [PMID: 38838988 DOI: 10.1016/j.neuint.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Opioid use disorder is a major public health crisis that is manifested by persistent drug-seeking behavior and high relapse frequency. Most of the available treatments rely on targeting opioid receptors using small molecules that do not provide sustained symptom alleviation. Psychoplastogens are a novel class of non-opioid drugs that produce rapid and sustained effects on neuronal plasticity, intended to produce therapeutic benefits. Ibogalogs are synthetic derivatives of iboga alkaloids that lack hallucinogenic or adverse side effects. In the current study, we examine the therapeutic potential of DM506, a novel ibogalog lacking any cardiotoxic or hallucinogenic effects, in cue-induced seeking behavior following heroin self-administration. At a single systemic dose of 40 mg/kg, DM506 significantly decreased cue-induced seeking in both male and female rats at abstinence day 1 (AD1) following heroin self-administration. Upon re-testing for cue-induced seeking at AD14, we found that males receiving DM506 continued to show decreased cue-induced seeking, an effect not observed in females. Since there is evidence of psychedelics influencing tonic GABA currents, and opioid and psychoplastogen-mediated neuroadaptations in the medial prefrontal cortex (PrL) underlying its functional effects, we performed patch-clamp recordings on PrL slices of drug-naïve rats with an acute application or chronic incubation with DM506. Tonic GABA current was decreased in slices incubated with DM506 for 2 h. qPCR analysis did not reveal any differences in the mRNA levels of GABAA receptor α and δ subunits at AD14 in heroin and saline self-administered animals that received vehicle or DM506 at AD1. Overall, our data indicate that DM506 attenuates cue-induced heroin seeking and inhibits tonic GABA current in the prelimbic cortex.
Collapse
Affiliation(s)
- Kassandra Looschen
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Shailesh Narayan Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Malabika Maulik
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Colin Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Alaina F Carman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Katilyn Corriveau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Colton Smith
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, USA; Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tahlequah, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA; Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, USA.
| |
Collapse
|
2
|
Djama D, Zirpel F, Ye Z, Moore G, Chue C, Edge C, Jager P, Delogu A, Brickley SG. The type of inhibition provided by thalamic interneurons alters the input selectivity of thalamocortical neurons. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100130. [PMID: 38694514 PMCID: PMC11061260 DOI: 10.1016/j.crneur.2024.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
A fundamental problem in neuroscience is how neurons select for their many inputs. A common assumption is that a neuron's selectivity is largely explained by differences in excitatory synaptic input weightings. Here we describe another solution to this important problem. We show that within the first order visual thalamus, the type of inhibition provided by thalamic interneurons has the potential to alter the input selectivity of thalamocortical neurons. To do this, we developed conductance injection protocols to compare how different types of synchronous and asynchronous GABA release influence thalamocortical excitability in response to realistic patterns of retinal ganglion cell input. We show that the asynchronous GABA release associated with tonic inhibition is particularly efficient at maintaining information content, ensuring that thalamocortical neurons can distinguish between their inputs. We propose a model where alterations in GABA release properties results in rapid changes in input selectivity without requiring structural changes in the network.
Collapse
Affiliation(s)
- Deyl Djama
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Florian Zirpel
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Gerald Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Charmaine Chue
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Edge
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | | |
Collapse
|
3
|
Forster A, Rodrigues J, Ziebell P, Sanguinetti JL, Allen JJ, Hewig J. Investigating the role of the right inferior frontal gyrus in control perception: A double-blind cross-over study using ultrasonic neuromodulation. Neuropsychologia 2023; 187:108589. [PMID: 37302753 DOI: 10.1016/j.neuropsychologia.2023.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Being able to control inner and environmental states is a basic need of living creatures. The perception of such control is based on the perceived ratio of outcome probabilities given the presence and the absence of agentic behavior. If an organism believes that options exist to change the probability of a given outcome, control perception (CP) may emerge. Nonetheless, regarding this model, not much is known about how the brain processes CP from this information. This study uses low-intensity transcranial focused ultrasound neuromodulation in a randomized-controlled double blind cross-over design to investigate the impact of the right inferior frontal gyrus of the lateral prefrontal cortex (lPFC) on this process. 39 healthy participants visited the laboratory twice (once in a sham, once in a neuromodulation condition) and rated their control perception regarding a classical control illusion task. EEG alpha and theta power density were analyzed in a hierarchical single trial-based mixed modeling approach. Results indicate that the litFUS neuromodulation changed the processing of stimulus probability without changing CP. Furthermore, neuromodulation of the right lPFC was found to modulate mid-frontal theta by altering its relationship with self-reported effort and worrying. While these data indicate lateral prefrontal sensitivity to stimulus probability, no evidence emerged for the dependency of CP on this processing.
Collapse
Affiliation(s)
- André Forster
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Johannes Rodrigues
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Philipp Ziebell
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | | | | | - Johannes Hewig
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| |
Collapse
|
4
|
Distinct Firing Activities of the Hypothalamic Arcuate Nucleus Neurons to Appetite Hormones. Int J Mol Sci 2022; 23:ijms23052609. [PMID: 35269751 PMCID: PMC8910626 DOI: 10.3390/ijms23052609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
The hypothalamic arcuate nucleus (Arc) is a central unit that controls the appetite through the integration of metabolic, hormonal, and neuronal afferent inputs. Agouti-related protein (AgRP), proopiomelanocortin (POMC), and dopaminergic neurons in the Arc differentially regulate feeding behaviors in response to hunger, satiety, and appetite, respectively. At the time of writing, the anatomical and electrophysiological characterization of these three neurons has not yet been intensively explored. Here, we interrogated the overall characterization of AgRP, POMC, and dopaminergic neurons using genetic mouse models, immunohistochemistry, and whole-cell patch recordings. We identified the distinct geographical location and intrinsic properties of each neuron in the Arc with the transgenic lines labelled with cell-specific reporter proteins. Moreover, AgRP, POMC, and dopaminergic neurons had different firing activities to ghrelin and leptin treatments. Ghrelin led to the increased firing rate of dopaminergic and AgRP neurons, and the decreased firing rate of POMC. In sharp contrast, leptin resulted in the decreased firing rate of AgRP neurons and the increased firing rate of POMC neurons, while it did not change the firing rate of dopaminergic neurons in Arc. These findings demonstrate the anatomical and physiological uniqueness of three hypothalamic Arc neurons to appetite control.
Collapse
|
5
|
Sexton CA, Penzinger R, Mortensen M, Bright DP, Smart TG. Structural determinants and regulation of spontaneous activity in GABA A receptors. Nat Commun 2021; 12:5457. [PMID: 34526505 PMCID: PMC8443696 DOI: 10.1038/s41467-021-25633-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
GABAA receptors are vital for controlling neuronal excitability and can display significant levels of constitutive activity that contributes to tonic inhibition. However, the mechanisms underlying spontaneity are poorly understood. Here we demonstrate a strict requirement for β3 subunit incorporation into receptors for spontaneous gating, facilitated by α4, α6 and δ subunits. The crucial molecular determinant involves four amino acids (GKER) in the β3 subunit's extracellular domain, which interacts with adjacent receptor subunits to promote transition to activated, open channel conformations. Spontaneous activity is further regulated by β3 subunit phosphorylation and by allosteric modulators including neurosteroids and benzodiazepines. Promoting spontaneous activity reduced neuronal excitability, indicating that spontaneous currents will alter neural network activity. This study demonstrates how regional diversity in GABAA receptor isoform, protein kinase activity, and neurosteroid levels, can impact on tonic inhibition through the modulation of spontaneous GABAA receptor gating.
Collapse
Affiliation(s)
- Craig A Sexton
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Reka Penzinger
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Martin Mortensen
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Damian P Bright
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK.
| |
Collapse
|
6
|
Ye Q, Zhang X. Serotonin activates paraventricular thalamic neurons through direct depolarization and indirect disinhibition from zona incerta. J Physiol 2021; 599:4883-4900. [PMID: 34510418 DOI: 10.1113/jp282088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Paraventricular thalamus (PVT) is a midline thalamic area that receives dense GABA projections from zona incerta (ZI) for the regulation of feeding behaviours. Activation of central serotonin (5-HT) signalling is known to inhibit food intake. Although previous studies have reported both 5-HT fibres and receptors in the PVT, it remains unknown how 5-HT regulates PVT neurons and whether PVT 5-HT signalling is involved in the control of food intake. Using slice patch-clamp recordings in combination with optogenetics, we found that 5-HT not only directly excited PVT neurons by activating 5-HT7 receptors to modulate hyperpolarization-activated cyclic nucleotide-gated (HCN) channels but also disinhibited these neurons by acting on presynaptic 5-HT1A receptors to reduce GABA inhibition. Specifically, 5-HT depressed photostimulation-evoked inhibitory postsynaptic currents (eIPSCs) in PVT neurons innervated by channelrhodopsin-2-positive GABA axons from ZI. Using paired-pulse photostimulation, we found 5-HT increased paired-pulse ratios of eIPSCs, suggesting 5-HT decreases ZI-PVT GABA release. Furthermore, we found that exposure to a high-fat-high-sucrose diet for 2 weeks impaired both 5-HT inhibition of ZI-PVT GABA transmission and 5-HT excitation of PVT neurons. Using retrograde tracer in combination with immunocytochemistry and slice electrophysiology, we found that PVT-projecting dorsal raphe neurons expressed 5-HT and were inhibited by food deprivation. Together, our study reveals the mechanism by which 5-HT activates PVT neurons through both direct excitation and indirect disinhibition from the ZI. The downregulation in 5-HT excitation and disinhibition of PVT neurons may contribute to the development of overeating and obesity after chronic high-fat diet. KEY POINTS: Serotonin (5-HT) depolarizes and excites paraventricular thalamus (PVT) neurons. 5-HT7 receptors are responsible for 5-HT excitation of PVT neurons and the coupling of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels to 5-HT receptors in part mediates the excitatory effect of 5-HT. 5-HT depresses the frequency of spontaneous inhibitory but not excitatory postsynaptic currents in PVT neurons. 5-HT1A receptors contribute to the depressive effect of 5-HT on inhibitory transmissions. 5-HT inhibits GABA release from zona incerta (ZI) GABA terminals in PVT. Chronic high-fat diet not only impairs 5-HT inhibition of the ZI-PVT GABA transmission but also downregulates 5-HT excitation of PVT neurons. PVT-projecting dorsal raphe neurons express 5-HT and are inhibited by food deprivation.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Xiaobing Zhang
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
7
|
γ-Aminobutyric acid (GABA) from satellite glial cells tonically depresses the excitability of primary afferent fibers. Neurosci Res 2020; 170:50-58. [PMID: 32987088 DOI: 10.1016/j.neures.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023]
Abstract
Primary afferent fibers express extrasynaptic GABAA and GABAB receptors in the axons and soma. However, whether these receptors are tonically activated by ambient GABA and the source of the neurotransmitter is presently unknown. Here, we show that GABA release from dorsal root ganglia (DRG) does not depend on extracellular calcium, but depends upon calcium released from intracellular stores, and is mediated by Best1 channels. Using a preparation consisting of the spinal nerve in continuity with the DRG and the dorsal root, we found that endogenous GABA tonically activates GABA receptors, depressing the excitability of the primary afferents. In addition, using HPLC we found that GABA is released in the DRG, and by immunofluorescence microscopy we show the presence of GABA, the Best1 channel, and some enzymes of the putrescine pathway of GABA biosynthesis, in glutamine synthase- and GFAP-positive satellite glial cells. Last, we found that the blockade of the Best1 channel activity reduced the excitability of primary afferents and prevented the activation of the GABA receptors. These results suggest that satellite glial cells may be the source of endogenous GABA released in the DRG via Best1 channels, which tonically activates extrasynaptic GABA receptors.
Collapse
|
8
|
Richardson BD, Sottile SY, Caspary DM. Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: Impact of aging. Hear Res 2020; 402:108003. [PMID: 32703637 DOI: 10.1016/j.heares.2020.108003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
Abstract
Age-related hearing loss is a complex disorder affecting a majority of the elderly population. As people age, speech understanding becomes a challenge especially in complex acoustic settings and negatively impacts the ability to accurately analyze the auditory scene. This is in part due to an inability to focus auditory attention on a particular stimulus source while simultaneously filtering out other sound stimuli. The present review examines the impact of aging on two neurotransmitter systems involved in accurate temporal processing and auditory gating in auditory thalamus (medial geniculate body; MGB), a critical brain region involved in the coding and filtering of auditory information. The inhibitory neurotransmitter GABA and its synaptic receptors (GABAARs) are key to maintaining accurate temporal coding of complex sounds, such as speech, throughout the central auditory system. In the MGB, synaptic and extrasynaptic GABAARs mediate fast phasic and slow tonic inhibition respectively, which in turn regulate MGB neuron excitability, firing modes, and engage thalamocortical oscillations that shape coding and gating of acoustic content. Acoustic coding properties of MGB neurons are further modulated through activation of tegmental cholinergic afferents that project to MGB to potentially modulate attention and help to disambiguate difficult to understand or novel sounds. Acetylcholine is released onto MGB neurons and presynaptic terminals in MGB activating neuronal nicotinic and muscarinic acetylcholine receptors (nAChRs, mAChRs) at a subset of MGB afferents to optimize top-down and bottom-up information flow. Both GABAergic and cholinergic neurotransmission is significantly altered with aging and this review will detail how age-related changes in these circuits within the MGB may impact coding of acoustic stimuli.
Collapse
Affiliation(s)
- B D Richardson
- WWAMI Medical Education, University of Idaho, Moscow, ID, 83844, USA; Biological Engineering, University of Idaho, Moscow, ID, 83844, USA
| | - S Y Sottile
- Center for Clinical Research Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - D M Caspary
- Department of Pharmacology Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
9
|
Abdurakhmanova S, Grotell M, Kauhanen J, Linden AM, Korpi ER, Panula P. Increased Sensitivity of Mice Lacking Extrasynaptic δ-Containing GABA A Receptors to Histamine Receptor 3 Antagonists. Front Pharmacol 2020; 11:594. [PMID: 32435195 PMCID: PMC7218123 DOI: 10.3389/fphar.2020.00594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Histamine/gamma-aminobutyric acid (GABA) neurons of posterior hypothalamus send wide projections to many brain areas and participate in stabilizing the wake state. Recent research has suggested that GABA released from the histamine/GABA neurons acts on extrasynaptic GABAA receptors and balances the excitatory effect of histamine. In the current study, we show the presence of vesicular GABA transporter mRNA in a majority of quantified hypothalamic histaminergic neurons, which suggest vesicular release of GABA. As histamine/GABA neurons form conventional synapses infrequently, it is possible that GABA released from these neurons diffuses to target areas by volume transmission and acts on extrasynaptic GABA receptors. To investigate this hypothesis, mice lacking extrasynaptic GABAA receptor δ subunit (Gabrd KO) were used. A pharmacological approach was employed to activate histamine/GABA neurons and induce histamine and presumably, GABA, release. Control and Gabrd KO mice were treated with histamine receptor 3 (Hrh3) inverse agonists ciproxifan and pitolisant, which block Hrh3 autoreceptors on histamine/GABA neurons and histamine-dependently promote wakefulness. Low doses of ciproxifan (1 mg/kg) and pitolisant (5 mg/kg) reduced locomotion in Gabrd KO, but not in WT mice. EEG recording showed that Gabrd KO mice were also more sensitive to the wake-promoting effect of ciproxifan (3 mg/kg) than control mice. Low frequency delta waves, associated with NREM sleep, were significantly suppressed in Gabrd KO mice compared with the WT group. Ciproxifan-induced wakefulness was blocked by histamine synthesis inhibitor α-fluoromethylhistidine (αFMH). The findings indicate that both histamine and GABA, released from histamine/GABA neurons, are involved in regulation of brain arousal states and δ-containing subunit GABAA receptors are involved in mediating GABA response.
Collapse
Affiliation(s)
| | - Milo Grotell
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenna Kauhanen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
11
|
Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019; 42:5099478. [PMID: 30239935 PMCID: PMC6335869 DOI: 10.1093/sleep/zsy183] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Histamine was first identified in the brain about 50 years ago, but only in the last few years have researchers gained an understanding of how it regulates sleep/wake behavior. We provide a translational overview of the histamine system, from basic research to new clinical trials demonstrating the usefulness of drugs that enhance histamine signaling. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and like many of the arousal systems, histamine neurons diffusely innervate the cortex, thalamus, and other wake-promoting brain regions. Histamine has generally excitatory effects on target neurons, but paradoxically, histamine neurons may also release the inhibitory neurotransmitter GABA. New research demonstrates that activity in histamine neurons is essential for normal wakefulness, especially at specific circadian phases, and reducing activity in these neurons can produce sedation. The number of histamine neurons is increased in narcolepsy, but whether this affects brain levels of histamine is controversial. Of clinical importance, new compounds are becoming available that enhance histamine signaling, and clinical trials show that these medications reduce sleepiness and cataplexy in narcolepsy.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
| | - Nicholas P Franks
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac, Université Montpellier, INSERM, Montpellier, France
| |
Collapse
|
12
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
L’Estrade E, Hansen HD, Falk-Petersen C, Haugaard A, Griem-Krey N, Jung S, Lüddens H, Schirmeister T, Erlandsson M, Ohlsson T, Knudsen GM, Herth MM, Wellendorph P, Frølund B. Synthesis and Pharmacological Evaluation of [ 11C]4-Methoxy- N-[2-(thiophen-2-yl)imidazo[1,2- a]pyridin-3-yl]benzamide as a Brain Penetrant PET Ligand Selective for the δ-Subunit-Containing γ-Aminobutyric Acid Type A Receptors. ACS OMEGA 2019; 4:8846-8851. [PMID: 31459972 PMCID: PMC6648289 DOI: 10.1021/acsomega.9b00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
The α4/6βδ-containing GABAA receptors are involved in a number of brain diseases. Despite the potential of a δ-selective imaging agent, no PET radioligand is currently available for in vivo imaging. Here, we report the characterization of DS2OMe (1) as a candidate radiotracer, 11C-labeling, and subsequent evaluation of [11C]DS2OMe in a domestic pig as a PET radioligand for visualization of the δ-containing GABAA receptors.
Collapse
Affiliation(s)
- Elina
T. L’Estrade
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Hanne D. Hansen
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christina Falk-Petersen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anne Haugaard
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nane Griem-Krey
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sascha Jung
- Institute
of Pharmacy & Biochemistry, Johannes
Gutenberg University, D-55128 Mainz, Germany
| | - Hartmut Lüddens
- Department
of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University of Medical Center, D-55131 Mainz, Germany
| | - Tanja Schirmeister
- Institute
of Pharmacy & Biochemistry, Johannes
Gutenberg University, D-55128 Mainz, Germany
| | - Maria Erlandsson
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Tomas Ohlsson
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Gitte M. Knudsen
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bente Frølund
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Zobeiri M, Chaudhary R, Blaich A, Rottmann M, Herrmann S, Meuth P, Bista P, Kanyshkova T, Lüttjohann A, Narayanan V, Hundehege P, Meuth SG, Romanelli MN, Urbano FJ, Pape HC, Budde T, Ludwig A. The Hyperpolarization-Activated HCN4 Channel is Important for Proper Maintenance of Oscillatory Activity in the Thalamocortical System. Cereb Cortex 2019; 29:2291-2304. [PMID: 30877792 PMCID: PMC6458902 DOI: 10.1093/cercor/bhz047] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 11/14/2022] Open
Abstract
Hyperpolarization-activated cation channels are involved, among other functions, in learning and memory, control of synaptic transmission and epileptogenesis. The importance of the HCN1 and HCN2 isoforms for brain function has been demonstrated, while the role of HCN4, the third major neuronal HCN subunit, is not known. Here we show that HCN4 is essential for oscillatory activity in the thalamocortical (TC) network. HCN4 is selectively expressed in various thalamic nuclei, excluding the thalamic reticular nucleus. HCN4-deficient TC neurons revealed a massive reduction of Ih and strongly reduced intrinsic burst firing, whereas the current was normal in cortical pyramidal neurons. In addition, evoked bursting in a thalamic slice preparation was strongly reduced in the mutant mice probes. HCN4-deficiency also significantly slowed down thalamic and cortical oscillations during active wakefulness. Taken together, these results establish that thalamic HCN4 channels are essential for the production of rhythmic intrathalamic oscillations and determine regular TC oscillatory activity during alert states.
Collapse
Affiliation(s)
- Mehrnoush Zobeiri
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Rahul Chaudhary
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Anne Blaich
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Rottmann
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Herrmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Meuth
- Klinik für Neurologie mit Institut für Translationale Neurologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Pawan Bista
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Tatyana Kanyshkova
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Annika Lüttjohann
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Venu Narayanan
- Klinik für Neurologie mit Institut für Translationale Neurologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Petra Hundehege
- Klinik für Neurologie mit Institut für Translationale Neurologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sven G Meuth
- Klinik für Neurologie mit Institut für Translationale Neurologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, Italy
| | | | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Lagrange AH, Hu N, Macdonald RL. GABA beyond the synapse: defining the subtype-specific pharmacodynamics of non-synaptic GABA A receptors. J Physiol 2018; 596:4475-4495. [PMID: 30019335 PMCID: PMC6138284 DOI: 10.1113/jp276187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Physiologically relevant combinations of recombinant GABAA receptor (GABAR) subunits were expressed in HEK293 cells. Using whole-cell voltage clamp and rapid drug application, we measured the GABAR-subtype-specific properties to convey either synaptic or extrasynaptic signalling in a range of physiological contexts. α4βδ GABARs are optimally tuned to submicromolar tonic GABA and transient surges of micromolar GABA concentrations. α5β2γ2l GABARs are better suited to higher tonic GABA levels, but also convey robust responses to brief synaptic and perisynaptic GABA fluctuations. α1β2/3δ GABARs function well at prolonged, micromolar (>2 μm) GABA levels, but not to low tonic (<1 μm GABA) or synaptic/transient GABAergic signalling. These results help illuminate the context- and isoform-specific modes of GABAergic signalling in the brain. ABSTRACT GABAA receptors (GABARs) mediate a remarkable diversity of signalling modalities in vivo. Yet most published work characterizing responses to GABA has focused on the properties needed to convey fast, phasic synaptic inhibition. We therefore aimed to characterize the most prevalent (α4βδ, α5β3γ2L) and least prevalent (α1β2δ) non-synaptic GABAR currents, using whole-cell voltage clamp recordings of recombinant GABAR expressed in HEK293 cells and drug application protocols to recapitulate the GABA concentration profiles occurring during both fast synaptic and slow extrasynaptic signalling. We found that α4βδ GABARs were very sensitive to submicromolar GABA, with a rank order potency of α4β2δ ≥ α4β1δ ≈ α4β3δ GABARs. In comparison, the GABA EC50 was up to 20 times higher for α1β2γ2L GABARs, with α1β2δ and α5β3γ2L GABARs having intermediate GABA potency. Both α4βδ and α5β3γ2L GABAR currents exhibited slow, but substantial, desensitization as well as prolonged rates of deactivation. These GABAR current properties defined distinct 'dynamic ranges' of responsiveness to changing GABA for α4β2δ (0.1-1 μm), α5β3γ2L (0.5-7 μm) and α1β2γ2L (0.6-9 μm) GABARs. Finally, α1β2δ GABARs were notable for their relative lack of desensitization and extremely quick deactivation. In summary, our results help delineate the roles that specific GABARs may play in mediating non-synaptic GABA signals. Since ambient GABA levels may be altered during development as well as by drugs and disease states, these findings may help future efforts to understand disrupted inhibition underlying a variety of neurological illnesses, such as epilepsy.
Collapse
Affiliation(s)
- Andre H. Lagrange
- Departments of NeurologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- PharmacologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- Program in NeuroscienceVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- Tennessee Valley Healthcare Systems Veterans AdministrationNashvilleTN37201USA
| | - NingNing Hu
- Departments of NeurologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
| | - Robert L. Macdonald
- Departments of NeurologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- PharmacologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
| |
Collapse
|
16
|
Trujeque-Ramos S, Castillo-Rolón D, Galarraga E, Tapia D, Arenas-López G, Mihailescu S, Hernández-López S. Insulin Regulates GABA A Receptor-Mediated Tonic Currents in the Prefrontal Cortex. Front Neurosci 2018; 12:345. [PMID: 29904337 PMCID: PMC5990629 DOI: 10.3389/fnins.2018.00345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/04/2018] [Indexed: 11/14/2022] Open
Abstract
Recent studies, have shown that insulin increases extrasynaptic GABAA receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABAA receptor-mediated tonic currents in brain slices. We found that insulin (20–500 nM) increases GABAA-mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABAA receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABAA receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5–6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABAA-mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.
Collapse
Affiliation(s)
- Saraí Trujeque-Ramos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Diego Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Gabina Arenas-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Stefan Mihailescu
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
17
|
Meis S, Endres T, Munsch T, Lessmann V. Presynaptic Regulation of Tonic Inhibition by Neuromodulatory Transmitters in the Basal Amygdala. Mol Neurobiol 2018; 55:8509-8521. [PMID: 29560580 DOI: 10.1007/s12035-018-0984-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/28/2018] [Indexed: 01/23/2023]
Abstract
Tonic inhibition mediated by ambient levels of GABA that activate extrasynaptic GABAA receptors emerges as an essential factor that tunes neuronal network excitability in vitro and shapes behavioral responses in vivo. To address the role of neuromodulatory transmitter systems on this type of inhibition, we employed patch clamp recordings in mouse amygdala slice preparations. Our results show that the current amplitude of tonic inhibition (Itonic) in projection neurons of the basal amygdala (BA) is increased by preincubation with the neurosteroid THDOC, while the benzodiazepine diazepam is ineffective. This suggests involvement of THDOC sensitive δ subunit containing GABAA receptors in mediating tonic inhibition. Moreover, we provide evidence that the neuromodulatory transmitters NE, 5HT, and ACh strongly enhance spontaneous IPSCs as well as Itonic in the BA. As the increase in frequency, amplitude, and charge of sIPSCs by these neuromodulatory transmitters strongly correlated with the amplitude of Itonic, we conclude that spill-over of synaptic GABA leads to activation of Itonic and thereby to dampening of amygdala excitability. Since local injection of THDOC, as a positive modulator of tonic inhibition, into the BA interfered with the expression of contextual fear memory, our results point to a prominent role of Itonic in fear learning.
Collapse
Affiliation(s)
- S Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - T Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - T Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - V Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
18
|
Bombardi C, Venzi M, Crunelli V, Di Giovanni G. Developmental changes of GABA immunoreactivity in cortico-thalamic networks of an absence seizure model. Neuropharmacology 2018; 136:56-67. [PMID: 29471054 PMCID: PMC6018618 DOI: 10.1016/j.neuropharm.2018.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 12/24/2022]
Abstract
Absence seizures (ASs) are associated with abnormalities in gamma-aminobutyric acid (GABA) neurotransmission in the thalamus and the cortex. In the present study, we used light microscopy GABA immunocytochemistry to quantify the GABA-immunoreactive (GABA-IR) neurons and neuropil in the thalamic ventral basal (VB) nucleus, the nucleus reticularis thalami (NRT), the dorsal lateral geniculate (dLGN), the primary motor cortex (M1) and perioral region of the somatosensory cortex (S1po) of genetic absence epilepsy rats from Strasbourg (GAERS). We used both the relative non-epileptic control (NEC) and normal Wistar rats as control strains, and investigated GABA immunostaining at postnatal day 15 (P15), P25, and P90. The main findings were i) an increase in GABA-IR neuropil in the VB at P25 and P90 in GAERS but not in NEC and Wistar rats; ii) an increase in NRT GABA-IR neurons in GAERS and NEC, but not Wistar, rats at both P25 and P90; and iii) an increase in GABA-IR neuron density in S1po of GAERS at P25 and P90 and in Wistar at P90. These results indicate that the increased GABAergic innervation in the VB at P25 most likely contributes to the enhanced tonic inhibition observed in GAERS prior to AS onset, whereas the lack of any anatomo-morphological GABAergic differences in GAERS S1po suggests that functional more than structural abnormalities underlie the origin of cortical paroxysms in S1po of this AS model. This article is part of the “Special Issue Dedicated to Norman G. Bowery”. GABA-IR profiles increase in P25 to P90 VB neuropil in GAERS but not in NEC and Wistar rats. NRT GABA-IR neurons increase in P25 and P90 GAERS and NEC, but not in Wistar rats. GABA-IR neuron density increases in S1po of GAERS at P25 and P90 and in Wistar at P90.
Collapse
Affiliation(s)
- Cristiano Bombardi
- University of Bologna, Department of Veterinary Medical Science, Bologna, Italy
| | - Marcello Venzi
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Department of Physiology and Biochemistry, University of Malta, Malta.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Department of Physiology and Biochemistry, University of Malta, Malta.
| |
Collapse
|
19
|
Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018; 12:4. [PMID: 29434539 PMCID: PMC5790777 DOI: 10.3389/fncir.2018.00004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/11/2018] [Indexed: 01/07/2023] Open
Abstract
Sedatives target just a handful of receptors and ion channels. But we have no satisfying explanation for how activating these receptors produces sedation. In particular, do sedatives act at restricted brain locations and circuitries or more widely? Two prominent sedative drugs in clinical use are zolpidem, a GABAA receptor positive allosteric modulator, and dexmedetomidine (DEX), a selective α2 adrenergic receptor agonist. By targeting hypothalamic neuromodulatory systems both drugs induce a sleep-like state, but in different ways: zolpidem primarily reduces the latency to NREM sleep, and is a controlled substance taken by many people to help them sleep; DEX produces prominent slow wave activity in the electroencephalogram (EEG) resembling stage 2 NREM sleep, but with complications of hypothermia and lowered blood pressure—it is used for long term sedation in hospital intensive care units—under DEX-induced sedation patients are arousable and responsive, and this drug reduces the risk of delirium. DEX, and another α2 adrenergic agonist xylazine, are also widely used in veterinary clinics to sedate animals. Here we review how these two different classes of sedatives, zolpidem and dexmedetomideine, can selectively interact with some nodal points of the circuitry that promote wakefulness allowing the transition to NREM sleep. Zolpidem enhances GABAergic transmission onto histamine neurons in the hypothalamic tuberomammillary nucleus (TMN) to hasten the transition to NREM sleep, and DEX interacts with neurons in the preoptic hypothalamic area that induce sleep and body cooling. This knowledge may aid the design of more precise acting sedatives, and at the same time, reveal more about the natural sleep-wake circuitry.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. J Physiol 2017; 595:5875-5893. [PMID: 28714121 DOI: 10.1113/jp274527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.
Collapse
Affiliation(s)
- Michael Leist
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Susanne Rinné
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Ania Aissaoui
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| |
Collapse
|
21
|
Leresche N, Lambert RC. GABA receptors and T-type Ca 2+ channels crosstalk in thalamic networks. Neuropharmacology 2017; 136:37-45. [PMID: 28601398 DOI: 10.1016/j.neuropharm.2017.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Although the thalamus presents a rather limited repertoire of GABAergic cell types compare to other CNS area, this structure is a privileged system to study how GABA impacts neuronal network excitability. Indeed both glutamatergic thalamocortical (TC) and GABAergic nucleus reticularis thalami (NRT) neurons present a high expression of T-type voltage-dependent Ca2+ channels whose activation that shapes the output of the thalamus critically depends upon a preceding hyperpolarisation. Because of this strict dependence, a tight functional link between GABA mediated hyperpolarization and T-currents characterizes the thalamic network excitability. In this review we summarize a number of studies showing that the relationships between the various thalamic GABAA/B receptors and T-channels are complex and bidirectional. We discuss how this dynamic interaction sets the global intrathalamic network activity and its long-term plasticity and highlight how the functional relationship between GABA release and T-channel-dependent excitability is finely tuned by the T-channel activation itself. Finally, we illustrate how an impaired balance between T-channels and GABA receptors can lead to pathologically abnormal cellular and network behaviours. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Nathalie Leresche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Régis C Lambert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| |
Collapse
|
22
|
Johnson NW, Özkan M, Burgess AP, Prokic EJ, Wafford KA, O'Neill MJ, Greenhill SD, Stanford IM, Woodhall GL. Phase-amplitude coupled persistent theta and gamma oscillations in rat primary motor cortex in vitro. Neuropharmacology 2017; 119:141-156. [PMID: 28400257 DOI: 10.1016/j.neuropharm.2017.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/26/2023]
Abstract
In vivo, theta (4-7 Hz) and gamma (30-80 Hz) neuronal network oscillations are known to coexist and display phase-amplitude coupling (PAC). However, in vitro, these oscillations have for many years been studied in isolation. Using an improved brain slice preparation technique we have, using co-application of carbachol (10 μM) and kainic acid (150 nM), elicited simultaneous theta (6.6 ± 0.1 Hz) and gamma (36.6 ± 0.4 Hz) oscillations in rodent primary motor cortex (M1). Each oscillation showed greatest power in layer V. Using a variety of time series analyses we detected significant cross-frequency coupling in 74% of slice preparations. Differences were observed in the pharmacological profile of each oscillation. Thus, gamma oscillations were reduced by the GABAA receptor antagonists, gabazine (250 nM and 2 μM), and picrotoxin (50 μM) and augmented by AMPA receptor antagonism with SYM2206 (20 μM). In contrast, theta oscillatory power was increased by gabazine, picrotoxin and SYM2206. GABAB receptor blockade with CGP55845 (5 μM) increased both theta and gamma power, and similar effects were seen with diazepam, zolpidem, MK801 and a series of metabotropic glutamate receptor antagonists. Oscillatory activity at both frequencies was reduced by the gap junction blocker carbenoxolone (200 μM) and by atropine (5 μM). These data show theta and gamma oscillations in layer V of rat M1 in vitro are cross-frequency coupled, and are mechanistically distinct. The development of an in vitro model of phase-amplitude coupled oscillations will facilitate further mechanistic investigation of the generation and modulation of coupled activity in mammalian cortex.
Collapse
Affiliation(s)
- Nicholas W Johnson
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Mazhar Özkan
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Adrian P Burgess
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Emma J Prokic
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Keith A Wafford
- Neuroscience Division, Eli Lilly & Co. Ltd., Windlesham, GU20 6PH, United Kingdom
| | - Michael J O'Neill
- Neuroscience Division, Eli Lilly & Co. Ltd., Windlesham, GU20 6PH, United Kingdom
| | - Stuart D Greenhill
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Ian M Stanford
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Gavin L Woodhall
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom.
| |
Collapse
|
23
|
Ye Z, Yu X, Houston CM, Aboukhalil Z, Franks NP, Wisden W, Brickley SG. Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABA A Receptors with Different γ Subunits. Front Cell Neurosci 2017; 11:95. [PMID: 28420966 PMCID: PMC5378722 DOI: 10.3389/fncel.2017.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/20/2017] [Indexed: 12/02/2022] Open
Abstract
Cell-type specific differences in the kinetics of inhibitory postsynaptic conductance changes (IPSCs) are believed to impact upon network dynamics throughout the brain. Much attention has focused on how GABAA receptor (GABAAR) α and β subunit diversity will influence IPSC kinetics, but less is known about the influence of the γ subunit. We have examined whether GABAAR γ subunit heterogeneity influences IPSC properties in the thalamus. The γ2 subunit gene was deleted from GABAARs selectively in the dorsal lateral geniculate nucleus (dLGN). The removal of the γ2 subunit from the dLGN reduced the overall spontaneous IPSC (sIPSC) frequency across all relay cells and produced an absence of IPSCs in a subset of relay neurons. The remaining slower IPSCs were both insensitive to diazepam and zinc indicating the absence of the γ2 subunit. Because these slower IPSCs were potentiated by methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM), we propose these IPSCs involve γ1 subunit-containing GABAAR activation. Therefore, γ subunit heterogeneity appears to influence the kinetics of GABAAR-mediated synaptic transmission in the visual thalamus in a cell-selective manner. We suggest that activation of γ1 subunit-containing GABAARs give rise to slower IPSCs in general, while faster IPSCs tend to be mediated by γ2 subunit-containing GABAARs.
Collapse
Affiliation(s)
- Zhiwen Ye
- Department of Life Sciences, Imperial College LondonLondon, UK.,Department of Neurophysiology, The Francis Crick InstituteLondon, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College LondonLondon, UK
| | | | | | | | - William Wisden
- Department of Life Sciences, Imperial College LondonLondon, UK
| | | |
Collapse
|
24
|
Park A, Li Y, Masri R, Keller A. Presynaptic and extrasynaptic regulation of posterior nucleus of thalamus. J Neurophysiol 2017; 118:507-519. [PMID: 28331010 DOI: 10.1152/jn.00862.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 11/22/2022] Open
Abstract
The posterior nucleus of thalamus (PO) is a higher-order nucleus involved in sensorimotor processing, including nociception. An important characteristic of PO is its wide range of activity profiles that vary across states of arousal, thought to underlie differences in somatosensory perception subject to attention and degree of consciousness. Furthermore, PO loses the ability to downregulate its activity level in some forms of chronic pain, suggesting that regulatory mechanisms underlying the normal modulation of PO activity may be pathologically altered. However, the mechanisms responsible for regulating such a wide dynamic range of activity are unknown. Here, we test a series of hypotheses regarding the function of several presynaptic receptors on both GABAergic and glutamatergic afferents targeting PO in mouse, using acute slice electrophysiology. We found that presynaptic GABAB receptors are present on both GABAergic and glutamatergic terminals in PO, but only those on GABAergic terminals are tonically active. We also found that release from GABAergic terminals, but not glutamatergic terminals, is suppressed by cholinergic activation and that a subpopulation of GABAergic terminals is regulated by cannabinoids. Finally, we discovered the presence of tonic currents mediated by extrasynaptic GABAA receptors in PO that are heterogeneously distributed across the nucleus. Thus we demonstrate that multiple regulatory mechanisms concurrently exist in PO, and we propose that regulation of inhibition, rather than excitation, is the more consequential mechanism by which PO activity can be regulated.NEW & NOTEWORTHY The posterior nucleus of thalamus (PO) is a key sensorimotor structure, whose activity is tightly regulated by inhibition from several nuclei. Maladaptive plasticity in this inhibition leads to severe pathologies, including chronic pain. We reveal here, for the first time in PO, multiple regulatory mechanisms that modulate synaptic transmission within PO. These findings may lead to targeted therapies for chronic pain and other disorders.
Collapse
Affiliation(s)
- Anthony Park
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Ying Li
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Radi Masri
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Baltimore, School of Dentistry, Baltimore, Maryland
| | - Asaf Keller
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
25
|
Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus. Nat Commun 2016; 7:13579. [PMID: 27929058 PMCID: PMC5155147 DOI: 10.1038/ncomms13579] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
The release of GABA from local interneurons in the dorsal lateral geniculate nucleus (dLGN-INs) provides inhibitory control during visual processing within the thalamus. It is commonly assumed that this important class of interneurons originates from within the thalamic complex, but we now show that during early postnatal development Sox14/Otx2-expressing precursor cells migrate from the dorsal midbrain to generate dLGN-INs. The unexpected extra-diencephalic origin of dLGN-INs sets them apart from GABAergic neurons of the reticular thalamic nucleus. Using optogenetics we show that at increased firing rates tectal-derived dLGN-INs generate a powerful form of tonic inhibition that regulates the gain of thalamic relay neurons through recruitment of extrasynaptic high-affinity GABAA receptors. Therefore, by revising the conventional view of thalamic interneuron ontogeny we demonstrate how a previously unappreciated mesencephalic population controls thalamic relay neuron excitability.
Collapse
|
26
|
Abstract
UNLABELLED Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. SIGNIFICANCE STATEMENT A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no specific ligands capable of selectively reducing tonic inhibition. Here we explore the use of a GABA partial agonist as a selective chemical tool in three different brain regions. We discover that the activity of a partial agonist is heavily dependent upon the GABAA receptor subunit composition underpinning tonic inhibition, and on the ambient levels of GABA in the brain.
Collapse
|
27
|
Abstract
Inhibitory neurons dominate the intrinsic circuits in the visual thalamus. Interneurons in the lateral geniculate nucleus innervate relay cells and each other densely to provide powerful inhibition. The visual sector of the overlying thalamic reticular nucleus receives input from relay cells and supplies feedback inhibition to them in return. Together, these two inhibitory circuits influence all information transmitted from the retina to the primary visual cortex. By contrast, relay cells make few local connections. This review explores the role of thalamic inhibition from the dual perspectives of feature detection and information theory. For example, we describe how inhibition sharpens tuning for spatial and temporal features of the stimulus and how it might enhance image perception. We also discuss how inhibitory circuits help to reduce redundancy in signals sent downstream and, at the same time, are adapted to maximize the amount of information conveyed to the cortex.
Collapse
Affiliation(s)
- Judith A Hirsch
- Department of Biological Sciences/Neurobiology, University of Southern California, Los Angeles, California 90089-2520;
| | | | | | | |
Collapse
|
28
|
Pangratz-Fuehrer S, Sieghart W, Rudolph U, Parada I, Huguenard JR. Early postnatal switch in GABAA receptor α-subunits in the reticular thalamic nucleus. J Neurophysiol 2015; 115:1183-95. [PMID: 26631150 DOI: 10.1152/jn.00905.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 01/25/2023] Open
Abstract
The GABAergic neurons of the thalamic reticular nucleus (nRt) provide the primary source of inhibition within the thalamus. Using physiology, pharmacology, and immunohistochemistry in mice, we characterized postsynaptic developmental changes in these inhibitory projection neurons. First, at postnatal days 3-5 (P3-5), inhibitory postsynaptic currents (IPSCs) decayed very slowly, followed by a biphasic developmental progression, becoming faster at P6-8 and then slower again at P9-11 before stabilizing in a mature form around P12. Second, the pharmacological profile of GABA(A) receptor (GABA(A)R)-mediated IPSCs differed between neonatal and mature nRt neurons, and this was accompanied by reciprocal changes in α3 (late) and α5 (early) subunit expression in nRt. Zolpidem, selective for α1- and α3-containing GABA(A)Rs, augmented only mature IPSCs, whereas clonazepam enhanced IPSCs at all stages. This effect was blocked by the α5-specific inverse agonist L-655,708, but only in immature neurons. In α3(H126R) mice, in which α3-subunits were mutated to become benzodiazepine insensitive, IPSCs were enhanced compared with those in wild-type animals in early development. Third, tonic GABA(A)R activation in nRt is age dependent and more prominent in immature neurons, which correlates with early expression of α5-containing GABA(A)Rs. Thus neonatal nRt neurons show relatively high expression of α5-subunits, which contributes to both slow synaptic and tonic extrasynaptic inhibition. The postnatal switch in GABA(A)R subunits from α5 to α3 could facilitate spontaneous network activity in nRt that occurs at this developmental time point and which is proposed to play a role in early circuit development.
Collapse
Affiliation(s)
- Susanne Pangratz-Fuehrer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Werner Sieghart
- Brain Research Institute Vienna, University of Vienna, Vienna, Austria; and
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Mailman Research Center, Harvard Medical School, Belmont, Massachusetts
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
29
|
Crunelli V, Di Giovanni G. Differential Control by 5-HT and 5-HT1A, 2A, 2C Receptors of Phasic and Tonic GABAA Inhibition in the Visual Thalamus. CNS Neurosci Ther 2015; 21:967-70. [PMID: 26555767 PMCID: PMC4973707 DOI: 10.1111/cns.12480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.,Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.,Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| |
Collapse
|
30
|
Kim HR, Hong SZ, Fiorillo CD. T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input. Front Cell Neurosci 2015; 9:428. [PMID: 26582654 PMCID: PMC4631812 DOI: 10.3389/fncel.2015.00428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Although neurons within intact nervous systems can be classified as ‘sensory’ or ‘motor,’ it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of ‘predictive homeostasis’ to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced (‘H-type’) depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.
Collapse
Affiliation(s)
- Haram R Kim
- Department of Bio and Brain Engineering, KAIST Daejeon, South Korea
| | - Su Z Hong
- Department of Bio and Brain Engineering, KAIST Daejeon, South Korea
| | | |
Collapse
|
31
|
Prokic EJ, Weston C, Yamawaki N, Hall SD, Jones RS, Stanford IM, Ladds G, Woodhall GL. Cortical oscillatory dynamics and benzodiazepine-site modulation of tonic inhibition in fast spiking interneurons. Neuropharmacology 2015; 95:192-205. [DOI: 10.1016/j.neuropharm.2015.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
|
32
|
Wakefulness Is Governed by GABA and Histamine Cotransmission. Neuron 2015; 87:164-78. [PMID: 26094607 PMCID: PMC4509551 DOI: 10.1016/j.neuron.2015.06.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/29/2015] [Accepted: 05/27/2015] [Indexed: 12/17/2022]
Abstract
Histaminergic neurons in the tuberomammilary nucleus (TMN) of the hypothalamus form a widely projecting, wake-active network that sustains arousal. Yet most histaminergic neurons contain GABA. Selective siRNA knockdown of the vesicular GABA transporter (vgat, SLC32A1) in histaminergic neurons produced hyperactive mice with an exceptional amount of sustained wakefulness. Ablation of the vgat gene throughout the TMN further sharpened this phenotype. Optogenetic stimulation in the caudate-putamen and neocortex of “histaminergic” axonal projections from the TMN evoked tonic (extrasynaptic) GABAA receptor Cl− currents onto medium spiny neurons and pyramidal neurons. These currents were abolished following vgat gene removal from the TMN area. Thus wake-active histaminergic neurons generate a paracrine GABAergic signal that serves to provide a brake on overactivation from histamine, but could also increase the precision of neocortical processing. The long range of histamine-GABA axonal projections suggests that extrasynaptic inhibition will be coordinated over large neocortical and striatal areas. Histaminergic axons corelease GABA into the neocortex and striatum The released GABA produces slow tonic inhibition Reducing vgat expression in histaminergic neurons increases wakefulness Histamine-GABA axons will coordinate tonic inhibition over large cortical areas
Collapse
|
33
|
Zhong W, Cui N, Jin X, Oginsky MF, Wu Y, Zhang S, Bondy B, Johnson CM, Jiang C. Methyl CpG Binding Protein 2 Gene Disruption Augments Tonic Currents of γ-Aminobutyric Acid Receptors in Locus Coeruleus Neurons: IMPACT ON NEURONAL EXCITABILITY AND BREATHING. J Biol Chem 2015; 290:18400-11. [PMID: 25979331 DOI: 10.1074/jbc.m115.650465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 12/20/2022] Open
Abstract
People with Rett syndrome and mouse models show autonomic dysfunction involving the brain stem locus coeruleus (LC). Neurons in the LC of Mecp2-null mice are overly excited, likely resulting from a defect in neuronal intrinsic membrane properties and a deficiency in GABA synaptic inhibition. In addition to the synaptic GABA receptors, there is a group of GABAA receptors (GABAARs) that is located extrasynaptically and mediates tonic inhibition. Here we show evidence for augmentation of the extrasynaptic GABAARs in Mecp2-null mice. In brain slices, exposure of LC neurons to GABAAR agonists increased tonic currents that were blocked by GABAAR antagonists. With 10 μm GABA, the bicuculline-sensitive tonic currents were ∼4-fold larger in Mecp2-null LC neurons than in the WT. Single-cell PCR analysis showed that the δ subunit, the principal subunit of extrasynaptic GABAARs, was present in LC neurons. Expression levels of the δ subunit were ∼50% higher in Mecp2-null neurons than in the WT. Also increased in expression in Mecp2-null mice was another extrasynaptic GABAAR subunit, α6, by ∼4-fold. The δ subunit-selective agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]]benzamide activated the tonic GABAA currents in LC neurons and reduced neuronal excitability to a greater degree in Mecp2-null mice than in the WT. Consistent with these findings, in vivo application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride alleviated breathing abnormalities of conscious Mecp2-null mice. These results suggest that extrasynaptic GABAARs seem to be augmented with Mecp2 disruption, which may be a compensatory response to the deficiency in GABAergic synaptic inhibition and allows control of neuronal excitability and breathing abnormalities.
Collapse
Affiliation(s)
- Weiwei Zhong
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Ningren Cui
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Xin Jin
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Max F Oginsky
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Yang Wu
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Shuang Zhang
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Brian Bondy
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | | | - Chun Jiang
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
34
|
Lau BK, Karim S, Goodchild AK, Vaughan CW, Drew GM. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons. Br J Pharmacol 2014; 171:2803-13. [PMID: 24460753 DOI: 10.1111/bph.12602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 01/05/2014] [Accepted: 01/19/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. EXPERIMENTAL APPROACH Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. KEY RESULTS Menthol (150-750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn(2+) (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). CONCLUSIONS AND IMPLICATIONS These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA -mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA -related pharmacotherapies.
Collapse
Affiliation(s)
- Benjamin K Lau
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, The University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | | | | | |
Collapse
|
35
|
Hashemi M, Hutt A, Sleigh J. Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Front Syst Neurosci 2014; 8:232. [PMID: 25540612 PMCID: PMC4261904 DOI: 10.3389/fnsys.2014.00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
The role of extra-synaptic receptors in the regulation of excitation and inhibition in the brain has attracted increasing attention. Because activity in the extra-synaptic receptors plays a role in regulating the level of excitation and inhibition in the brain, they may be important in determining the level of consciousness. This paper reviews briefly the literature on extra-synaptic GABA and NMDA receptors and their affinity to anesthetic drugs. We propose a neural population model that illustrates how the effect of the anesthetic drug propofol on GABAergic extra-synaptic receptors results in changes in neural population activity and the electroencephalogram (EEG). Our results show that increased tonic inhibition in inhibitory cortical neurons cause a dramatic increase in the power of both δ− and α− bands. Conversely, the effects of increased tonic inhibition in cortical excitatory neurons and thalamic relay neurons have the opposite effect and decrease the power in these bands. The increased δ-activity is in accord with observed data for deepening propofol anesthesia; but is absolutely dependent on the inclusion of extrasynaptic (tonic) GABA action in the model.
Collapse
Affiliation(s)
- Meysam Hashemi
- INRIA CR Nancy - Grand Est, Team Neurosys Villers-les-Nancy, France
| | - Axel Hutt
- INRIA CR Nancy - Grand Est, Team Neurosys Villers-les-Nancy, France
| | - Jamie Sleigh
- Department of Anaesthesiology, Waikato Clinical School, University of Auckland Hamilton, New Zealand
| |
Collapse
|
36
|
Brown AR, Herd MB, Belelli D, Lambert JJ. Developmentally regulated neurosteroid synthesis enhances GABAergic neurotransmission in mouse thalamocortical neurones. J Physiol 2014; 593:267-84. [PMID: 25556800 DOI: 10.1113/jphysiol.2014.280263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS During neuronal development synaptic events mediated by GABAA receptors are progressively reduced in their duration, allowing for rapid and precise network function. Here we focused on ventrobasal thalamocortical neurones, which contribute to behaviourally relevant oscillations between thalamus and cortex. We demonstrate that the developmental decrease in the duration of inhibitory phasic events results predominantly from a precisely timed loss of locally produced neurosteroids, which act as positive allosteric modulators of the GABAA receptor. The mature thalamus retains the ability to synthesise neurosteroids, thus preserving the capacity to enhance both phasic and tonic inhibition, mediated by synaptic and extrasynaptic GABAA receptors, respectively, in physiological and pathophysiological scenarios associated with perturbed neurosteroid levels. Our data establish a potent, endogenous mechanism to locally regulate the GABAA receptor function and thereby influence thalamocortical activity. During brain development the duration of miniature inhibitory postsynaptic currents (mIPSCs) mediated by GABAA receptors (GABAA Rs) progressively reduces, to accommodate the temporal demands required for precise network activity. Conventionally, this synaptic plasticity results from GABAA R subunit reorganisation. In particular, in certain developing neurones synaptic α2-GABAA Rs are replaced by α1-GABAA Rs. However, in thalamocortical neurones of the mouse ventrobasal (VB) thalamus, the major alteration to mIPSC kinetics occurs on postnatal (P) day 10, some days prior to the GABAA R isoform change. Here, whole-cell voltage-clamp recordings from VB neurones of mouse thalamic slices revealed that early in postnatal development (P7-P8), the mIPSC duration is prolonged by local neurosteroids acting in a paracrine or autocrine manner to enhance GABAA R function. However, by P10, this neurosteroid 'tone' rapidly dissipates, thereby producing brief mIPSCs. This plasticity results from a lack of steroid substrate as pre-treatment of mature thalamic slices (P20-24) with the GABAA R-inactive precursor 5α-dihydroprogesterone (5α-DHP) resulted in markedly prolonged mIPSCs and a greatly enhanced tonic conductance, mediated by synaptic and extrasynaptic GABAA Rs, respectively. In summary, endogenous neurosteroids profoundly influence GABAergic neurotransmission in developing VB neurones and govern a transition from slow to fast phasic synaptic events. Furthermore, the retained capacity for steroidogenesis in the mature thalamus raises the prospect that certain physiological or pathophysiological conditions may trigger neurosteroid neosynthesis, thereby providing a local mechanism for fine-tuning neuronal excitability.
Collapse
Affiliation(s)
- Adam R Brown
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Dundee University, Dundee, DD1 9SY, UK
| | | | | | | |
Collapse
|
37
|
Rombo DM, Dias RB, Duarte ST, Ribeiro JA, Lamsa KP, Sebastião AM. Adenosine A1Receptor Suppresses Tonic GABAAReceptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons. Cereb Cortex 2014; 26:1081-95. [DOI: 10.1093/cercor/bhu288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
38
|
Kalappa BI, Brozoski TJ, Turner JG, Caspary DM. Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus. J Physiol 2014; 592:5065-78. [PMID: 25217380 DOI: 10.1113/jphysiol.2014.278572] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tinnitus is an auditory percept without an environmental acoustic correlate. Contemporary tinnitus models hypothesize tinnitus to be a consequence of maladaptive plasticity-induced disturbance of excitation-inhibition homeostasis, possibly convergent on medial geniculate body (MGB, auditory thalamus) and related neuronal networks. The MGB is an obligate acoustic relay in a unique position to gate auditory signals to higher-order auditory and limbic centres. Tinnitus-related maladaptive plastic changes of MGB-related neuronal networks may affect the gating function of MGB and enhance gain in central auditory and non-auditory neuronal networks, resulting in tinnitus. The present study examined the discharge properties of MGB neurons in the sound-exposure gap inhibition animal model of tinnitus. MGB single unit responses were obtained from awake unexposed controls and sound-exposed adult rats with behavioural evidence of tinnitus. MGB units in animals with tinnitus exhibited enhanced spontaneous firing, altered burst properties and increased rate-level function slope when driven by broadband noise and tones at the unit's characteristic frequency. Elevated patterns of neuronal activity and altered bursting showed a significant positive correlation with animals' tinnitus scores. Altered activity of MGB neurons revealed additional features of auditory system plasticity associated with tinnitus, which may provide a testable assay for future therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Bopanna I Kalappa
- Southern Illinois University School of Medicine Department of Pharmacology, Springfield, IL, USA
| | - Thomas J Brozoski
- Southern Illinois University School of Medicine Department of Surgery, Division of Otolaryngology, Springfield, IL, USA
| | - Jeremy G Turner
- Southern Illinois University School of Medicine Department of Surgery, Division of Otolaryngology, Springfield, IL, USA Department of Psychology-Illinois College, Jacksonville, IL, USA
| | - Donald M Caspary
- Southern Illinois University School of Medicine Department of Pharmacology, Springfield, IL, USA Southern Illinois University School of Medicine Department of Surgery, Division of Otolaryngology, Springfield, IL, USA
| |
Collapse
|
39
|
Hong SZ, Kim HR, Fiorillo CD. T-type calcium channels promote predictive homeostasis of input-output relations in thalamocortical neurons of lateral geniculate nucleus. Front Comput Neurosci 2014; 8:98. [PMID: 25221503 PMCID: PMC4147392 DOI: 10.3389/fncom.2014.00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/01/2014] [Indexed: 12/28/2022] Open
Abstract
A general theory views the function of all neurons as prediction, and one component of this theory is that of “predictive homeostasis” or “prediction error.” It is well established that sensory systems adapt so that neuronal output maintains sensitivity to sensory input, in accord with information theory. Predictive homeostasis applies the same principle at the cellular level, where the challenge is to maintain membrane excitability at the optimal homeostatic level so that spike generation is maximally sensitive to small gradations in synaptic drive. Negative feedback is a hallmark of homeostatic mechanisms, as exemplified by depolarization-activated potassium channels. In contrast, T-type calcium channels exhibit positive feedback that appears at odds with the theory. In thalamocortical neurons of lateral geniculate nucleus (LGN), T-type channels are capable of causing bursts of spikes with an all-or-none character in response to excitation from a hyperpolarized potential. This “burst mode” would partially uncouple visual input from spike output and reduce the information spikes convey about gradations in visual input. However, past observations of T-type-driven bursts may have resulted from unnaturally high membrane excitability. Here we have mimicked within rat brain slices the patterns of synaptic conductance that occur naturally during vision. In support of the theory of predictive homeostasis, we found that T-type channels restored excitability toward its homeostatic level during periods of hyperpolarization. Thus, activation of T-type channels allowed two retinal input spikes to cause one output spike on average, and we observed almost no instances in which output count exceeded input count (a “burst”). T-type calcium channels therefore help to maintain a single optimal mode of transmission rather than creating a second mode. More fundamentally our results support the general theory, which seeks to predict the properties of a neuron's ion channels and synapses given knowledge of natural patterns of synaptic input.
Collapse
Affiliation(s)
- Su Z Hong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Haram R Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Christopher D Fiorillo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| |
Collapse
|
40
|
Phasic, nonsynaptic GABA-A receptor-mediated inhibition entrains thalamocortical oscillations. J Neurosci 2014; 34:7137-47. [PMID: 24849349 DOI: 10.1523/jneurosci.4386-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA-A receptors (GABA-ARs) are typically expressed at synaptic or nonsynaptic sites mediating phasic and tonic inhibition, respectively. These two forms of inhibition conjointly control various network oscillations. To disentangle their roles in thalamocortical rhythms, we focally deleted synaptic, γ2 subunit-containing GABA-ARs in the thalamus using viral intervention in mice. After successful removal of γ2 subunit clusters, spontaneous and evoked GABAergic synaptic currents disappeared in thalamocortical cells when the presynaptic, reticular thalamic (nRT) neurons fired in tonic mode. However, when nRT cells fired in burst mode, slow phasic GABA-AR-mediated events persisted, indicating a dynamic, burst-specific recruitment of nonsynaptic GABA-ARs. In vivo, removal of synaptic GABA-ARs reduced the firing of individual thalamocortical cells but did not abolish slow oscillations or sleep spindles. We conclude that nonsynaptic GABA-ARs are recruited in a phasic manner specifically during burst firing of nRT cells and provide sufficient GABA-AR activation to control major thalamocortical oscillations.
Collapse
|
41
|
Interpreting EEG alpha activity. Neurosci Biobehav Rev 2014; 44:94-110. [DOI: 10.1016/j.neubiorev.2013.05.007] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/05/2013] [Accepted: 05/03/2013] [Indexed: 01/04/2023]
|
42
|
Lee V, Maguire J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits 2014; 8:3. [PMID: 24550784 PMCID: PMC3909947 DOI: 10.3389/fncir.2014.00003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/08/2014] [Indexed: 01/19/2023] Open
Abstract
The diversity of GABAA receptor (GABAAR) subunits and the numerous configurations during subunit assembly give rise to a variety of receptors with different functional properties. This heterogeneity results in variations in GABAergic conductances across numerous brain regions and cell types. Phasic inhibition is mediated by synaptically-localized receptors with a low affinity for GABA and results in a transient, rapidly desensitizing GABAergic conductance; whereas, tonic inhibition is mediated by extrasynaptic receptors with a high affinity for GABA and results in a persistent GABAergic conductance. The specific functions of tonic versus phasic GABAergic inhibition in different cell types and the impact on specific neural circuits are only beginning to be unraveled. Here we review the diversity in the magnitude of tonic GABAergic inhibition in various brain regions and cell types, and highlight the impact on neuronal excitability in different neuronal circuits. Further, we discuss the relevance of tonic inhibition in various physiological and pathological contexts as well as the potential of targeting these receptor subtypes for treatment of diseases, such as epilepsy.
Collapse
Affiliation(s)
- Vallent Lee
- Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
43
|
Crunelli V, Di Giovanni G. Monoamine modulation of tonic GABAA inhibition. Rev Neurosci 2014; 25:195-206. [DOI: 10.1515/revneuro-2013-0059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/26/2013] [Indexed: 11/15/2022]
|
44
|
Ye Z, McGee TP, Houston CM, Brickley SG. The contribution of δ subunit-containing GABAA receptors to phasic and tonic conductance changes in cerebellum, thalamus and neocortex. Front Neural Circuits 2013; 7:203. [PMID: 24391550 PMCID: PMC3870274 DOI: 10.3389/fncir.2013.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
We have made use of the δ subunit-selective allosteric modulator DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide) to assay the contribution of δ-GABAARs to tonic and phasic conductance changes in the cerebellum, thalamus and neocortex. In cerebellar granule cells, an enhancement of the tonic conductance was observed for DS2 and the orthosteric agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol). As expected, DS2 did not alter the properties of GABAA receptor-mediated inhibitory postsynaptic synaptic conductances (IPSCs) supporting a purely extrasynaptic role for δ-GABAARs in cerebellar granule cells. DS2 also enhanced the tonic conductance recorded from thalamic relay neurons of the visual thalamus with no alteration in IPSC properties. However, in addition to enhancing the tonic conductance DS2 also slowed the decay of IPSCs recorded from layer II/III neocortical neurons. A slowing of the IPSC decay also occurred in the presence of the voltage-gated sodium channel blocker TTX. Moreover, under conditions of reduced GABA release the ability of DS2 to enhance the tonic conductance was attenuated. These results indicate that δ-GABAARs can be activated following vesicular GABA release onto neocortical neurons and that the actions of DS2 on the tonic conductance may be influenced by the ambient GABA levels present in particular brain regions.
Collapse
Affiliation(s)
- Zhiwen Ye
- Biophysics Section, Department of Life Sciences, Imperial College London London, UK
| | - Thomas P McGee
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Catriona M Houston
- Biophysics Section, Department of Life Sciences, Imperial College London London, UK
| | - Stephen G Brickley
- Biophysics Section, Department of Life Sciences, Imperial College London London, UK
| |
Collapse
|
45
|
Bright DP, Smart TG. Methods for recording and measuring tonic GABAA receptor-mediated inhibition. Front Neural Circuits 2013; 7:193. [PMID: 24367296 PMCID: PMC3852068 DOI: 10.3389/fncir.2013.00193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023] Open
Abstract
Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current.
Collapse
Affiliation(s)
- Damian P Bright
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
46
|
Extrasynaptic GABA(A) receptors couple presynaptic activity to postsynaptic inhibition in the somatosensory thalamus. J Neurosci 2013; 33:14850-68. [PMID: 24027285 DOI: 10.1523/jneurosci.1174-13.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Thalamocortical circuits govern cognitive, sensorimotor, and sleep-related network processes, and generate pathological activities during absence epilepsy. Inhibitory control of thalamocortical (TC) relay neurons is partially mediated by GABA released from neurons of the thalamic reticular nucleus (nRT), acting predominantly via synaptic α1β2γ2 GABA(A) receptors (GABA(A)Rs). Importantly, TC neurons also express extrasynaptic α4β2δ GABA(A)Rs, although how they cooperate with synaptic GABA(A)Rs to influence relay cell inhibition, particularly during physiologically relevant nRT output, is unknown. To address this question, we performed paired whole-cell recordings from synaptically coupled nRT and TC neurons of the ventrobasal (VB) complex in brain slices derived from wild-type and extrasynaptic GABA(A)R-lacking, α4 "knock-out" (α4(0/0)) mice. We demonstrate that the duration of VB phasic inhibition generated in response to nRT burst firing is greatly reduced in α4(0/0) pairs, suggesting that action potential-dependent phasic inhibition is prolonged by recruitment of extrasynaptic GABA(A)Rs. Furthermore, the influence of nRT tonic firing frequency on VB holding current is also greatly reduced in α4(0/0) pairs, implying that the α4-GABA(A)R-mediated tonic conductance of relay neurons is dynamically influenced, in an activity-dependent manner, by nRT tonic firing intensity. Collectively, our data reveal that extrasynaptic GABA(A)Rs of the somatosensory thalamus do not merely provide static tonic inhibition but can also be dynamically engaged to couple presynaptic activity to postsynaptic excitability. Moreover, these processes are highly sensitive to the δ-selective allosteric modulator, DS2 and manipulation of GABA transport systems, revealing novel opportunities for therapeutic intervention in thalamocortical network disorders.
Collapse
|
47
|
Li ZX, Yu HM, Jiang KW. Tonic GABA inhibition in hippocampal dentate granule cells: its regulation and function in temporal lobe epilepsies. Acta Physiol (Oxf) 2013; 209:199-211. [PMID: 23865761 DOI: 10.1111/apha.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/06/2023]
Abstract
Both human and experimental evidence strongly supports the view of brain region- and cell-specific changes in tonic GABA inhibition in temporal lobe epilepsies (TLE). This 'tonic' form of signalling is not time-locked to presynaptic action potentials, which depends upon detection of ambient GABA by extrasynaptic GABAA receptors (GABAA Rs). Extrasynaptic GABAA Rs have distinct physiological and pharmacological features, including high GABA-binding affinity and low desensitization and a variety of the specific subunit combinations (α4δ-,α6δ-,α5γ-,ε-containing receptors). These features closely contribute to the function of tonic GABA current, which is preserved properly or increased in dentate gyrus in models of TLE, even in the face of a loss of synaptic inhibition and inhibitory interneurones. Markedly reduced tonic GABA inhibition may facilitate an episode of epilepsy, while persistent elevated tonic inhibition may contribute to the onset of spontaneous recurrent seizures. In dentate granule cells, tonic GABA inhibition is positively modulated by endogenous neurosteroids and other factors, which undergo changes related to hormonal status after TLE. Tonic inhibition regulates neuronal excitability through its effects on membrane potential by both offsetting the threshold and reducing the frequency of action potentials and input resistance. Therefore, extrasynaptic GABAA Rs are expected to be the most important pharmacological targets in TLE. It is likely that both elevate the ambient GABA concentration and potentiate the tonic currents, contributing to the antiepileptic effects.
Collapse
Affiliation(s)
- Z.-X. Li
- Department of Neurology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | - H.-M. Yu
- Department of Neonatology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | | |
Collapse
|
48
|
Bright DP, Smart TG. Protein kinase C regulates tonic GABA(A) receptor-mediated inhibition in the hippocampus and thalamus. Eur J Neurosci 2013; 38:3408-23. [PMID: 24102973 PMCID: PMC4165308 DOI: 10.1111/ejn.12352] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/24/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022]
Abstract
Tonic inhibition mediated by extrasynaptic GABAA receptors (GABAARs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAARs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABAAR-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABAAR activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABAARs, which represent a key extrasynaptic GABAAR isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABAARs. The inhibitory effects of PKC activation on α4β2δ GABAAR activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC-mediated phosphorylation can be an important physiological regulator of tonic GABAAR-mediated inhibition.
Collapse
Affiliation(s)
- Damian P Bright
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
49
|
GABAA receptor-mediated tonic depolarization in developing neural circuits. Mol Neurobiol 2013; 49:702-23. [PMID: 24022163 DOI: 10.1007/s12035-013-8548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
The activation of GABAA receptors (the type A receptors for γ-aminobutyric acid) produces two distinct forms of responses, phasic (i.e., transient) and tonic (i.e., persistent), that are mediated by synaptic and extrasynaptic GABAA receptors, respectively. During development, the intracellular chloride levels are high so activation of these receptors causes a net outward flow of anions that leads to neuronal depolarization rather than hyperpolarization. Therefore, in developing neural circuits, tonic activation of GABAA receptors may provide persistent depolarization. Recently, it became evident that GABAA receptor-mediated tonic depolarization alters the structure of patterned spontaneous activity, a feature that is common in developing neural circuits and is important for neural circuit refinement. Thus, this persistent depolarization may lead to a long-lasting increase in intracellular calcium level that modulates network properties via calcium-dependent signaling cascades. This article highlights the features of GABAA receptor-mediated tonic depolarization, summarizes the principles for discovery, reviews the current findings in diverse developing circuits, examines the underlying molecular mechanisms and modulation systems, and discusses their functional specializations for each developing neural circuit.
Collapse
|
50
|
Razik DS, Hawellek DJ, Antkowiak B, Hentschke H. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition. Front Neural Circuits 2013; 7:141. [PMID: 24062646 PMCID: PMC3769619 DOI: 10.3389/fncir.2013.00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/23/2013] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system, GABA transporters (GATs) very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM), reaching a level of 80% at 500–1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed toward an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.
Collapse
Affiliation(s)
- Daniel S Razik
- Experimental Anesthesiology Section, Department of Anesthesiology, University Hospital of Tübingen Tübingen, Germany
| | | | | | | |
Collapse
|