1
|
Zhu Z, Guan Y, Gao S, Guo F, Liu D, Zhang H. Impact of natural compounds on peroxisome proliferator-activated receptor: Molecular effects and its importance as a novel therapeutic target for neurological disorders. Eur J Med Chem 2025; 283:117170. [PMID: 39700874 DOI: 10.1016/j.ejmech.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Neurological disorders refer to the pathological changes of the nervous system involving multiple pathological mechanisms characterized by complex pathogenesis and poor prognosis. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor that is a member of the nuclear receptor superfamily. PPAR has attracted considerable attention in the past decades as one of the potential targets for the treatment of neurological disorders. Several in vivo and in vitro studies have confirmed that PPARs play a neuroprotective role by regulating multiple pathological mechanisms. Several selective PPAR ligands, such as thiazolidinediones and fibrates, have been approved as pharmacological agonists. Nevertheless, PPAR agonists cause a variety of adverse effects. Some natural PPAR agonists, including wogonin, bergenin, jujuboside A, asperosaponin VI, monascin, and magnolol, have been introduced as safe agonists, as evidenced by clinical or preclinical experiments. This review summarizes the effects of phytochemicals on PPAR receptors in treating various neurological disorders. Further, it summarizes recent advances in phytochemicals as potential, safe, and promising PPAR agonists to provide insights into understanding the PPAR-dependent and independent cascades mediated by phytochemicals. The phytochemicals exhibited potential for treating neurological disorders by inhibiting neuroinflammation, exerting anti-oxidative stress and anti-apoptotic activities, promoting autophagy, preventing demyelination, and reducing brain edema and neurotoxicity. This review presents data that will help clarify the potential mechanisms by which phytochemicals act as pharmacological agonists of PPARs in the treatment of neurological disorders. It also provides insights into developing new drugs, highlighting phytochemicals as potential, safe, and promising PPAR agonists. Additionally, this review aims to enhance understanding of both PPAR-dependent and independent pathways mediated by phytochemicals.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Dong Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Honglei Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
3
|
Tran J, Parekh S, Rockcole J, Wilson D, Parmar MS. Repurposing antidiabetic drugs for Alzheimer's disease: A review of preclinical and clinical evidence and overcoming challenges. Life Sci 2024; 355:123001. [PMID: 39173996 DOI: 10.1016/j.lfs.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Repurposing antidiabetic drugs for the treatment of Alzheimer's disease (AD) has emerged as a promising therapeutic strategy. This review examines the potential of repurposing antidiabetic drugs for AD treatment, focusing on preclinical evidence, clinical trials, and observational studies. In addition, the review aims to explore challenges and opportunities in repurposing antidiabetic drugs for AD, emphasizing the importance of well-designed clinical trials that consider patient selection criteria, refined outcome measures, adverse effects, and combination therapies to enhance therapeutic efficacy. Preclinical evidence suggests that glucagon-like peptide-1 (GLP-1) analogs, dipeptidyl peptidase-4 (DPP4) inhibitors, metformin, thiazolidinediones, and sodium-glucose co-transporter-2 (SGLT2) inhibitors exhibit neuroprotective effects in AD preclinical models. In preclinical studies, antidiabetic drugs have demonstrated neuroprotective effects by reducing amyloid beta (Aβ) plaques, tau hyperphosphorylation, neuroinflammation, and cognitive impairment. Antidiabetic drug classes, notably GLP-1 analogs and SGLT2 inhibitors, and a reduced risk of dementia in patients with diabetes mellitus. While the evidence for DPP4 inhibitors is mixed, some studies suggest a potential protective effect. On the other hand, alpha-glucosidase inhibitors (AGIs) and sulfonylureas may potentially increase the risk, especially in those experiencing recurrent hypoglycemic events. Repurposing antidiabetic drugs for AD is a promising therapeutic strategy, but challenges such as disease heterogeneity, limited biomarkers, and benefits versus risk evaluation need to be addressed. Ongoing clinical trials in mild cognitive impairment (MCI) and early AD patients without diabetes will be crucial in determining the clinical efficacy and safety of the antidiabetic drugs, paving the way for potential treatments for AD.
Collapse
Affiliation(s)
- Jacky Tran
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Sneh Parekh
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Julia Rockcole
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Danielle Wilson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
4
|
Ceyzériat K, Badina AM, Petrelli F, Montessuit S, Nicolaides A, Millet P, Savioz A, Martinou JC, Tournier BB. Inhibition of the mitochondrial pyruvate carrier in astrocytes reduces amyloid and tau accumulation in the 3xTgAD mouse model of Alzheimer's disease. Neurobiol Dis 2024; 200:106623. [PMID: 39103022 DOI: 10.1016/j.nbd.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's Disease (AD) is characterized by an accumulation of pathologic amyloid-beta (Aβ) and Tau proteins, neuroinflammation, metabolic changes and neuronal death. Reactive astrocytes participate in these pathophysiological processes by releasing pro-inflammatory molecules and recruiting the immune system, which further reinforces inflammation and contributes to neuronal death. Besides these neurotoxic effects, astrocytes can protect neurons by providing them with high amounts of lactate as energy fuel. Astrocytes rely on aerobic glycolysis to generate lactate by reducing pyruvate, the end product of glycolysis, through lactate dehydrogenase. Consequently, limited amounts of pyruvate enter astrocytic mitochondria through the Mitochondrial Pyruvate Carrier (MPC) to be oxidized. The MPC is a heterodimer composed of two subunits MPC1 and MPC2, the function of which in astrocytes has been poorly investigated. Here, we analyzed the role of the MPC in the pathogeny of AD, knowing that a reduction in overall glucose metabolism has been associated with a drop in cognitive performances and an accumulation of Aβ and Tau. We generated 3xTgAD mice in which MPC1 was knocked-out in astrocytes specifically and focused our study on the biochemical hallmarks of the disease, mainly Aβ and neurofibrillary tangle production. We show that inhibition of the MPC before the onset of the disease significantly reduces the quantity of Aβ and Tau aggregates in the brain of 3xTgAD mice, suggesting that acting on astrocytic glucose metabolism early on could hinder the progression of the disease.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- CIBM Center for Biomedical Imaging, Geneva, Switzerland; Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Aurélien M Badina
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Petrelli
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Sylvie Montessuit
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Alekos Nicolaides
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland
| | - Armand Savioz
- Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland.
| |
Collapse
|
5
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Kim H, Kim SJ. Upregulation of peroxisome proliferator-activated receptor γ with resorcinol alleviates reactive oxygen species generation and lipid accumulation in neuropathic lysosomal storage diseases. Int J Biochem Cell Biol 2024; 174:106631. [PMID: 39038642 DOI: 10.1016/j.biocel.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Neuropathic lysosomal storage diseases (NLSDs), including ceroid lipofuscinosis neuronal 3 (CLN3) disease and Gaucher disease type 2 (GD2), are typically present in adolescents; however, there are no approved therapies. CLN3 disease is the most common of the 13 types of neuronal ceroid lipofuscinosis, and Gaucher disease is the most common type of lysosomal storage disease. These NLSDs share oxidative stress and lysosomal dysfunction with Parkinson's disease. In this study, we used patient-derived cells (PDCs) and resorcinol to develop a therapeutic agent based on peroxisome proliferator-activated receptor γ (PPARγ) activation. PPARγ is a major regulator of autophagy and reactive oxygen species (ROS). Resorcinol, a polyphenolic compound, has been reported to exhibit PPARγ agonistic potential. Protein levels were analyzed by immunoblotting and immunofluorescence microscopy. Changes in cellular metabolism, including ROS levels, lipid droplet content, and lysosomal activity, were measured by flow cytometry. Resorcinol reduced ROS levels by suppressing hypoxia-inducible factor 1α levels in CLN3-PDCs. Resorcinol upregulated autophagy and reduced lipid accumulation in CLN3-PDCs; however, these effects were abolished by autophagy inhibitors. Resorcinol increased nuclear PPARγ levels in CLN3-PDCs, and PPARγ antagonists abolished the therapeutic effects of resorcinol. Moreover, Resorcinol upregulated nuclear PPARγ levels and lysosomal activity in GD2-PDCs, and reduced lipid accumulation and ROS levels. In summary, resorcinol alleviated the shared pathogenesis of CLN3 disease and GD2 through PPARγ upregulation. These findings suggest that resorcinol is a potential therapeutic candidate for alleviating NLSD progression.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, South Korea.
| |
Collapse
|
7
|
Sahelijo N, Rajagopalan P, Qian L, Rahman R, Priyadarshi D, Goldstein D, Thomopoulos SI, Bennett DA, Farrer LA, Stein TD, Shen L, Huang H, Nho K, Andrew SJ, Davatzikos C, Thompson PM, Tcw J, Jun GR. Brain Cell-based Genetic Subtyping and Drug Repositioning for Alzheimer Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.21.24309255. [PMID: 38947056 PMCID: PMC11213108 DOI: 10.1101/2024.06.21.24309255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Alzheimer's Disease (AD) is characterized by its complex and heterogeneous etiology and gradual progression, leading to high drug failure rates in late-stage clinical trials. In order to better stratify individuals at risk for AD and discern potential therapeutic targets we employed a novel procedure utilizing cell-based co-regulated gene networks and polygenic risk scores (cbPRSs). After defining genetic subtypes using extremes of cbPRS distributions, we evaluated correlations of the genetic subtypes with previously defined AD subtypes defined on the basis of domain-specific cognitive functioning and neuroimaging biomarkers. Employing a PageRank algorithm, we identified priority gene targets for the genetic subtypes. Pathway analysis of priority genes demonstrated associations with neurodegeneration and suggested candidate drugs currently utilized in diabetes, hypertension, and epilepsy for repositioning in AD. Experimental validation utilizing human induced pluripotent stem cell (hiPSC)-derived astrocytes demonstrated the modifying effects of estradiol, levetiracetam, and pioglitazone on expression of APOE and complement C4 genes, suggesting potential repositioning for AD.
Collapse
|
8
|
Wang L, Qu F, Yu X, Yang S, Zhao B, Chen Y, Li P, Zhang Z, Zhang J, Han X, Wei D. Cortical lipid metabolic pathway alteration of early Alzheimer's disease and candidate drugs screen. Eur J Med Res 2024; 29:199. [PMID: 38528586 DOI: 10.1186/s40001-024-01730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Lipid metabolism changes occur in early Alzheimer's disease (AD) patients. Yet little is known about metabolic gene changes in early AD cortex. METHODS The lipid metabolic genes selected from two datasets (GSE39420 and GSE118553) were analyzed with enrichment analysis. Protein-protein interaction network construction and correlation analyses were used to screen core genes. Literature analysis and molecular docking were applied to explore potential therapeutic drugs. RESULTS 60 lipid metabolic genes differentially expressed in early AD patients' cortex were screened. Bioinformatics analyses revealed that up-regulated genes were mainly focused on mitochondrial fatty acid oxidation and mediating the activation of long-chain fatty acids, phosphoproteins, and cholesterol metabolism. Down-regulated genes were mainly focused on lipid transport, carboxylic acid metabolic process, and neuron apoptotic process. Literature reviews and molecular docking results indicated that ACSL1, ACSBG2, ACAA2, FABP3, ALDH5A1, and FFAR4 were core targets for lipid metabolism disorder and had a high binding affinity with compounds including adenosine phosphate, oxidized Photinus luciferin, BMS-488043, and candidate therapeutic drugs especially bisphenol A, benzo(a)pyrene, ethinyl estradiol. CONCLUSIONS AD cortical lipid metabolism disorder was associated with the dysregulation of the PPAR signaling pathway, glycerophospholipid metabolism, adipocytokine signaling pathway, fatty acid biosynthesis, fatty acid degradation, ferroptosis, biosynthesis of unsaturated fatty acids, and fatty acid elongation. Candidate drugs including bisphenol A, benzo(a)pyrene, ethinyl estradiol, and active compounds including adenosine phosphate, oxidized Photinus luciferin, and BMS-488043 have potential therapeutic effects on cortical lipid metabolism disorder of early AD.
Collapse
Affiliation(s)
- Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fengxue Qu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xueyun Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Binbin Zhao
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Pengbo Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Junying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| | - Xuejie Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Lerose V, Ponticelli M, Benedetto N, Carlucci V, Lela L, Tzvetkov NT, Milella L. Withania somnifera (L.) Dunal, a Potential Source of Phytochemicals for Treating Neurodegenerative Diseases: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:771. [PMID: 38592845 PMCID: PMC10976061 DOI: 10.3390/plants13060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Withania somnifera (L.) Dunal is a medicinal plant belonging to the traditional Indian medical system, showing various therapeutic effects such as anti-cancer, anti-inflammatory, anti-microbial, anti-diabetic, and hepatoprotective activity. Of great interest is W. somnifera's potential beneficial effect against neurodegenerative diseases, since the authorized medicinal treatments can only delay disease progression and provide symptomatic relief and are not without side effects. A systematic search of PubMed and Scopus databases was performed to identify preclinical and clinical studies focusing on the applications of W. somnifera in preventing neurodegenerative diseases. Only English articles and those containing the keywords (Withania somnifera AND "neurodegenerative diseases", "neuroprotective effects", "Huntington", "Parkinson", "Alzheimer", "Amyotrophic Lateral Sclerosis", "neurological disorders") in the title or abstract were considered. Reviews, editorials, letters, meta-analyses, conference papers, short surveys, and book chapters were not considered. Selected articles were grouped by pathologies and summarized, considering the mechanism of action. The quality assessment and the risk of bias were performed using the Cochrane Handbook for Systematic Reviews of Interventions checklist. This review uses a systematic approach to summarize the results from 60 investigations to highlight the potential role of W. somnifera and its specialized metabolites in treating or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Lerose
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Nadia Benedetto
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Vittorio Carlucci
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Ludovica Lela
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.); (N.B.); (V.C.); (L.L.)
| |
Collapse
|
10
|
Zhao T, Jia J. Polygalacic acid attenuates cognitive impairment by regulating inflammation through PPARγ/NF-κB signaling pathway. CNS Neurosci Ther 2024; 30:e14581. [PMID: 38421141 PMCID: PMC10851321 DOI: 10.1111/cns.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS We aimed to explore the role and molecular mechanism of polygalacic acid (PA) extracted from traditional Chinese medicine Polygala tenuifolia in the treatment of Alzheimer's disease (AD). METHODS The network pharmacology analysis was used to predict the potential targets and pathways of PA. Molecular docking was applied to analyze the combination between PA and core targets. Aβ42 oligomer-induced AD mice model and microglia were used to detect the effect of PA on the release of pro-inflammatory mediators and its further mechanism. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of PA on activating microglia-mediated neuronal apoptosis. RESULTS We predict that PA might regulate inflammation by targeting PPARγ-mediated pathways by using network pharmacology. In vivo study, PA could attenuate cognitive deficits and inhibit the expression levels of inflammation-related factors. In vitro study, PA can also decrease the production of activated microglia-mediated inflammatory cytokines and reduce the apoptosis of N2a neuronal cells. PPARγ inhibitor GW9662 inversed the neuroprotective effect of PA. Both in vivo and in vitro studies showed PA might attenuate the inflammation through the PPARγ/NF-κB pathway. CONCLUSIONS PA is expected to provide a valuable candidate for new drug development for AD in the future.
Collapse
Affiliation(s)
- Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's DiseaseBeijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative Diseases, Ministry of EducationBeijingChina
| |
Collapse
|
11
|
Hsu C, Pan Y, Zheng Y, Lo RY, Yang F. Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARγ signaling pathways. CNS Neurosci Ther 2023; 29:4113-4123. [PMID: 37401041 PMCID: PMC10651950 DOI: 10.1111/cns.14333] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Activated microglia can be polarized to the pro-inflammatory M1 phenotype and the anti-inflammatory M2 phenotype. Low-intensity pulsed ultrasound (LIPUS) can attenuate pro-inflammatory responses in activated microglia. OBJECTIVE This study aimed to investigate the effects of LIPUS on M1/M2 polarization of microglial cells and the regulatory mechanisms associated with signaling pathways. METHODS BV-2 microglial cells were stimulated by lipopolysaccharide (LPS) to an M1 phenotype or by interleukin-4 (IL-4) to an M2 phenotype. Some microglial cells were exposed to LIPUS, while others were not. M1/M2 marker mRNA and protein expression were measured using real-time polymerase chain reaction and western blot, respectively. Immunofluorescence staining was performed to determine inducible nitric oxide synthase (iNOS)-/arginase-1 (Arg-1)- and CD68-/CD206-positive cells. RESULTS LIPUS treatment significantly attenuated LPS-induced increases in inflammatory markers (iNOS, tumor necrosis factor-α, interleukin-1β, and interleukin-6) as well as the expression of cell surface markers (CD86 and CD68) of M1-polarized microglia. In contrast, LIPUS treatment significantly enhanced the expression of M2-related markers (Arg-1, IL-10, and Ym1) and membrane protein (CD206). LIPUS treatment prevented M1 polarization of microglia and enhanced or sustained M2 polarization by regulating M1/M2 polarization through the signal transducer and activator of transcription 1/STAT6/peroxisome proliferator-activated receptor gamma pathways. CONCLUSIONS Our findings suggest that LIPUS inhibits microglial polarization and switches microglia from the M1 to the M2 phenotype.
Collapse
Affiliation(s)
- Chin‐Hung Hsu
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Ju Pan
- Department of PsychiatryFar Eastern Memorial HospitalNew TaipeiTaiwan
- Department of Chemical Engineering and Materials ScienceYuan Ze UniversityTaoyuanTaiwan
| | - Yin‐Ting Zheng
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Raymond Y. Lo
- Department of NeurologyBuddhist Tzu Chi General Hospital and Tzu Chi UniversityHualienTaiwan
| | - Feng‐Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
12
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
13
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
14
|
Karati D, Mukherjee S, Roy S. Molecular and Structural Insight into Adenosine A 2A Receptor in Neurodegenerative Disorders: A Significant Target for Efficient Treatment Approach. Mol Neurobiol 2023; 60:5987-6000. [PMID: 37391647 DOI: 10.1007/s12035-023-03441-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/10/2023] [Indexed: 07/02/2023]
Abstract
All biological tissues and bodily fluids include the autacoid adenosine. The P1 class of purinergic receptors includes adenosine receptors. Four distinct G-protein-coupled receptors on the cellular membrane mediate the effects of adenosine, whose cytoplasmic content is regulated by producing/degrading enzymes and nucleoside transporters. A2A receptor has received a great deal of attention in recent years because it has a wide range of potential therapeutic uses. A2B and, more significantly, A2A receptors regulate numerous physiological mechanisms in the central nervous system (CNS). The inferior targetability of A2B receptors towards adenosine points that they might portray a promising medicinal target since they are triggered only under pharmacological circumstances (when adenosine levels rise up to micromolar concentrations). The accessibility of specific ligands for A2B receptors would permit the exploration of such a theory. A2A receptors mediate both potentially neurotoxic and neuroprotective actions. Hence, it is debatable to what extent they play a role in neurodegenerative illnesses. However, A2A receptor blockers have demonstrated clear antiparkinsonian consequences, and a significant attraction exists in the role of A2A receptors in other neurodegenerative disorders. Amyloid peptide extracellular accumulation and tau hyperphosphorylation are the pathogenic components of AD that lead to neuronal cell death, cognitive impairment, and memory loss. Interestingly, in vitro and in vivo research has shown that A2A adenosine receptor antagonists may block each of these clinical symptoms, offering a crucial new approach to combat a condition for which, regrettably, only symptomatic medications are currently available. At least two requirements must be met to determine whether such receptors are a target for diseases of the CNS: a complete understanding of the mechanisms governing A2A-dependent processes and the availability of ligands that can distinguish between the various receptor populations. This review concisely summarises the biological effects mediated by A2A adenosine receptors in neurodegenerative disorders and discusses the chemical characteristics of A2A adenosine receptor antagonists undergoing clinical trials. Selective A2A receptor blocker against neurodegenerative disorders.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
15
|
Wu Y, Dong JH, Dai YF, Zhu MZ, Wang MY, Zhang Y, Pan YD, Yuan XR, Guo ZX, Wang CX, Li YQ, Zhu XH. Hepatic soluble epoxide hydrolase activity regulates cerebral Aβ metabolism and the pathogenesis of Alzheimer's disease in mice. Neuron 2023; 111:2847-2862.e10. [PMID: 37402372 DOI: 10.1016/j.neuron.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Alzheimer's disease (AD) is caused by a complex interaction between genetic and environmental factors. However, how the role of peripheral organ changes in response to environmental stimuli during aging in AD pathogenesis remains unknown. Hepatic soluble epoxide hydrolase (sEH) activity increases with age. Hepatic sEH manipulation bidirectionally attenuates brain amyloid-β (Aβ) burden, tauopathy, and cognitive deficits in AD mouse models. Moreover, hepatic sEH manipulation bidirectionally regulates the plasma level of 14,15-epoxyeicosatrienoic acid (-EET), which rapidly crosses the blood-brain barrier and modulates brain Aβ metabolism through multiple pathways. A balance between the brain levels of 14,15-EET and Aβ is essential for preventing Aβ deposition. In AD models, 14,15-EET infusion mimicked the neuroprotective effects of hepatic sEH ablation at biological and behavioral levels. These results highlight the liver's key role in AD pathology, and targeting the liver-brain axis in response to environmental stimuli may constitute a promising therapeutic approach for AD prevention.
Collapse
Affiliation(s)
- Yu Wu
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Jing-Hua Dong
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yong-Feng Dai
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Meng-Yao Wang
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yuan Zhang
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yi-Da Pan
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xin-Rui Yuan
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Zhi-Xin Guo
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Chen-Xi Wang
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan-Qing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou 510330, China
| | - Xin-Hong Zhu
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
17
|
Goodarzi G, Tehrani SS, Fana SE, Moradi-Sardareh H, Panahi G, Maniati M, Meshkani R. Crosstalk between Alzheimer's disease and diabetes: a focus on anti-diabetic drugs. Metab Brain Dis 2023; 38:1769-1800. [PMID: 37335453 DOI: 10.1007/s11011-023-01225-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023]
Abstract
Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM) are two of the most common age-related diseases. There is accumulating evidence of an overlap in the pathophysiological mechanisms of these two diseases. Studies have demonstrated insulin pathway alternation may interact with amyloid-β protein deposition and tau protein phosphorylation, two essential factors in AD. So attention to the use of anti-diabetic drugs in AD treatment has increased in recent years. In vitro, in vivo, and clinical studies have evaluated possible neuroprotective effects of anti-diabetic different medicines in AD, with some promising results. Here we review the evidence on the therapeutic potential of insulin, metformin, Glucagon-like peptide-1 receptor agonist (GLP1R), thiazolidinediones (TZDs), Dipeptidyl Peptidase IV (DPP IV) Inhibitors, Sulfonylureas, Sodium-glucose Cotransporter-2 (SGLT2) Inhibitors, Alpha-glucosidase inhibitors, and Amylin analog against AD. Given that many questions remain unanswered, further studies are required to confirm the positive effects of anti-diabetic drugs in AD treatment. So to date, no particular anti-diabetic drugs can be recommended to treat AD.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Kunze LH, Ruch F, Biechele G, Eckenweber F, Wind-Mark K, Dinkel L, Feyen P, Bartenstein P, Ziegler S, Paeger L, Tahirovic S, Herms J, Brendel M. Long-Term Pioglitazone Treatment Has No Significant Impact on Microglial Activation and Tau Pathology in P301S Mice. Int J Mol Sci 2023; 24:10106. [PMID: 37373253 DOI: 10.3390/ijms241210106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone. Previous studies have shown significant immunomodulation in amyloid-β (Aβ) mouse models by pioglitazone. In this study, we performed long-term treatment over six months in P301S mice as a tauopathy model with either pioglitazone or placebo. We performed serial 18 kDa translocator protein positron-emission-tomography (TSPO-PET) imaging and terminal immunohistochemistry to assess microglial activation during treatment. Tau pathology was quantified via immunohistochemistry at the end of the study. Long-term pioglitazone treatment had no significant effect on TSPO-PET, immunohistochemistry read-outs of microglial activation, or tau pathology levels in P301S mice. Thus, we conclude that pioglitazone modifies the time course of Aβ-dependent microglial activation, but does not significantly modulate microglial activation in response to tau pathology.
Collapse
Affiliation(s)
- Lea Helena Kunze
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - François Ruch
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Gloria Biechele
- Department of Radiology, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Lina Dinkel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Paul Feyen
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Neuropathology and Prion Research, LMU Munich, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University of Munich, 81377 Munich, Germany
| |
Collapse
|
19
|
Jung MJ, Kim N, Jeon SH, Gee MS, Kim JW, Lee JK. Eugenol relieves the pathological manifestations of Alzheimer's disease in 5×FAD mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154930. [PMID: 37348246 DOI: 10.1016/j.phymed.2023.154930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and excessive neuroinflammation, resulting in neuronal cell death and cognitive impairments. Eugenol, a phenylpropene, is the main component of Syzygium aromaticum L. (Myrtaceae) and has multiple therapeutic effects, including neuroprotective and anti-inflammatory effects, through multimodal mechanisms. PURPOSE We aimed to investigate the effect of eugenol on AD pathologies using a 5× familiar AD (5×FAD) mouse model. METHODS Eight-month-old 5×FAD and wild-type mice were administered with eugenol (10 or 30 mg/kg/day, p.o) for 2 months. Y-maze and Morris water maze tests were performed to assess the cognitive function of mice. After the behavioral test, molecular analysis was conducted to investigate the therapeutic mechanism of eugenol. RESULTS Our findings indicate that eugenol treatment effectively mitigated cognitive impairments in 5×FAD mice. This beneficial effect was associated with a decrease in AD pathologies, including neuronal cell loss and Aβ deposition. Specifically, eugenol inhibited necroptosis activation and increased microglial phagocytosis, which were the underlying mechanisms for the observed reductions in neuronal cell loss and Aβ deposition, respectively. CONCLUSION Overall, our data suggest that eugenol would be a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Min-Ji Jung
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Namkwon Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Woon Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Araki W. Aβ Oligomer Toxicity-Reducing Therapy for the Prevention of Alzheimer's Disease: Importance of the Nrf2 and PPARγ Pathways. Cells 2023; 12:1386. [PMID: 37408220 DOI: 10.3390/cells12101386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Recent studies have revealed that soluble amyloid-β oligomers (AβOs) play a pathogenetic role in Alzheimer's disease (AD). Indeed, AβOs induce neurotoxic and synaptotoxic effects and are also critically involved in neuroinflammation. Oxidative stress appears to be a crucial event underlying these pathological effects of AβOs. From a therapeutic standpoint, new drugs for AD designed to remove AβOs or inhibit the formation of AβOs are currently being developed. However, it is also worth considering strategies for preventing AβO toxicity itself. In particular, small molecules with AβO toxicity-reducing activity have potential as drug candidates. Among such small molecules, those that can enhance Nrf2 and/or PPARγ activity can effectively inhibit AβO toxicity. In this review, I summarize studies on the small molecules that counteract AβO toxicity and are capable of activating Nrf2 and/or PPARγ. I also discuss how these interrelated pathways are involved in the mechanisms by which these small molecules prevent AβO-induced neurotoxicity and neuroinflammation. I propose that AβO toxicity-reducing therapy, designated ATR-T, could be a beneficial, complementary strategy for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Wataru Araki
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
- Memory Clinic Ochanomizu, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
21
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
22
|
PPARs and Their Neuroprotective Effects in Parkinson's Disease: A Novel Therapeutic Approach in α-Synucleinopathy? Int J Mol Sci 2023; 24:ijms24043264. [PMID: 36834679 PMCID: PMC9963164 DOI: 10.3390/ijms24043264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.
Collapse
|
23
|
Abdelhafiz AH. Effects of hypoglycaemic therapy on frailty: a multi-dimensional perspective. Expert Rev Endocrinol Metab 2023; 18:53-65. [PMID: 36650694 DOI: 10.1080/17446651.2023.2168644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The prevalence of diabetes is increasing in older people. With increasing age, frailty emerges as a new complication leading to disability. Frailty does not only include physical dysfunction but also involves negative impact on cognition and mood. Triad of impairments (TOI) is a new concept that includes physical frailty, dementia and depression to reflect the wider spectrum of frailty. AREAS COVERED Little is known about effects of hypoglycaemic agents on frailty syndrome. A literature search was performed on studies, which reported effects of hypoglycaemic agents on the component of the TOI. EXPERT OPINION It appears that most hypoglycaemic agents have some effects on frailty, although the results of clinical studies are inconsistent. Metformin seems to have a consistent and a positive effect on physical frailty. Its effects on cognitive function, however, are inconclusive but tend to be positive. Metformin appeared to improve depressive symptoms. Other agents such as incretins, thiazolidinediones, and sodium glucose transporter-2 inhibitors have some positive effects on cognition and depression. Sulfonylureas, glinides, or insulin have either negative or neutral effects on TOI components. The negative effects of insulin could be partially explained by the negative psychological factors and the frequent episodes of hypoglycemia associated with such therapy.
Collapse
Affiliation(s)
- Ahmed H Abdelhafiz
- Department of Geriatric Medicine, Rotherham General Hospital, Moorgate Road, Rotherham, UK
| |
Collapse
|
24
|
Yang J, Shi X, Wang Y, Ma M, Liu H, Wang J, Xu Z. Multi-Target Neuroprotection of Thiazolidinediones on Alzheimer's Disease via Neuroinflammation and Ferroptosis. J Alzheimers Dis 2023; 96:927-945. [PMID: 37927258 PMCID: PMC10741341 DOI: 10.3233/jad-230593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in older age. The prevalence of AD is growing worldwide, causing a tremendous burden to societies and families. Due to the complexity of its pathogenesis, the current treatment of AD is not satisfactory, and drugs acting on a single target may not prevent AD progression. This review summarizes the multi-target pharmacological effects of thiazolidinediones (TZDs) on AD. TZDs act as peroxisome proliferator-activated receptor gamma (PPARγ) agonists and long-chain acyl-CoA synthetase family member 4 (ACSL4) inhibitors. TZDs ameliorated neuroinflammation and ferroptosis in preclinical models of AD. Here, we discussed recent findings from clinical trials of pioglitazone in the treatment of AD, ischemic stroke, and atherosclerosis. We also dissected the major limitations in the clinical application of pioglitazone and explained the potential benefit of pioglitazone in AD. We recommend the use of pioglitazone to prevent cognitive decline and lower AD risk in a specific group of patients.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingying Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Gomes-Copeland KKP, Meireles CG, Gomes JVD, Torres AG, Sinoti SBP, Fonseca-Bazzo YM, Magalhães PDO, Fagg CW, Simeoni LA, Silveira D. Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) Ethanol Extract Activity on Acetylcholinesterase and PPAR-α/γ Receptors. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223179. [PMID: 36432907 PMCID: PMC9693985 DOI: 10.3390/plants11223179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) is an endemic plant species from the Brazilian savannah with biological and pharmacological potential. This study evaluated the effects of ethanol extract from H. stapfianum leaves on acetylcholinesterase enzyme activity and the action on nuclear receptors PPAR-α and PPAR-γ. A gene reporter assay was performed to assess the PPAR agonist or antagonist activity with a non-toxic dose of H. stapfianum ethanol extract. The antioxidant capacity was investigated using DPPH• scavenging and fosfomolybdenium reduction assays. The identification of H. stapfianum's chemical composition was performed by gas chromatography-mass spectrometry (GC-MS) and HPLC. The ethanol extract of H. stapfianum activated PPAR-α and PPAR-γ selectively, inhibited the acetylcholinesterase enzyme, and presented antioxidant activity in an in vitro assay. The major compounds identified were lycorine, 7-demethoxy-9-O-methylhostasine, and rutin. Therefore, H. stapfianum is a potential source of drugs for Alzheimer's disease due to its ability to activate PPAR receptors, acetylcholinesterase inhibition activity, and antioxidant attributes.
Collapse
Affiliation(s)
- Kicia Karinne Pereira Gomes-Copeland
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
- Correspondence: (K.K.P.G.-C.); (D.S.); Tel.: +55-61-31071939 (D.S.)
| | - Cinthia Gabriel Meireles
- Laboratory of Molecular Pharmacology, Health Sciences Faculty, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - João Victor Dutra Gomes
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Amanda Gomes Torres
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Simone Batista Pires Sinoti
- Laboratory of Molecular Pharmacology, Health Sciences Faculty, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Yris Maria Fonseca-Bazzo
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Pérola de Oliveira Magalhães
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | | | - Luiz Alberto Simeoni
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Dâmaris Silveira
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
- Correspondence: (K.K.P.G.-C.); (D.S.); Tel.: +55-61-31071939 (D.S.)
| |
Collapse
|
26
|
Xu L, Li L, Pan C, Song J, Zhang C, Wu X, Hu F, Liu X, Zhang Z, Zhang Z. Erythropoietin signaling in peripheral macrophages is required for systemic β-amyloid clearance. EMBO J 2022; 41:e111038. [PMID: 36215698 PMCID: PMC9670197 DOI: 10.15252/embj.2022111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
Impaired clearance of beta-amyloid (Aβ) is a primary cause of sporadic Alzheimer's disease (AD). Aβ clearance in the periphery contributes to reducing brain Aβ levels and preventing Alzheimer's disease pathogenesis. We show here that erythropoietin (EPO) increases phagocytic activity, levels of Aβ-degrading enzymes, and Aβ clearance in peripheral macrophages via PPARγ. Erythropoietin is also shown to suppress Aβ-induced inflammatory responses. Deletion of EPO receptor in peripheral macrophages leads to increased peripheral and brain Aβ levels and exacerbates Alzheimer's-associated brain pathologies and behavioral deficits in AD-model mice. Moreover, erythropoietin signaling is impaired in peripheral macrophages of old AD-model mice. Exogenous erythropoietin normalizes impaired EPO signaling and dysregulated functions of peripheral macrophages in old AD-model mice, promotes systemic Aβ clearance, and alleviates disease progression. Erythropoietin treatment may represent a potential therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Lu Xu
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
- Department of Neurology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Lei Li
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Cai‐Long Pan
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Jing‐Jing Song
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Chen‐Yang Zhang
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Xiang‐Hui Wu
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Fan Hu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xue Liu
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Zhiren Zhang
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Zhi‐Yuan Zhang
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
- Department of Neurology, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| |
Collapse
|
27
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
28
|
Protective Mechanisms of Nootropic Herb Shankhpushpi ( Convolvulus pluricaulis) against Dementia: Network Pharmacology and Computational Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1015310. [PMID: 36225186 PMCID: PMC9550454 DOI: 10.1155/2022/1015310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However, precise mechanisms underlying the neuropharmacological effects of CP remain unclear. The study, therefore, aimed at deciphering the molecular basis of neuroprotective effects of CP phytochemicals against the pathology of dementia disorders such as Alzheimer's (AD) and Parkinson's (PD) disease. The study exploited bioinformatics tools and resources, such as Cytoscape, DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution, metabolism, and excretion) analysis predicted a total of five druglike phytochemicals from CP constituents, namely, scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase (NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth, survival, and activity. Docking simulation further confirmed interaction patterns and binding affinity of selected CP compounds with those molecular targets. Notably, scopoletin showed the highest binding affinity with PTGS1, NOS3, PPARG, ACHE, MAOA, MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1. The findings indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP which might account for its memory enhancement and neuroprotective effects and that target proteins such as PTGS1, PTGS2, NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.
Collapse
|
29
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Asher S, Priefer R. Alzheimer's disease failed clinical trials. Life Sci 2022; 306:120861. [PMID: 35932841 DOI: 10.1016/j.lfs.2022.120861] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease typically presenting with symptoms of memory loss and cognitive decline. Existing theories for the causation of this focuses on amyloid beta plaques and neurofibrillary tau tangles. Most US Food and Drug Administration approved therapies for Alzheimer's disease target cognitive function. A multitude of clinical trials, with a variety of different targets have been conducted over the decades which have focused on the two clinical signs, with the only success being the controversial 2021 approval of an IgG1 anti-Ab antibody targeting the clearance of the Aβ plaques. Presented is a review of all previously failed Alzheimer's disease clinical trials and the rationale for their failures.
Collapse
Affiliation(s)
- Shreya Asher
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States of America
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States of America.
| |
Collapse
|
31
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomed Pharmacother 2022; 153:113412. [DOI: 10.1016/j.biopha.2022.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
|
32
|
Zhang Y, Guo K, Zhang P, Zhang M, Li X, Zhou S, Sun H, Wang W, Wang H, Hu Y. Exploring the mechanism of YangXue QingNao Wan based on network pharmacology in the treatment of Alzheimer’s disease. Front Genet 2022; 13:942203. [PMID: 36105078 PMCID: PMC9465410 DOI: 10.3389/fgene.2022.942203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
It is clinical reported that YangXue QingNao Wan (YXQNW) combined with donepezil can significantly improve the cognitive function of AD patients. However, the mechanism is not clear. A network pharmacology approach was employed to predict the protein targets and affected pathways of YXQNW in the treatment of AD. Based on random walk evaluation, the correlation between YXQNW and AD was calculated; while a variety of AD clinical approved Western drugs were compared. The targets of YXQNW were enriched and analyzed by using the TSEA platform and MetaCore. We proved that the overall correlation between YXQNW and AD is equivalent to clinical Western drugs, but the mechanism of action is very different. Firstly, YXQNW may promote cerebral blood flow velocity by regulating platelet aggregation and the vasoconstriction/relaxation signal pathway, which has been verified by clinical meta-analysis. Secondly, YXQNW may promote Aβ degradation in the liver by modulating the abnormal glucose and lipid metabolisms via the adiponectin-dependent pathway, RXR/PPAR-dependent lipid metabolism signal pathway, and fatty acid synthase activity signal pathway. We also verified whether YXQNW indeed promoted Aβ degradation in hepatic stellate cells. This work provides a novel scientific basis for the mechanism of YXQNW in the treatment of AD.
Collapse
Affiliation(s)
- Yuying Zhang
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Kaimin Guo
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Pengfei Zhang
- Tianjin Pharmaceutical and Cosmetic Evaluation and Inspection Center, Tianjin, China
| | | | - Xiaoqiang Li
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Shuiping Zhou
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co. Ltd., Tianjin, China
- Tasly Pharmaceutical Group Co. Ltd., Tianjin, China
| | - He Sun
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co. Ltd., Tianjin, China
- Tasly Pharmaceutical Group Co. Ltd., Tianjin, China
| | - Wenjia Wang
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Key Laboratory of Bioactive Materials Ministry of Education, School of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Hui Wang, ; Yunhui Hu,
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co. Ltd., Shenzhen, China
- *Correspondence: Hui Wang, ; Yunhui Hu,
| |
Collapse
|
33
|
Yousefizadeh A, Piccioni G, Saidi A, Triaca V, Mango D, Nisticò R. Pharmacological targeting of microglia dynamics in Alzheimer's disease: Preclinical and clinical evidence. Pharmacol Res 2022; 184:106404. [PMID: 35988869 DOI: 10.1016/j.phrs.2022.106404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Numerous clinical trials of anti-amyloid agents for Alzheimer's disease (AD) were so far unsuccessful thereby challenging the validity of the amyloid hypothesis. This lack of progress has encouraged researchers to investigate alternative mechanisms in non-neuronal cells, among which microglia represent nowadays an attractive target. Microglia play a key role in the developing brain and contribute to synaptic remodeling in the mature brain. On the other hand, the intimate relationship between microglia and synapses led to the so-called synaptic stripping hypothesis, a process in which microglia selectively remove synapses from injured neurons. Synaptic stripping, along with the induction of a microglia-mediated chronic neuroinflammatory environment, promote the progressive synaptic degeneration in AD. Therefore, targeting microglia may pave the way for a new disease modifying approach. This review provides an overview of the pathophysiological roles of the microglia cells in AD and describes putative targets for pharmacological intervention. It also provides evidence for microglia-targeted strategies in preclinical AD studies and in early clinical trials.
Collapse
Affiliation(s)
- Atrin Yousefizadeh
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gaia Piccioni
- Department of Physiology and Pharmacology "V.Erspamer", Sapienza University of Rome, Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Amira Saidi
- Department of Physiology and Pharmacology "V.Erspamer", Sapienza University of Rome, Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Dalila Mango
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Robert Nisticò
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy.
| |
Collapse
|
34
|
Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective Effects of Pioglitazone on Cognitive Impairment and the Underlying Mechanisms: A Review of Literature. Drug Des Devel Ther 2022; 16:2919-2931. [PMID: 36068789 PMCID: PMC9441149 DOI: 10.2147/dddt.s367229] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Correspondence: Ahmad Alhowail, Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia, Tel +9665672025858, Email
| | - Rawan Alsikhan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Al Qassim, 51911, Kingdom of Saudi Arabia
| | - May Alsaud
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Patil SP, DiFlumeri J, Wellington J, Fattakhova E, Oravic M. Alzheimer’s neuroinflammation: A crosstalk between immune checkpoint PD1-PDL1 and ApoE-Heparin interactions? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
37
|
Liu P, Zhou X, Zhang H, Wang R, Wu X, Jian W, Li W, Yuan D, Wang Q, Zhao W. Danggui-Shaoyao-San Attenuates Cognitive Impairment via the Microbiota-Gut-Brain Axis With Regulation of Lipid Metabolism in Scopolamine-Induced Amnesia. Front Immunol 2022; 13:796542. [PMID: 35664001 PMCID: PMC9162091 DOI: 10.3389/fimmu.2022.796542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
Danggui-Shaoyao-San (DSS) has a long history of being used as a traditional medicine (TCM) and has been reported to show therapeutic effects in alleviating the symptoms of cognitive impairment. The purpose of this study was to investigate whether DSS treatment attenuates cognitive impairment via the microbiota–gut–brain axis in scopolamine-induced amnesia. In this work, we first performed the Morris water maze (MWM) test and novel object recognition (NOR) test to evaluate the memory function of treated C57BL/6N mice. Then we evaluated 16S rRNA for gut microbiota analysis, as well as assessment of blood–brain barrier function and intestinal barrier function and lipid metabolism analysis on tissues from different groups. We hypothesised that DSS may affect brain function and behavior through the gut–brain axis in a bidirectional interplay with both top-down and bottom-up regulation. Furthermore, in order to confirm whether intestinal flora plays a crucial role in scopolamine-induced amnesia, C57BL/6N mice were treated with fecal microbial transplantation (FMT), and then behavioral tests were performed. The mice’s feces were simultaneously evaluated by 16S rRNA analysis. The result supported that the FMT-induced improvement in cognitive function highlights the role of the gut microbiota–brain axis to mediate cognitive function and behavior. Besides theses works, more findings indicated that DSS altered lipid metabolism by activating LXR-PPAR-γ and repaired mucosal barrier dysfunction assessed with a broad range of techniques, which attenuated cognitive impairment via the microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoran Zhang
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Rui Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenxuan Jian
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongsheng Yuan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
38
|
Shahbazi S, Zakerali T. Methylenedioxy Piperamide-Derived Compound D5 Regulates Inflammatory Cytokine Secretion in a Culture of Human Glial Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113527. [PMID: 35684465 PMCID: PMC9182381 DOI: 10.3390/molecules27113527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is the cornerstone of most neuronal disorders, particularly neurodegenerative diseases. During the inflammatory process, various pro-inflammatory cytokines, chemokines, and enzymes—such as interleukin 1-β (IL1-β), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthases (iNOS), inhibitory kappa kinase (IKK), and inducible nitric oxide (NO)—are over-expressed in response to every stimulus. Methods: In the present study, we focused on the anti-neuroinflammatory efficacy of (2E,4E)-N,5-bis(benzo[d][1,3]dioxol-5-yl)penta-2,4-dienamide, encoded D5. We investigated the efficacy of D5 on the upstream and downstream products of inflammatory pathways in CHME3 and SVG cell lines corresponding to human microglia and astrocytes, respectively, using various in silico, in vitro, and in situ techniques. Results: The results showed that D5 significantly reduced the level of pro-inflammatory cytokines by up-regulating PPAR-γ expression and suppressing IKK-β, iNOS, NO production, and NF-κB activation in inflamed astrocytes (SVG) and microglia (CHME3) after 24 h of incubation. The data demonstrated remarkably higher efficacy of D5 compared to ASA (Aspirin) in reducing NF-κB-dependent neuroinflammation. Conclusions: We observed that the functional-group alteration had an extreme influence on the levels of druggability and the immunomodulatory properties of two analogs of piperamide, D5, and D4 ((2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-N-(4-(hydroxymethyl)phenyl)penta-2,4-dienamide)). The present study suggested D5 as a potential anti-neuroinflammatory agent for further in vitro, in vivo, and clinical investigations.
Collapse
Affiliation(s)
- Sajad Shahbazi
- BRAINCITY, Neurobiology Lab, Nencki Institute of Experimental Biology, 02-093 Warszawa, Poland
- Correspondence:
| | - Tara Zakerali
- Nencki Institute of Experimental Biology, 02-093 Warszawa, Poland;
| |
Collapse
|
39
|
Hawksworth J, Fernández E, Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res Rev 2022; 79:101654. [PMID: 35636691 DOI: 10.1016/j.arr.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and cases are rising worldwide. The effort to fight this disease is hampered by a lack of disease-modifying treatments and the absence of an early, accurate diagnostic tool. Neuropathology begins years or decades before symptoms occur and, upon onset of symptoms, diagnosis can take a year or more. Such delays postpone treatment and make research into the early stages of the disease difficult. Ideally, clinicians require a minimally invasive test that can detect AD in its early stages, before cognitive symptoms occur. Advances in proteomic technologies have facilitated the study of promising biomarkers of AD. Over the last two years (2019-2021) studies have identified and validated many species which can be measured in cerebrospinal fluid (CSF), plasma, or in both fluids, and which have a high predictive value for AD. We herein discuss proteins which have been highlighted as promising biomarkers of AD in the last two years, and consider implications for future research within the research framework of the amyloid (A), tau (T), neurodegeneration (N) scoring system. We review recently identified species of amyloid and tau which may improve diagnosis when used in combination with current measures such as amyloid-beta-42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau). In addition, several proteins have been identified as likely proxies for neurodegeneration, including neurofilament light (NfL), synaptosomal-associated protein 25 (SNAP-25) and neurogranin (NRGN). Finally, proteins originating from diverse processes such as neuroinflammation, lipid transport and mitochondrial dysfunction could aid in both AD diagnosis and patient stratification.
Collapse
|
40
|
Blume T, Deussing M, Biechele G, Peters F, Zott B, Schmidt C, Franzmeier N, Wind K, Eckenweber F, Sacher C, Shi Y, Ochs K, Kleinberger G, Xiang X, Focke C, Lindner S, Gildehaus FJ, Beyer L, von Ungern-Sternberg B, Bartenstein P, Baumann K, Adelsberger H, Rominger A, Cumming P, Willem M, Dorostkar MM, Herms J, Brendel M. Chronic PPARγ Stimulation Shifts Amyloidosis to Higher Fibrillarity but Improves Cognition. Front Aging Neurosci 2022; 14:854031. [PMID: 35431893 PMCID: PMC9007038 DOI: 10.3389/fnagi.2022.854031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
We undertook longitudinal β-amyloid positron emission tomography (Aβ-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aβ model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aβ-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and AppNL–G–F mice (N = 37; baseline age: 5 months) using Aβ-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aβ-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aβ-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aβ-PET signal upon immunomodulatory treatments targeting Aβ aggregation can thus be protective.
Collapse
Affiliation(s)
- Tanja Blume
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gloria Biechele
- Department of Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Finn Peters
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claudio Schmidt
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Karin Wind
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Sacher
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yuan Shi
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Katharina Ochs
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Gernot Kleinberger
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig Maximilian University of Munich, Munich, Germany
- ISAR Bioscience GmbH, Planegg, Germany
| | - Xianyuan Xiang
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig Maximilian University of Munich, Munich, Germany
| | - Carola Focke
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Barbara von Ungern-Sternberg
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Helmuth Adelsberger
- Department of Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Axel Rominger
- SyNergy, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael Willem
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig Maximilian University of Munich, Munich, Germany
| | - Mario M. Dorostkar
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jochen Herms
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- SyNergy, Ludwig Maximilian University of Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Matthias Brendel
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
- SyNergy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Matthias Brendel,
| |
Collapse
|
41
|
Arbo BD, Schimith LE, Goulart dos Santos M, Hort MA. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur J Pharmacol 2022; 919:174800. [DOI: 10.1016/j.ejphar.2022.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
|
42
|
Campos HC, Ribeiro DE, Hashiguchi D, Hukuda DY, Gimenes C, Romariz SAA, Ye Q, Tang Y, Ulrich H, Longo BM. Distinct Effects of the Hippocampal Transplantation of Neural and Mesenchymal Stem Cells in a Transgenic Model of Alzheimer's Disease. Stem Cell Rev Rep 2022; 18:781-791. [PMID: 34997526 DOI: 10.1007/s12015-021-10321-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a severe disabling condition with no cure currently available, which accounts for 60-70% of all dementia cases worldwide. Therefore, the investigation of possible therapeutic strategies for AD is necessary. To this end, animal models corresponding to the main aspects of AD in humans have been widely used. Similar to AD patients, the double transgenic APPswe/PS1dE9 (APP/PS1) mice show cognitive deficits, hyperlocomotion, amyloid-β (Αβ) plaques in the cortex and hippocampus, and exacerbated inflammatory responses. Recent studies have shown that these neuropathological features could be reversed by stem cell transplantation. However, the effects induced by neural (NSC) and mesenchymal (MSC) stem cells has never been compared in an AD animal model. Therefore, the present study aimed to investigate whether transplantation of NSC or MSC into the hippocampus of APP/PS1 mice reverses AD-induced pathological alterations, evaluated by the locomotor activity (open field test), short- and long-term memory (object recognition) tests, Αβ plaques (6-E10), microglia distribution (Iba-1), M1 (iNOS) and M2 (ARG-1) microglial phenotype frequencies. NSC and MSC engraftment reduced the number of Αβ plaques and produced an increase in M2 microglia polarization in the hippocampus of APP/PS1 mice, suggesting an anti-inflammatory effect of stem cell transplantation. NSC also reversed the hyperlocomotor activity and increased the number of microglia in the hippocampus of APP/PS1 mice. No impairment of short or long-term memory was observed in APP/PS1 mice. Overall, this study highlights the potential beneficial effects of transplanting NSC or MSC for AD treatment.
Collapse
Affiliation(s)
- Henrique C Campos
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Debora Hashiguchi
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Laboratório de Plasticidade Sináptica, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Caixa Postal: 1524, Brazil
| | - Deborah Y Hukuda
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Christiane Gimenes
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Simone A A Romariz
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Qing Ye
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.,International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Yong Tang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.,International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
43
|
Yi Q, Xie W, Sun W, Sun W, Liao Y. A Concise Review of MicroRNA-383: Exploring the Insights of Its Function in Tumorigenesis. J Cancer 2022; 13:313-324. [PMID: 34976192 PMCID: PMC8692686 DOI: 10.7150/jca.64846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that commonly have 18-22 nucleotides and play important roles in the regulation of gene expression via directly binding to the 3'-UTR of target mRNAs. Approximately 50% of human genes are regulated by miRNAs and they are involved in many human diseases, including various types of cancers. Recently, microRNA-383 (miR-383) has been identified as being aberrantly expressed in multiple cancers, such as malignant melanoma, colorectal cancer, hepatocellular cancer, and glioma. Increasing evidence suggests that miR-383 participates in tumorigenic events including proliferation, apoptosis, invasion, and metastasis as well as drug resistance. Although downstream targets including CCND1, LDHA, VEGF, and IGF are illustrated to be regulated by miR-383, its roles in carcinogenesis are still ambiguous and the underlying mechanisms are still unclear. Herein, we review the latest studies on miR-383 and summarize its functions in human cancers and other diseases. The goal of this review is to provide new strategies for targeted therapy and further investigations.
Collapse
Affiliation(s)
- Qian Yi
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China.,Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
44
|
Abstract
The accumulation of neurotoxic amyloid-beta (Aβ) in the brain is one of the characteristic hallmarks of Alzheimer's disease (AD). Aβ-peptide brain homeostasis is governed by its production and various clearance mechanisms. The blood-brain barrier provides a large surface area for influx and efflux mechanisms into and out of the brain. Different transporters and receptors have been implicated to play crucial roles in Aβ clearance from brain. Besides Aβ transport, the blood-brain barrier tightly regulates the brain's microenvironment; however, vascular alterations have been shown in patients with AD. Here, we summarize how the blood-brain barrier changes during aging and in disease and focus on recent findings of how the ABC transporter P-glycoprotein (ABCB1/P-gp) and the receptor low-density lipoprotein receptor-related protein 1 (LRP1) play a role in Aβ clearance from brain.
Collapse
|
45
|
Sonego AB, Prado DDS, Guimarães FS. PPARγ receptors are involved in the effects of cannabidiol on orofacial dyskinesia and cognitive dysfunction induced by typical antipsychotic in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110367. [PMID: 34048863 DOI: 10.1016/j.pnpbp.2021.110367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/20/2022]
Abstract
Tardive dyskinesia (TD) is a movement disorder that appears after chronic use of drugs that block dopaminergic receptors such as antipsychotics. Besides the motor symptoms, patients with TD also present cognitive deficits. Neuroinflammatory mechanisms could be involved in the development of these symptoms. A previous study showed that cannabidiol (CBD), the major non-psychotomimetic compound of Cannabis sativa plant, prevents orofacial dyskinesia induced by typical antipsychotics by activating peroxisome proliferator-activated receptors gamma (PPARγ). Here, we investigated if CBD would also reverse haloperidol-induced orofacial dyskinesia and associated cognitive deficits. We also verified if these effects depend on PPARγ receptor activation. Daily treatment with haloperidol (3 mg/kg, 21 days) increased the frequency of vacuous chewing movements (VCM) and decreased the discrimination index in the novel object recognition test in male Swiss mice. CBD (60 mg/kg/daily) administered in the last 7 days of haloperidol treatment attenuated both behavioral effects. Furthermore, haloperidol increased IL-1β and TNF-α levels in the striatum and hippocampus while CBD reverted these effects. The striatal and hippocampal levels of proinflammatory cytokines correlated with VCM frequency and discrimination index, respectively. Pretreatment with the PPARγ antagonist GW9662 (2 mg/kg/daily) blocked the behavioral effects of CBD. In conclusion, these results indicated that CBD could attenuate haloperidol-induced orofacial dyskinesia and improve non-motor symptoms associated with TD by activating PPARγ receptors.
Collapse
Affiliation(s)
- Andreza Buzolin Sonego
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| | - Douglas da Silva Prado
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
46
|
Brain Expression, Physiological Regulation and Role in Motivation and Associative Learning of Peroxisome Proliferator-activated Receptor γ. Neuroscience 2021; 479:91-106. [PMID: 34762981 DOI: 10.1016/j.neuroscience.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Like other members of the superfamily of nuclear receptors, the peroxisome proliferator-activated receptor γ (PPARγ), is a ligand-activated transcription factor known for its insulin-sensitizing actions in the periphery. Despite only sparse evidence for PPARγ in the CNS, many reports suggest direct PPARγ-mediated actions in the brain. This study aimed to (i) map PPARγ expression in rodent brain areas, involved in the regulation of cognitive, motivational, and emotional functions, (ii) examine the regulation of central PPARγ by physiological variables (age, sex, obesity); (iii) chemotypically identify PPARγ-expressing cells in the frontal cortex (FC) and hippocampus (HP); (iv) study whether activation of PPARγ by pioglitazone (Pio) in FC and HP cells can induce target gene expression; and (v) demonstrate the impact of activated PPARγ on learning behavior and motivation. Immunoreactive PPARγ was detectable in specific sub-nuclei/subfields of the FC, HP, nucleus accumbens, amygdala, hypothalamus, thalamus, and granular layers of the cerebellum. PPARγ protein levels were upregulated during aging and in high fat diet-induced obesity. PPARγ mRNA expression was upregulated in the amygdala of females (but not males) that were made obese. Neural precursor cells, mature neurons, and astrocytes in primary FC and HP cultures were shown to express PPARγ. Pioglitazone dose-dependently upregulated PPARγ target genes in manner that was specific to the origin (FC or HP) of the cultures. Lastly, administration of Pio impaired motivation and associative learning. Collectively, we provide evidence for the presence of regulatable PPARγ in the brain and demonstrate their participation the regulation of key behaviors.
Collapse
|
47
|
Abyadeh M, Gupta V, Gupta V, Chitranshi N, Wu Y, Amirkhani A, Meyfour A, Sheriff S, Shen T, Dhiman K, Ghasem HS, Paul AH, Stuart LG, Mirzaei M. Comparative Analysis of Aducanumab, Zagotenemab and Pioglitazone as Targeted Treatment Strategies for Alzheimer's Disease. Aging Dis 2021; 12:1964-1976. [PMID: 34881080 PMCID: PMC8612603 DOI: 10.14336/ad.2021.0719] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia that has remained a major medical, sociocultural and economical challenge globally. Previously developed treatments like anticholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate receptor (NMDAR) antagonists only provide short-term symptomatic improvement and do not prevent progression. Repeated setbacks and failures over the past 25 years in AD clinical trials have hindered efforts to develop effective AD treatments. Fortunately, Aducanumab, a specific anti-amyloid β antibody, has shown promising clinical results and was recently approved by the Food and Drug Administration (FDA) through an accelerated approval pathway. This has raised hopes for AD patients; however post-approval trials are necessary to estimate the true scope of its clinical benefits. We have reviewed several AD clinical studies and summarized the experience to date with Aducanumab and two other potential AD drugs including Zagotenemab (an anti-tau antibody) and Pioglitazone (nuclear Peroxisome-Proliferator Activated Receptor γ (PPARγ) agonist). These have shown mixed results so far and the next few years will be critical to elucidate and interpret their broad long-term protective effects. A concerted effort is required to understand and strengthen the translation of pre-clinical findings from these drugs to routine clinical practice.
Collapse
Affiliation(s)
- Morteza Abyadeh
- 1Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vivek Gupta
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- 3School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yunqi Wu
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Ardeshir Amirkhani
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Anna Meyfour
- 5Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samran Sheriff
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ting Shen
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Kunal Dhiman
- 3School of Medicine, Deakin University, VIC, Australia
| | - H Salekdeh Ghasem
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - A Haynes Paul
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - L Graham Stuart
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
48
|
Wang J, Qin X, Sun H, He M, Lv Q, Gao C, He X, Liao H. Nogo receptor impairs the clearance of fibril amyloid-β by microglia and accelerates Alzheimer's-like disease progression. Aging Cell 2021; 20:e13515. [PMID: 34821024 PMCID: PMC8672787 DOI: 10.1111/acel.13515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the progressive accumulation of β‐amyloid (Aβ)‐containing amyloid plaques, and microglia play a critical role in mediating Aβ clearance. Mounting evidence has confirmed that the ability of microglia in clearing Aβ decreased with aging and AD progress, but the underlying mechanisms are unclear. Previously, we have demonstrated that Nogo receptor (NgR), a receptor for three axon growth inhibitors associated with myelin, can decrease adhesion and migration of microglia to fibrils Aβ with aging. However, whether NgR expressed on microglia affect microglia phagocytosis of fibrils Aβ with aging remains unclear. Here, we found that aged but not young microglia showed increased NgR expression and decreased Aβ phagocytosis in APP/PS1 transgenic mice. NgR knockdown APP/PS1 mice showed simultaneous reduced amyloid burden and improved spatial learning and memory, which were associated with increased Aβ clearance. Importantly, Nogo‐P4, an agonist of NgR, enhanced the protein level of p‐Smad2/3, leading to a significant transcriptional inhibition of CD36 gene expression, which in turn decreased the microglial phagocytosis of Aβ. Moreover, ROCK accounted for Nogo‐P4‐induced activation of Smad2/3 signaling. Finally, the decreasing effect of NgR on microglial Aβ uptake was confirmed in a mouse model of intra‐hippocampal fAβ injection. Our findings suggest that NgR may play an important role in the regulation of Aβ homeostasis, and has potential as a therapeutic target for AD.
Collapse
Affiliation(s)
- Jianing Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Xiaoying Qin
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Hao Sun
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Meijun He
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Qunyu Lv
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Congcong Gao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Xinran He
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| | - Hong Liao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation China Pharmaceutical University 24 Tongjiaxiang Street Nanjing 210009 China
| |
Collapse
|
49
|
Katsuki H. Nuclear receptors of NR1 and NR4 subfamilies in the regulation of microglial functions and pathology. Pharmacol Res Perspect 2021; 9:e00766. [PMID: 34676987 PMCID: PMC8532137 DOI: 10.1002/prp2.766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of researches on the NR1 and NR4 nuclear receptors involved in the regulation of microglial functions. Nuclear receptors are attractive candidates for drug targets in the therapies of the central nervous system disorders, because the activation of these receptors is expected to regulate the functions and the phenotypes of microglia, by controlling the expression of specific gene subsets and also by regulating the cellular signaling mechanisms in a nongenomic manner. Several members of NR1 nuclear receptor subfamily have been examined for their ability to regulate microglial functions. For example, stimulation of vitamin D receptor inhibits the production of pro-inflammatory factors and increases the production of anti-inflammatory cytokines. Similar regulatory actions of nuclear receptor ligands on inflammation-related genes have also been reported for other NR1 members such as retinoic acid receptors, peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). In addition, stimulation of PPARγ and LXRs may also result in increased phagocytic activities of microglia. Consistent with these actions, the agonists at nuclear receptors of NR1 subfamily are shown to produce therapeutic effects on animal models of various neurological disorders such as experimental allergic encephalomyelitis, Alzheimer's disease, Parkinson's disease, and ischemic/hemorrhagic stroke. On the other hand, increasing lines of evidence suggest that the stimulation of NR4 subfamily members of nuclear receptors such as Nur77 and Nurr1 also regulates microglial functions and alleviates neuropathological events in several disease models. Further advancement of these research fields may prove novel therapeutic opportunities.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico‐Pharmacological SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
50
|
Davidson JO, Gonzalez F, Gressens P, Gunn AJ. Update on mechanisms of the pathophysiology of neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101267. [PMID: 34274259 DOI: 10.1016/j.siny.2021.101267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic hypothermia is now well established to significantly improve survival without disability after neonatal encephalopathy (NE). To further improve outcomes, we need to better understand the mechanisms of brain injury. The central finding, which offers the potential for neuroprotective and neurorestorative interventions, is that brain damage after perinatal hypoxia-ischemia evolves slowly over time. Although brain cells may die during profound hypoxia-ischemia, even after surprisingly severe insults many cells show transient recovery of oxidative metabolism during a "latent" phase characterized by actively suppressed neural metabolism and activity. Critically, after moderate to severe hypoxia-ischemia, this transient recovery is followed after ~6 h by a phase of secondary deterioration, with delayed seizures, failure of mitochondrial function, cytotoxic edema, and cell death over ~72 h. This is followed by a tertiary phase of remodeling and recovery. This review discusses the mechanisms of injury that occur during the primary, latent, secondary and tertiary phases of injury and potential treatments that target one or more of these phases. By analogy with therapeutic hypothermia, treatment as early as possible in the latent phase is likely to have the greatest potential to prevent injury ("neuroprotection"). In the secondary phase of injury, anticonvulsants can attenuate seizures, but show limited neuroprotection. Encouragingly, there is now increasing preclinical evidence that late, neurorestorative interventions have potential to improve long-term outcomes.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Fernando Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| | | | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|