1
|
van den Berg NS, Lammers NA, Smits AR, Lugtmeijer S, Pinto Y, De Haan EHF. Mid-range visual functions in relation to higher-order visual functions after stroke. J Clin Exp Neuropsychol 2022; 44:580-591. [PMID: 36415166 DOI: 10.1080/13803395.2022.2147487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION We aimed to investigate whether associations between deficits in "mid-range" visual functions and deficits in higher-order visual cognitive functions in stroke patients are more in line with a hierarchical, two-pathway model of the visual brain, or with a patchwork model, which assumes a parallel organization with many processing routes and cross-talk. METHODS A group of 182 ischemic stroke patients was assessed with a new diagnostic set-up for the investigation of a comprehensive range of visuosensory mid-range functions: color, shape, location, orientation, correlated motion, contrast and texture. With logistic regression analyses we investigated the predictive value of these mid-range functions for deficits in visuoconstruction (Copy of the Rey-Complex Figure Test), visual emotion recognition (Ekman 60 Faces Test of the FEEST) and visual memory (computerized Doors-test). RESULTS Results showed that performance on most mid-range visual tasks could not predict performance on higher-order visual cognitive tasks. Correlations were low to weak. Impaired visuoconstruction and visual memory were only modestly predicted by a worse location perception. Impaired emotion perception was modestly predicted by a worse orientation perception. In addition, double dissociations were found: there were patients with selective deficits in mid-range visual functions without higher-order visual deficits and vice versa. CONCLUSIONS Our findings are not in line with the hierarchical, two-pathway model. Instead, the findings are more in line with alternative "patchwork" models, arguing for a parallel organization with many processing routes and cross-talk. However, future studies are needed to test these alternative models.
Collapse
Affiliation(s)
- Nils S van den Berg
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Nikki A Lammers
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Anouk R Smits
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Selma Lugtmeijer
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Yair Pinto
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Edward H F De Haan
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, University Medical Center Amsterdam, Amsterdam, The Netherlands.,St. Hugh's College, Oxford University, UK
| |
Collapse
|
2
|
Goldring AB, Cooke DF, Pineda CR, Recanzone GH, Krubitzer LA. Functional characterization of the fronto-parietal reaching and grasping network: reversible deactivation of M1 and areas 2, 5, and 7b in awake behaving monkeys. J Neurophysiol 2022; 127:1363-1387. [PMID: 35417261 PMCID: PMC9109808 DOI: 10.1152/jn.00279.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
In the present investigation, we examined the role of different cortical fields in the fronto-parietal reaching and grasping network in awake, behaving macaque monkeys. This network is greatly expanded in primates compared to other mammals and coevolved with glabrous hands with opposable thumbs and the extraordinary dexterous behaviors employed by a number of primates, including humans. To examine this, we reversibly deactivated the primary motor area (M1), anterior parietal area 2, and posterior parietal areas 5L and 7b individually while monkeys were performing two types of reaching and grasping tasks. Reversible deactivation was accomplished with small microfluidic thermal regulators abutting specifically targeted cortical areas. Placement of these devices in the different cortical fields was confirmed post hoc in histologically processed tissue. Our results indicate that the different areas examined form a complex network of motor control that is overlapping. However, several consistent themes emerged that suggest the independent roles that motor cortex, area 2, area 7b, and area 5L play in the motor planning and execution of reaching and grasping movements. Area 5L is involved in the early stages and area 7b the later stages of a reaching and grasping movement, motor cortex is involved in all aspects of the execution of the movement, and area 2 provides proprioceptive feedback throughout the movement. We discuss our results in the context of previous studies that explored the fronto-parietal network, the overlapping (but also independent) functions of different nodes of this network, and the rapid compensatory plasticity of this network.NEW & NOTEWORTHY This is the first study to directly compare the results of cooling different portions of the fronto-parietal reaching and grasping network (motor cortex, anterior and posterior parietal cortex) in the same animals and the first to employ a complex, bimanual reaching and grasping task that is ethologically relevant. Whereas cooling area 7b or area 5L evoked deficits at distinct task phases, cooling M1 evoked a general set of deficits and cooling area 2 evoked proprioceptive deficits.
Collapse
Affiliation(s)
- Adam B Goldring
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California
- Department of Biomedical Physiology and Kinesiology (BPK), Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carlos R Pineda
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Leah A Krubitzer
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
3
|
Ma H, Li P, Hu J, Cai X, Song Q, Lu HD. Processing of motion boundary orientation in macaque V2. eLife 2021; 10:61317. [PMID: 33759760 PMCID: PMC8026216 DOI: 10.7554/elife.61317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Human and nonhuman primates are good at identifying an object based on its motion, a task that is believed to be carried out by the ventral visual pathway. However, the neural mechanisms underlying such ability remains unclear. We trained macaque monkeys to do orientation discrimination for motion boundaries (MBs) and recorded neuronal response in area V2 with microelectrode arrays. We found 10.9% of V2 neurons exhibited robust orientation selectivity to MBs, and their responses correlated with monkeys' orientation-discrimination performances. Furthermore, the responses of V2 direction-selective neurons recorded at the same time showed correlated activity with MB neurons for particular MB stimuli, suggesting that these motion-sensitive neurons made specific functional contributions to MB discrimination tasks. Our findings support the view that V2 plays a critical role in MB analysis and may achieve this through a neural circuit within area V2.
Collapse
Affiliation(s)
- Heng Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Pengcheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiaming Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xingya Cai
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qianling Song
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Hu J, Ma H, Zhu S, Li P, Xu H, Fang Y, Chen M, Han C, Fang C, Cai X, Yan K, Lu HD. Visual Motion Processing in Macaque V2. Cell Rep 2020; 25:157-167.e5. [PMID: 30282025 DOI: 10.1016/j.celrep.2018.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
In the primate visual system, direction-selective (DS) neurons are critical for visual motion perception. While DS neurons in the dorsal visual pathway have been well characterized, the response properties of DS neurons in other major visual areas are largely unexplored. Recent optical imaging studies in monkey visual cortex area 2 (V2) revealed clusters of DS neurons. This imaging method facilitates targeted recordings from these neurons. Using optical imaging and single-cell recording, we characterized detailed response properties of DS neurons in macaque V2. Compared with DS neurons in the dorsal areas (e.g., middle temporal area [MT]), V2 DS neurons have a smaller receptive field and a stronger antagonistic surround. They do not code speed or plaid motion but are sensitive to motion contrast. Our results suggest that V2 DS neurons play an important role in figure-ground segregation. The clusters of V2 DS neurons are likely specialized functional systems for detecting motion contrast.
Collapse
Affiliation(s)
- Jiaming Hu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Heng Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shude Zhu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peichao Li
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haoran Xu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yang Fang
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ming Chen
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chao Han
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chen Fang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xingya Cai
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Kun Yan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
5
|
Kaestner M, Maloney RT, Wailes-Newson KH, Bloj M, Harris JM, Morland AB, Wade AR. Asymmetries between achromatic and chromatic extraction of 3D motion signals. Proc Natl Acad Sci U S A 2019; 116:13631-13640. [PMID: 31209058 PMCID: PMC6612918 DOI: 10.1073/pnas.1817202116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Motion in depth (MID) can be cued by high-resolution changes in binocular disparity over time (CD), and low-resolution interocular velocity differences (IOVD). Computational differences between these two mechanisms suggest that they may be implemented in visual pathways with different spatial and temporal resolutions. Here, we used fMRI to examine how achromatic and S-cone signals contribute to human MID perception. Both CD and IOVD stimuli evoked responses in a widespread network that included early visual areas, parts of the dorsal and ventral streams, and motion-selective area hMT+. Crucially, however, we measured an interaction between MID type and chromaticity. fMRI CD responses were largely driven by achromatic stimuli, but IOVD responses were better driven by isoluminant S-cone inputs. In our psychophysical experiments, when S-cone and achromatic stimuli were matched for perceived contrast, participants were equally sensitive to the MID in achromatic and S-cone IOVD stimuli. In comparison, they were relatively insensitive to S-cone CD. These findings provide evidence that MID mechanisms asymmetrically draw on information in precortical pathways. An early opponent motion signal optimally conveyed by the S-cone pathway may provide a substantial contribution to the IOVD mechanism.
Collapse
Affiliation(s)
- Milena Kaestner
- Department of Psychology, University of York, YO10 5DD York, United Kingdom;
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Ryan T Maloney
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Kirstie H Wailes-Newson
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Marina Bloj
- School of Optometry and Vision Sciences, University of Bradford, BD7 1DP Bradford, United Kingdom
| | - Julie M Harris
- School of Psychology and Neuroscience, University of St. Andrews, KY16 9JP St. Andrews, United Kingdom
| | - Antony B Morland
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
- York Biomedical Research Institute, University of York, YO10 5DD York, United Kingdom
| | - Alex R Wade
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
- York Biomedical Research Institute, University of York, YO10 5DD York, United Kingdom
| |
Collapse
|
6
|
Boosting Learning Efficacy with Noninvasive Brain Stimulation in Intact and Brain-Damaged Humans. J Neurosci 2019; 39:5551-5561. [PMID: 31133558 DOI: 10.1523/jneurosci.3248-18.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Numerous behavioral studies have shown that visual function can improve with training, although perceptual refinements generally require weeks to months of training to attain. This, along with questions about long-term retention of learning, limits practical and clinical applications of many such paradigms. Here, we show for the first time in female and male human participants that just 10 d of visual training coupled with transcranial random noise stimulation (tRNS) over visual areas causes dramatic improvements in visual motion perception. Relative to control conditions and anodal stimulation, tRNS-enhanced learning was at least twice as fast, and, crucially, it persisted for 6 months after the end of training and stimulation. Notably, tRNS also boosted learning in patients with chronic cortical blindness, leading to recovery of motion processing in the blind field after just 10 d of training, a period too short to elicit enhancements with training alone. In sum, our results reveal a remarkable enhancement of the capacity for long-lasting plastic and restorative changes when a neuromodulatory intervention is coupled with visual training.SIGNIFICANCE STATEMENT Our work demonstrates that visual training coupled with brain stimulation can dramatically reduce the training period from months to weeks, and lead to fast improvement in neurotypical subjects and chronic cortically blind patients, indicating the potential of our procedure to help restore damaged visual abilities for currently untreatable visual dysfunctions. Together, these results indicate the critical role of early visual areas in perceptual learning and reveal its capacity for long-lasting plastic changes promoted by neuromodulatory intervention.
Collapse
|
7
|
Kim HR, Angelaki DE, DeAngelis GC. The neural basis of depth perception from motion parallax. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0256. [PMID: 27269599 DOI: 10.1098/rstb.2015.0256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 11/12/2022] Open
Abstract
In addition to depth cues afforded by binocular vision, the brain processes relative motion signals to perceive depth. When an observer translates relative to their visual environment, the relative motion of objects at different distances (motion parallax) provides a powerful cue to three-dimensional scene structure. Although perception of depth based on motion parallax has been studied extensively in humans, relatively little is known regarding the neural basis of this visual capability. We review recent advances in elucidating the neural mechanisms for representing depth-sign (near versus far) from motion parallax. We examine a potential neural substrate in the middle temporal visual area for depth perception based on motion parallax, and we explore the nature of the signals that provide critical inputs for disambiguating depth-sign.This article is part of the themed issue 'Vision in our three-dimensional world'.
Collapse
Affiliation(s)
- HyungGoo R Kim
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, NY 14627, USA
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, NY 14627, USA
| |
Collapse
|
8
|
Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals. J Neurosci 2017; 36:10791-10802. [PMID: 27798134 DOI: 10.1523/jneurosci.1298-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/26/2016] [Indexed: 11/21/2022] Open
Abstract
Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no "cross-cue" adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. SIGNIFICANCE STATEMENT Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how-or indeed if-these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms.
Collapse
|
9
|
Global Motion Processing in Human Visual Cortical Areas V2 and V3. J Neurosci 2017; 36:7314-24. [PMID: 27383603 DOI: 10.1523/jneurosci.0025-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/01/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Global motion perception entails the ability to extract the central direction tendency from an extended area of visual space containing widely disparate local directions. A substantial body of evidence suggests that local motion signals generated in primary visual cortex (V1) are spatially integrated to provide perception of global motion, beginning in the middle temporal area (MT) in macaques and its counterpart in humans, hMT. However, V2 and V3 also contain motion-sensitive neurons that have larger receptive fields than those found in V1, giving the potential for spatial integration of motion signals. Despite this, V2 and V3 have been overlooked as sites of global motion processing. To test, free of local-global confounds, whether human V2 and V3 are important for encoding global motion, we developed a visual stimulus that yields a global direction yet includes all possible local directions and is perfectly balanced at the local motion level. We then attempted to decode global motion direction in such stimuli with multivariate pattern classification of fMRI data. We found strong sensitivity to global motion in hMT, as expected, and also in several higher visual areas known to encode optic flow. Crucially, we found that global motion direction could be decoded in human V2 and, particularly, in V3. The results suggest the surprising conclusion that global motion processing is a key function of cortical visual areas V2 and V3. A possible purpose is to provide global motion signals to V6. SIGNIFICANCE STATEMENT Humans can readily detect the overall direction of movement in a flock of birds despite large differences in the directions of individual birds at a given moment. This ability to combine disparate motion signals across space underlies many aspects of visual motion perception and has therefore received considerable research attention. The received wisdom is that spatial integration of motion signals occurs in the cortical motion complex MT+ in both human and nonhuman primates. We show here that areas V2 and V3 in humans are also able to perform this function. We suggest that different cortical areas integrate motion signals in different ways for different purposes.
Collapse
|
10
|
Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding. J Neurosci 2017; 37:5019-5034. [PMID: 28416597 DOI: 10.1523/jneurosci.2674-16.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
In the macaque monkey brain, posterior inferior temporal (PIT) cortex cells contribute to visual object recognition. They receive concurrent inputs from visual areas V4, V3, and V2. We asked how these different anatomical pathways shape PIT response properties by deactivating them while monitoring PIT activity in two male macaques. We found that cooling of V4 or V2|3 did not lead to consistent changes in population excitatory drive; however, population pattern analyses showed that V4-based pathways were more important than V2|3-based pathways. We did not find any image features that predicted decoding accuracy differences between both interventions. Using the HMAX hierarchical model of visual recognition, we found that different groups of simulated "PIT" units with different input histories (lacking "V2|3" or "V4" input) allowed for comparable levels of object-decoding performance and that removing a large fraction of "PIT" activity resulted in similar drops in performance as in the cooling experiments. We conclude that distinct input pathways to PIT relay similar types of shape information, with V1-dependent V4 cells providing more quantitatively useful information for overall encoding than cells in V2 projecting directly to PIT.SIGNIFICANCE STATEMENT Convolutional neural networks are the best models of the visual system, but most emphasize input transformations across a serial hierarchy akin to the primary "ventral stream" (V1 → V2 → V4 → IT). However, the ventral stream also comprises parallel "bypass" pathways: V1 also connects to V4, and V2 to IT. To explore the advantages of mixing long and short pathways in the macaque brain, we used cortical cooling to silence inputs to posterior IT and compared the findings with an HMAX model with parallel pathways.
Collapse
|
11
|
Hagan MA, Rosa MGP, Lui LL. Neural plasticity following lesions of the primate occipital lobe: The marmoset as an animal model for studies of blindsight. Dev Neurobiol 2016; 77:314-327. [PMID: 27479288 DOI: 10.1002/dneu.22426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
For nearly a century it has been observed that some residual visually guided behavior can persist after damage to the primary visual cortex (V1) in primates. The age at which damage to V1 occurs leads to different outcomes, with V1 lesions in infancy allowing better preservation of visual faculties in comparison with those incurred in adulthood. While adult V1 lesions may still allow retention of some limited visual abilities, these are subconscious-a characteristic that has led to this form of residual vision being referred to as blindsight. The neural basis of blindsight has been of great interest to the neuroscience community, with particular focus on understanding the contributions of the different subcortical pathways and cortical areas that may underlie this phenomenon. More recently, research has started to address which forms of neural plasticity occur following V1 lesions at different ages, including work using marmoset monkeys. The relatively rapid postnatal development of this species, allied to the lissencephalic brains and well-characterized visual cortex provide significant technical advantages, which allow controlled experiments exploring visual function in the absence of V1. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 314-327, 2017.
Collapse
Affiliation(s)
- Maureen A Hagan
- Department of Physiology, Monash University, Victoria, 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Victoria, 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology, Monash University, Victoria, 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Victoria, 3800, Australia
| | - Leo L Lui
- Department of Physiology, Monash University, Victoria, 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Victoria, 3800, Australia
| |
Collapse
|
12
|
Reversible Deactivation of Motor Cortex Reveals Functional Connectivity with Posterior Parietal Cortex in the Prosimian Galago (Otolemur garnettii). J Neurosci 2016; 35:14406-22. [PMID: 26490876 DOI: 10.1523/jneurosci.1468-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED We examined the functional macrocircuitry of frontoparietal networks in the neocortex of prosimian primates (Otolemur garnettii) using a microfluidic thermal regulator to reversibly deactivate selected regions of motor cortex (M1). During deactivation of either forelimb or mouth/face movement domains within M1, we used long-train intracortical microstimulation techniques to evoke movements from the rostral division of posterior parietal cortex (PPCr). We found that deactivation of M1 movement domains in most instances abolished movements evoked in PPCr. The most common effect of deactivating M1 was to abolish evoked movements in a homotopic domain in PPCr. For example, deactivating M1 forelimb lift domains resulted in loss of evoked movement in forelimb domains in PPCr. However, at some sites, we also observed heterotopic effects; deactivating a specific domain in M1 (e.g., forelimb lift) resulted in loss of evoked movement in a different movement domain in PPCr (e.g., hand-to-mouth or eye-blink). At most sites examined in PPCr, rewarming M1 resulted in a reestablishment of the baseline movement at the same amplitude as that observed before cooling. However, at some sites, reactivation did not result in a return to baseline movement or to the full amplitude of the baseline movement. We discuss our findings in the context of frontoparietal circuits and how they may subserve a repertoire of ecologically relevant behaviors. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) of primates integrates sensory information used to guide movements. Different modules within PPC and motor cortex (M1) appear to control various motor behaviors (e.g., reaching, defense, and feeding). How these modules work together may vary across species and may explain differences in dexterity and even the capacity for tool use. We investigated the functional connectivity of these modules in galagos, a prosimian primate with relatively simple frontoparietal circuitry. By deactivating a reaching module in M1, we interfered with the function of similar PPC modules and occasionally unrelated PPC modules as well (e.g., eye blink). This circuitry in galagos, therefore, is more complex than in nonprimates, indicating that it has been altered with the expansion of primate PPC.
Collapse
|
13
|
Smolyanskaya A, Haefner RM, Lomber SG, Born RT. A Modality-Specific Feedforward Component of Choice-Related Activity in MT. Neuron 2015; 87:208-19. [PMID: 26139374 DOI: 10.1016/j.neuron.2015.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 01/10/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
The activity of individual sensory neurons can be predictive of an animal's choices. These decision signals arise from network properties dependent on feedforward and feedback inputs; however, the relative contributions of these inputs are poorly understood. We determined the role of feedforward pathways to decision signals in MT by recording neuronal activity while monkeys performed motion and depth tasks. During each session, we reversibly inactivated V2 and V3, which provide feedforward input to MT that conveys more information about depth than motion. We thus monitored the choice-related activity of the same neuron both before and during V2/V3 inactivation. During inactivation, MT neurons became less predictive of decisions for the depth task but not the motion task, indicating that a feedforward pathway that gives rise to tuning preferences also contributes to decision signals. We show that our data are consistent with V2/V3 input conferring structured noise correlations onto the MT population.
Collapse
Affiliation(s)
- Alexandra Smolyanskaya
- Harvard PhD Program in Neuroscience, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Ralf M Haefner
- Brain and Cognitive Sciences, University of Rochester, 358 Meliora Hall, Rochester, NY 14627, USA
| | - Stephen G Lomber
- Brain and Mind Institute, Department of Physiology and Pharmacology, Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Lai J, Legault MA, Thomas S, Casanova C. Simultaneous Electrophysiological Recording and Micro-injections of Inhibitory Agents in the Rodent Brain. J Vis Exp 2015:e52271. [PMID: 26273847 DOI: 10.3791/52271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Here we describe a method for the construction of a single-use "injectrode" using commercially accessible and affordable parts. A probing system was developed that allows for the injection of a drug while recording electrophysiological signals from the affected neuronal population. This method provides a simple and economical alternative to commercial solutions. A glass pipette was modified by combining it with a hypodermic needle and a silver filament. The injectrode is attached to commercial microsyringe pump for drug delivery. This results in a technique that provides real-time pharmacodynamics feedback through multi-unit extracellular signals originating from the site of drug delivery. As a proof of concept, we recorded neuronal activity from the superior colliculus elicited by flashes of light in rats, concomitantly with delivery of drugs through the injectrode. The injectrode recording capacity permits the functional characterization of the injection site favoring precise control over the localization of drug delivery. Application of this method also extends far beyond what is demonstrated here, as the choice of chemical substance loaded into the injectrode is vast, including tracing markers for anatomic experiments.
Collapse
Affiliation(s)
- Jimmy Lai
- École d'optométrie, Université de Montréal;
| | | | | | | |
Collapse
|
15
|
Abstract
Area V5 of the visual brain, first identified anatomically in 1969 as a separate visual area, is critical for the perception of visual motion. As one of the most intensively studied parts of the visual brain, it has yielded many insights into how the visual brain operates. Among these are: the diversity of signals that determine the functional capacities of a visual area; the relationship between single cell activity in a specialized visual area and perception of, and preference for, attributes of a visual stimulus; the multiple asynchronous inputs into, and outputs from, an area as well as the multiple operations that it undertakes asynchronously; the relationship between activity at given, specialized, areas of the visual brain and conscious awareness; and the mechanisms used to “bind” signals from one area with those from another, with a different specialization, to give us our unitary perception of the visual world. Hence V5 is, in a sense, a microcosm of the visual world and its study gives important insights into how the whole visual brain is organized—anatomically, functionally and perceptually.
Collapse
Affiliation(s)
- Semir Zeki
- Wellcome Laboratory of Neurobiology, Cell and Developmental Biology, University College London London, UK
| |
Collapse
|
16
|
Cerkevich CM, Collins CE, Kaas JH. Cortical inputs to the middle temporal visual area in New World owl monkeys. Eye Brain 2014; 2015:1-15. [PMID: 25620872 PMCID: PMC4302954 DOI: 10.2147/eb.s69713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We made eight retrograde tracer injections into the middle temporal visual area (MT) of three New World owl monkeys (Aotus nancymaae). These injections were placed across the representation of the retina in MT to allow us to compare the locations of labeled cells in other areas in order to provide evidence for any retinotopic organization in those areas. Four regions projected to MT: 1) early visual areas, including V1, V2, V3, the dorsolateral visual area, and the dorsomedial visual area, provided topographically organized inputs to MT; 2) all areas in the MT complex (the middle temporal crescent, the middle superior temporal area, and the fundal areas of the superior temporal sulcus) projected to MT. Somewhat variably across injections, neurons were labeled in other parts of the temporal lobe; 3) regions in the location of the medial visual area, the posterior parietal cortex, and the lateral sulcus provided other inputs to MT; 4) finally, projections from the frontal eye field, frontal visual field, and prefrontal cortex were also labeled by our injections. These results further establish the sources of input to MT, and provide direct evidence within and across cases for retinotopic patterns of projections from early visual areas to MT.
Collapse
Affiliation(s)
- Christina M Cerkevich
- Center for the Neural Basis of Cognition and Systems Neuroscience Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Goldring AB, Cooke DF, Baldwin MKL, Recanzone GH, Gordon AG, Pan T, Simon SI, Krubitzer L. Reversible deactivation of higher-order posterior parietal areas. II. Alterations in response properties of neurons in areas 1 and 2. J Neurophysiol 2014; 112:2545-60. [PMID: 25143537 DOI: 10.1152/jn.00141.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role that posterior parietal (PPC) and motor cortices play in modulating neural responses in somatosensory areas 1 and 2 was examined with reversible deactivation by transient cooling. Multiunit recordings from neurons in areas 1 and 2 were collected from six anesthetized adult monkeys (Macaca mulatta) before, during, and after reversible deactivation of areas 5L or 7b or motor cortex (M1/PM), while select locations on the hand and forelimb were stimulated. Response changes were quantified as increases and decreases to stimulus-driven activity relative to baseline and analyzed during three recording epochs: during deactivation ("cool") and at two time points after deactivation ("rewarm 1," "rewarm 2"). Although the type of response change observed was variable, for neurons at the recording sites tested >90% exhibited a significant change in response during cooling of 7b while cooling area 5L or M1/PM produced a change in 75% and 64% of sites, respectively. These results suggest that regions in the PPC, and to a lesser extent motor cortex, shape the response characteristics of neurons in areas 1 and 2 and that this kind of feedback modulation is necessary for normal somatosensory processing. Furthermore, this modulation appears to happen on a minute-by-minute basis and may serve as the substrate for phenomena such as somatosensory attention.
Collapse
Affiliation(s)
- Adam B Goldring
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California
| | - Mary K L Baldwin
- Department of Psychology, University of California, Davis, California
| | - Gregg H Recanzone
- Department of Psychology, University of California, Davis, California; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | - Adam G Gordon
- Center for Neuroscience, University of California, Davis, California
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California, Davis, California
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, California
| | - Leah Krubitzer
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California;
| |
Collapse
|
18
|
Peel TR, Johnston K, Lomber SG, Corneil BD. Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field. J Neurophysiol 2013; 111:415-33. [PMID: 24155010 DOI: 10.1152/jn.00398.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inactivation permits direct assessment of the functional contribution of a given brain area to behavior. Previous inactivation studies of the frontal eye field (FEF) have either used large permanent ablations or reversible pharmacological techniques that only inactivate a small volume of tissue. Here we evaluated the impact of large, yet reversible, FEF inactivation on visually guided, delayed, and memory-guided saccades, using cryoloops implanted in the arcuate sulcus. While FEF inactivation produced the expected triad of contralateral saccadic deficits (increased reaction time, decreased accuracy and peak velocity) and performance errors (neglect or misdirected saccades), we also found consistent increases in reaction times of ipsiversive saccades in all three tasks. In addition, FEF inactivation did not increase the proportion of premature saccades to ipsilateral targets, as was predicted on the basis of pharmacological studies. Consistent with previous studies, greater deficits accompanied saccades toward extinguished visual cues. Our results attest to the functional contribution of the FEF to saccades in both directions. We speculate that the comparative effects of different inactivation techniques relate to the volume of inactivated tissue within the FEF. Larger inactivation volumes may reveal the functional contribution of more sparsely distributed neurons within the FEF, such as those related to ipsiversive saccades. Furthermore, while focal FEF inactivation may disinhibit the mirroring site in the other FEF, larger inactivation volumes may induce broad disinhibition in the other FEF that paradoxically prolongs oculomotor processing via increased competitive interactions.
Collapse
Affiliation(s)
- Tyler R Peel
- The Brain and Mind Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
Distinct functional organizations for processing different motion signals in V1, V2, and V4 of macaque. J Neurosci 2012; 32:13363-79. [PMID: 23015427 DOI: 10.1523/jneurosci.1900-12.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motion perception is qualitatively invariant across different objects and forms, namely, the same motion information can be conveyed by many different physical carriers, and it requires the processing of motion signals consisting of direction, speed, and axis or trajectory of motion defined by a moving object. Compared with the representation of orientation, the cortical processing of these different motion signals within the early ventral visual pathway of the primate remains poorly understood. Using drifting full-field noise stimuli and intrinsic optical imaging, along with cytochrome-oxidase staining, we found that the orientation domains in macaque V1, V2, and V4 that processed orientation signals also served to process motion signals associated with the axis and speed of motion. In contrast, direction domains within the thick stripes of V2 demonstrated preferences that were independent of motion speed. The population responses encoding the orientation and motion axis could be precisely reproduced by a spatiotemporal energy model. Thus, our observation of orientation domains with dual functions in V1, V2, and V4 directly support the notion that the linear representation of the temporal series of retinotopic activations may serve as another motion processing strategy in primate ventral visual pathway, contributing directly to fine form and motion analysis. Our findings further reveal that different types of motion information are differentially processed in parallel and segregated compartments within primate early visual cortices, before these motion features are fully combined in high-tier visual areas.
Collapse
|
20
|
A satisficing and bricoleur approach to sensorimotor cognition. Biosystems 2012; 110:65-73. [PMID: 23063599 DOI: 10.1016/j.biosystems.2012.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/18/2012] [Accepted: 09/28/2012] [Indexed: 01/06/2023]
Abstract
In this manuscript I present a set of neural processing principles and evolutionary constraints that should be taken into account in the characterization of sensorimotor cognition. I review evidence supporting the choice of the set of principles, and then I assess how such principles apply to two cases, object perception-action and peripersonal space. The aim is to emphasize the importance of focusing cognitive models on how evolution shapes functional paths to adaptations, as well as to adopt fitness maximization analyses of cognitive functions. Such an approach contrasts with the widespread reverse-engineering assumption that the neural system comprises a set of specialized circuits designed to comply with its assumed functions. The evidence presented in the manuscript points to the fact that neural systems should not be seen as a seat of optimal processes and circuits addressing particular problems in sensorimotor cognition, but as a set of satisficing and tinkered components, mostly not addressing the problems that are supposed to solve, but solving them as secondary effects of the engaged processes. I conclude with a corollary of the challenges lying ahead of the proposed approach.
Collapse
|
21
|
GABA inactivation of visual area MT modifies the responsiveness and direction selectivity of V2 neurons in Cebus monkeys. Vis Neurosci 2012; 28:513-27. [PMID: 22192507 DOI: 10.1017/s0952523811000411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the contribution of the projections from area MT to the receptive field properties of cells in visual area V2 in anesthetized and paralyzed Cebus apella monkeys. We recorded extracellular single-unit activity using tungsten microelectrodes in three monkeys before and after pressure injection of a 0.25-mol/l GABA solution. The visual stimulus consisted of a single bar moving in one of eight directions. In total, 72 V2 neurons were studied in 18 sessions of GABA injection into area MT. A group of 22 neurons was investigated over a shorter period of time ranging from 15 to 60 min, during which the activity did not return to baseline levels. The remaining 50 neurons were studied over a period of at least 2 h, and no statistical difference was observed in the neuronal response before and long after GABA inactivation. The effects on these 50 neurons consisted of an early (1-20 min) significant general decrease in excitability with changes in either orientation or direction selectivity. The differential decrease in excitability resulted in an intermediate improvement (20-40 min) of the signal-to-noise ratio for the stimulus-driven activity. The inactivation depended on the quantity of GABA injected into area MT and persisted for a period of 2 h. The GABA inactivation in area MT produced inhibition of most cells (72%) and a significant change of direction tuning in the majority (56%) of V2 neurons. Both increases and also decreases in the direction tuning of V2 neurons were observed. These feedback projections are capable of modulating not only the levels of spontaneous and driven activity of V2 neurons but also the V2 receptive field properties, such as direction selectivity.
Collapse
|
22
|
de Haan EHF, Cowey A. On the usefulness of 'what' and 'where' pathways in vision. Trends Cogn Sci 2011; 15:460-6. [PMID: 21906989 DOI: 10.1016/j.tics.2011.08.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/28/2022]
Abstract
The primate visual brain is classically portrayed as a large number of separate 'maps', each dedicated to the processing of specific visual cues, such as colour, motion or faces and their many features. In order to understand this fractionated architecture, the concept of cortical 'pathways' or 'streams' was introduced. In the currently prevailing view, the different maps are organised hierarchically into two major pathways, one involved in recognition and memory (the ventral stream or 'what' pathway) and the other in the programming of action (the dorsal stream or 'where' pathway). In this review, we question this heuristically influential but potentially misleading linear hierarchical pathway model and argue instead for a 'patchwork' or network model.
Collapse
Affiliation(s)
- Edward H F de Haan
- Department of Psychology and Cognitive Science Center Amsterdam, University of Amsterdam, Roetersstraat 15, 1018 WB, The Netherlands.
| | | |
Collapse
|