1
|
Tano V, Utami KH, Yusof NABM, Bégin J, Tan WWL, Pouladi MA, Langley SR. Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease. EBioMedicine 2023; 94:104720. [PMID: 37481821 PMCID: PMC10393612 DOI: 10.1016/j.ebiom.2023.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely confounded by cell type composition changes in late-stage HD, limiting the ability to identify dysregulation related to early pathogenesis. METHODS To investigate gene splicing changes in early HD, we performed alternative splicing analyses coupled with a proteogenomics approach to identify early CAG length-associated splicing changes in an established isogenic HD cell model. FINDINGS We report widespread neuronal differentiation stage- and CAG length-dependent splicing changes, and find an enrichment of RNA processing, neuronal function, and epigenetic modification-related genes with mutant HTT-associated splicing. When integrated with a proteomics dataset, we identified several of these differential splicing events at the protein level. By comparing with human post-mortem and mouse model data, we identified common patterns of altered splicing from embryonic stem cells through to post-mortem striatal tissue. INTERPRETATION We show that widespread splicing dysregulation in HD occurs in an early cell model of neuronal development. Importantly, we observe HD-associated splicing changes in our HD cell model that were also identified in human HD striatum and mouse model HD striatum, suggesting that splicing-associated pathogenesis possibly occurs early in neuronal development and persists to later stages of disease. Together, our results highlight splicing dysregulation in HD which may lead to disrupted neuronal function and neuropathology. FUNDING This research is supported by the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Nanyang Assistant Professorship Start-Up Grant, the Singapore Ministry of Education under its Singapore Ministry of Education Academic Research Fund Tier 1 (RG23/22), the BC Children's Hospital Research Institute Investigator Grant Award (IGAP), and a Scholar Award from the Michael Smith Health Research BC.
Collapse
Affiliation(s)
- Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kagistia Hana Utami
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Jocelyn Bégin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Willy Wei Li Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
2
|
Yang P, Liu H, Li Y, Gao Q, Chen X, Chang J, Li Y, Chen S, Dong R, Wu H, Liu C, Liu G. Overexpression of TCERG1 as a prognostic marker in hepatocellular carcinoma: A TCGA data-based analysis. Front Genet 2022; 13:959832. [PMID: 36299588 PMCID: PMC9589486 DOI: 10.3389/fgene.2022.959832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Transcription elongation factor 1 (TCERG1) is a nuclear protein consisted of multiple protein structural domains that plays an important role in regulating the transcription, extension, and splicing regulation of RNA polymerase II. However, the prognostic and immunological role of TCERG1 in human cancer remains unknown. In this study, we analyzed the expression of TCERG1 gene in hepatocellular carcinoma (HCC) patients, its clinical significance, and its possible prognostic value by bioinformatics. Methods: RNA sequencing data and clinicopathological characteristics of patients with HCC were collected from TCGA and CCLE databases. The Wilcoxon rank-sum test was used to analyze the expression of TCERG1 in HCC tissues and normal tissues. The protein levels of TCERG1 between normal and liver cancer tissues were analyzed by the Human Protein Atlas Database (HPA) (www.proteinatlas.org). Validation was performed using the Gene Expression Omnibus (GEO) dataset of 167 samples. The expression of TCERG1 in HCC cells were verified by qRT-PCR, and CCK-8, scratch assay and Transwell assay were performed to detect cell proliferation, migration and invasion ability. According to the median value of TCERG1 expression, patients were divided into high and low subgroups. Logistic regression, GSEA enrichment, TME, and single-sample set gene enrichment analysis (ssGSEA) were performed to explore the effects of TCERG1 on liver cancer biological function and immune infiltrates. TCERG1 co-expression networks were studied through the CCLE database and the LinkedOmics database to analyze genes that interact with TCERG1. Results: The expression levels of TCERG1 in HCC patient tissues were significantly higher than in normal tissues. Survival analysis showed that high levels of TCERG1 expression were significantly associated with low survival rates in HCC patients. Multifactorial analysis showed that high TCERG1 expression was an independent risk factor affecting tumor prognosis. This result was also verified in the GEO database. Cellular experiments demonstrated that cell proliferation, migration and invasion were inhibited after silencing of TCERG1 gene expression. Co-expression analysis revealed that CPSF6 and MAML1 expression were positively correlated with TCERG1. GSEA showed that in samples with high TCERG1 expression, relevant signaling pathways associated with cell cycle, apoptosis, pathways in cancer and enriched in known tumors included Wnt signaling pathway, Vegf signaling pathway, Notch signaling pathway, MAPK signaling pathway and MTOR pathways. The expression of TCERG1 was positively correlated with tumor immune infiltrating cells (T helper two cells, T helper cells). Conclusion:TCERG1 gene is highly expressed in hepatocellular carcinoma tissues, which is associated with the poor prognosis of liver cancer, and may be one of the markers for the diagnosis and screening of liver cancer and the prediction of prognosis effect. At the same time, TCERG1 may also become a new target for tumor immunotherapy.
Collapse
Affiliation(s)
- Pan Yang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Huaifeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yan Li
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qunwei Gao
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Xin Chen
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Junyan Chang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yangyang Li
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Shuran Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Dong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Changqing Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Gaofeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
3
|
Lobanov SV, McAllister B, McDade-Kumar M, Landwehrmeyer GB, Orth M, Rosser AE, Paulsen JS, Lee JM, MacDonald ME, Gusella JF, Long JD, Ryten M, Williams NM, Holmans P, Massey TH, Jones L. Huntington's disease age at motor onset is modified by the tandem hexamer repeat in TCERG1. NPJ Genom Med 2022; 7:53. [PMID: 36064847 PMCID: PMC9445028 DOI: 10.1038/s41525-022-00317-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/15/2022] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease is caused by an expanded CAG tract in HTT. The length of the CAG tract accounts for over half the variance in age at onset of disease, and is influenced by other genetic factors, mostly implicating the DNA maintenance machinery. We examined a single nucleotide variant, rs79727797, on chromosome 5 in the TCERG1 gene, previously reported to be associated with Huntington's disease and a quasi-tandem repeat (QTR) hexamer in exon 4 of TCERG1 with a central pure repeat. We developed a method for calling perfect and imperfect repeats from exome-sequencing data, and tested association between the QTR in TCERG1 and residual age at motor onset (after correcting for the effects of CAG length in the HTT gene) in 610 individuals with Huntington's disease via regression analysis. We found a significant association between age at onset and the sum of the repeat lengths from both alleles of the QTR (p = 2.1 × 10-9), with each added repeat hexamer reducing age at onset by one year (95% confidence interval [0.7, 1.4]). This association explained that previously observed with rs79727797. The association with age at onset in the genome-wide association study is due to a QTR hexamer in TCERG1, translated to a glutamine/alanine tract in the protein. We could not distinguish whether this was due to cis-effects of the hexamer repeat on gene expression or of the encoded glutamine/alanine tract in the protein. These results motivate further study of the mechanisms by which TCERG1 modifies onset of HD.
Collapse
Affiliation(s)
- Sergey V Lobanov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Mia McDade-Kumar
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | | | - Michael Orth
- Department of Old Age Psychiatry and Psychotherapy, Bern University, Bern, Switzerland
- Swiss Huntington's Disease Centre, Siloah, Gümligen, Switzerland
| | - Anne E Rosser
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI53705, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey D Long
- Departments of Psychiatry and Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University, College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Nigel M Williams
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Lesley Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Megret L, Gris B, Sasidharan Nair S, Cevost J, Wertz M, Aaronson J, Rosinski J, Vogt TF, Wilkinson H, Heiman M, Neri C. Shape deformation analysis reveals the temporal dynamics of cell-type-specific homeostatic and pathogenic responses to mutant huntingtin. eLife 2021; 10:64984. [PMID: 33618800 PMCID: PMC7901871 DOI: 10.7554/elife.64984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/31/2021] [Indexed: 01/06/2023] Open
Abstract
Loss of cellular homeostasis has been implicated in the etiology of several neurodegenerative diseases (NDs). However, the molecular mechanisms that underlie this loss remain poorly understood on a systems level in each case. Here, using a novel computational approach to integrate dimensional RNA-seq and in vivo neuron survival data, we map the temporal dynamics of homeostatic and pathogenic responses in four striatal cell types of Huntington’s disease (HD) model mice. This map shows that most pathogenic responses are mitigated and most homeostatic responses are decreased over time, suggesting that neuronal death in HD is primarily driven by the loss of homeostatic responses. Moreover, different cell types may lose similar homeostatic processes, for example, endosome biogenesis and mitochondrial quality control in Drd1-expressing neurons and astrocytes. HD relevance is validated by human stem cell, genome-wide association study, and post-mortem brain data. These findings provide a new paradigm and framework for therapeutic discovery in HD and other NDs.
Collapse
Affiliation(s)
- Lucile Megret
- Sorbonne Université, Centre National de la Recherche Scientifique UMR 8256, INSERM ERL U1164, Paris, France
| | - Barbara Gris
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire Jacques-Louis Lyons (LJLL), Paris, France
| | - Satish Sasidharan Nair
- Sorbonne Université, Centre National de la Recherche Scientifique UMR 8256, INSERM ERL U1164, Paris, France
| | - Jasmin Cevost
- Sorbonne Université, Centre National de la Recherche Scientifique UMR 8256, INSERM ERL U1164, Paris, France
| | - Mary Wertz
- MIT, Broad Institute, MIT, Picower Institute for Learning and Memory, Cambridge, United States
| | | | | | | | | | - Myriam Heiman
- MIT, Broad Institute, MIT, Picower Institute for Learning and Memory, Cambridge, United States
| | - Christian Neri
- Sorbonne Université, Centre National de la Recherche Scientifique UMR 8256, INSERM ERL U1164, Paris, France
| |
Collapse
|
5
|
Cortini A, Bembich S, Marson L, Cocco E, Edomi P. Identification of novel non-myelin biomarkers in multiple sclerosis using an improved phage-display approach. PLoS One 2019; 14:e0226162. [PMID: 31805175 PMCID: PMC6894809 DOI: 10.1371/journal.pone.0226162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Although the etiology of multiple sclerosis is not yet understood, it is accepted that its pathogenesis involves both autoimmune and neurodegenerative processes, in which the role of autoreactive T-cells has been elucidated. Instead, the contribution of humoral response is still unclear, even if the presence of intrathecal antibodies and B-cells follicle-like structures in meninges of patients has been demonstrated. Several myelin and non-myelin antigens have been identified, but none has been validated as humoral biomarker. In particular autoantibodies against myelin proteins have been found also in healthy individuals, whereas non-myelin antigens have been implicated in neurodegenerative phase of the disease. To provide further putative autoantigens of multiple sclerosis, we investigated the antigen specificity of immunoglobulins present both in sera and in cerebrospinal fluid of patients using phage display technology in a new improved format. A human brain cDNA phage display library was constructed and enriched for open-read-frame fragments. This library was selected against pooled and purified immunoglobulins from cerebrospinal fluid and sera of multiple sclerosis patients. The antigen library was also screened against an antibody scFv library obtained from RNA of B cells purified from the cerebrospinal fluid of two relapsing remitting patients. From all biopanning a complex of 14 antigens were identified; in particular, one of these antigens, corresponding to DDX24 protein, was present in all selections. The ability of more frequently isolated antigens to discriminate between sera from patients with multiple sclerosis or other neurological diseases was investigated. The more promising novel candidate autoantigens were DDX24 and TCERG1. Both are implicated in RNA modification and regulation which can be altered in neurodegenerative processes. Therefore, we propose that they could be a marker of a particular disease activity state.
Collapse
Affiliation(s)
- Andrea Cortini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara Bembich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lorena Marson
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, University of Cagliari/ATS Sardegna, Cagliari, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- * E-mail:
| |
Collapse
|
6
|
Pons M, Prieto S, Miguel L, Frebourg T, Campion D, Suñé C, Lecourtois M. Identification of TCERG1 as a new genetic modulator of TDP-43 production in Drosophila. Acta Neuropathol Commun 2018; 6:138. [PMID: 30541625 PMCID: PMC6292132 DOI: 10.1186/s40478-018-0639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
TAR DNA-binding protein-43 (TDP-43) is a ubiquitously expressed DNA-/RNA-binding protein that has been linked to numerous aspects of the mRNA life cycle. Similar to many RNA-binding proteins, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. Cell function and survival depend on the strict control of TDP-43 protein levels. TDP-43 has been identified as the major constituent of ubiquitin-positive inclusions in patients with Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Several observations argue for a pathogenic role of elevated TDP-43 levels in these disorders. Modulation of the cycle of TDP-43 production might therefore provide a new therapeutic strategy. Using a Drosophila model mimicking key features of the TDP-43 autoregulatory feedback loop, we identified CG42724 as a genetic modulator of TDP-43 production in vivo. We found that CG42724 protein influences qualitatively and quantitatively the TDP-43 mRNA transcript pattern. CG42724 overexpression promotes the production of transcripts that can be efficiently released into the cytoplasm for protein translation. Importantly, we showed that TCERG1, the human homolog of the Drosophila CG42724 protein, also caused an increase of TDP-43 protein steady-state levels in mammalian cells. Therefore, our data suggest the possibility that targeting TCERG1 could be therapeutic in TDP-43 proteinopathies.
Collapse
|
7
|
Farina F, Lambert E, Commeau L, Lejeune FX, Roudier N, Fonte C, Parker JA, Boddaert J, Verny M, Baulieu EE, Neri C. The stress response factor daf-16/FOXO is required for multiple compound families to prolong the function of neurons with Huntington's disease. Sci Rep 2017. [PMID: 28638078 PMCID: PMC5479833 DOI: 10.1038/s41598-017-04256-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helping neurons to compensate for proteotoxic stress and maintain function over time (neuronal compensation) has therapeutic potential in aging and neurodegenerative disease. The stress response factor FOXO3 is neuroprotective in models of Huntington’s disease (HD), Parkinson’s disease and motor-neuron diseases. Neuroprotective compounds acting in a FOXO-dependent manner could thus constitute bona fide drugs for promoting neuronal compensation. However, whether FOXO-dependent neuroprotection is a common feature of several compound families remains unknown. Using drug screening in C. elegans nematodes with neuronal expression of human exon-1 huntingtin (128Q), we found that 3ß-Methoxy-Pregnenolone (MAP4343), 17ß-oestradiol (17ßE2) and 12 flavonoids including isoquercitrin promote neuronal function in 128Q nematodes. MAP4343, 17ßE2 and isoquercitrin also promote stress resistance in mutant Htt striatal cells derived from knock-in HD mice. Interestingly, daf-16/FOXO is required for MAP4343, 17ßE2 and isoquercitrin to sustain neuronal function in 128Q nematodes. This similarly applies to the GSK3 inhibitor lithium chloride (LiCl) and, as previously described, to resveratrol and the AMPK activator metformin. Daf-16/FOXO and the targets engaged by these compounds define a sub-network enriched for stress-response and neuronally-active pathways. Collectively, these data highlights the dependence on a daf-16/FOXO-interaction network as a common feature of several compound families for prolonging neuronal function in HD.
Collapse
Affiliation(s)
- Francesca Farina
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - Emmanuel Lambert
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - Lucie Commeau
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - François-Xavier Lejeune
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | | | - Cosima Fonte
- Inserm, UMR 1195, 94276, Le Kremlin-Bicêtre, Cedex, France
| | - J Alex Parker
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,CRCHUM, Montréal, Canada and Department de Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Jacques Boddaert
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,Department of Geriatrics, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris (APHP), 75013, Paris, France
| | - Marc Verny
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,Department of Geriatrics, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris (APHP), 75013, Paris, France
| | - Etienne-Emile Baulieu
- Inserm, UMR 1195, 94276, Le Kremlin-Bicêtre, Cedex, France. .,MAPREG, 94276, Le Kremlin-Bicêtre, Cedex, France.
| | - Christian Neri
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France. .,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.
| |
Collapse
|
8
|
Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017; 56:1199-1217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University , Morgantown, West Virginia 26506, United States.,NanoSAFE, P.O. Box 6223, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
9
|
Miller NJ, Schick K, Timchenko N, Harrison E, Roesler WJ. The Glutamine-Alanine Repeat Domain of TCERG1 is Required for the Inhibition of the Growth Arrest Activity of C/EBPα. J Cell Biochem 2016; 117:612-20. [PMID: 26264132 DOI: 10.1002/jcb.25309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 11/12/2022]
Abstract
TCERG1 was characterized previously as a repressor of the transcription factor C/EBPα through a mechanism that involved relocalization of TCERG1 from nuclear speckles to pericentromeric regions. The inhibitory activity as well as the relocalization activity has been demonstrated to lie in the amino terminal half of the protein, which contains several discrete motifs including an imperfect glutamine-alanine (QA) repeat. In the present study, we showed that deletion of this domain completely abrogated the ability of TCERG1 to inhibit the growth arrest activity of C/EBPα. Moreover, the QA repeat deletion mutant of TCERG1 lost the ability to be relocalized from nuclear speckles to pericentromeric regions, and caused an increase in the average size of individual speckles. We also showed that deletion of the QA repeat abrogated the complex formation between TCERG1 and C/EBPα. Examination of mutants with varying numbers of QA repeats indicated that a minimal number of repeats are required for inhibitory activity as well as relocalization ability. These data contribute to our overall understanding of how TCERG1 can have gene-specific effects in addition to its more general roles in coordinating transcription elongation and splicing.
Collapse
Affiliation(s)
- Nicholas J Miller
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaitlyn Schick
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Emmett Harrison
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - William J Roesler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Transcriptional Elongation Regulator 1 Affects Transcription and Splicing of Genes Associated with Cellular Morphology and Cytoskeleton Dynamics and Is Required for Neurite Outgrowth in Neuroblastoma Cells and Primary Neuronal Cultures. Mol Neurobiol 2016; 54:7808-7823. [PMID: 27844289 DOI: 10.1007/s12035-016-0284-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons affected morphogenesis and resulted in reduced dendritic outgrowth, with a major effect on dendrite ramification and branching complexity. These defects could be rescued by ectopic expression of TCERG1. Our results indicate that TCERG1 affects expression of multiple mRNAs involved in neuron projection development, whose misregulation may be involved in TCERG1-linked neurological disorders.
Collapse
|
11
|
Vázquez-Manrique RP, Farina F, Cambon K, Dolores Sequedo M, Parker AJ, Millán JM, Weiss A, Déglon N, Neri C. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease. Hum Mol Genet 2015; 25:1043-58. [PMID: 26681807 PMCID: PMC4764188 DOI: 10.1093/hmg/ddv513] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD.
Collapse
Affiliation(s)
- Rafael P Vázquez-Manrique
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France, Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France, Molecular, Cellular and Genomic Biomedicine Research Group, Health Research Institute-La Fe and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain,
| | - Francesca Farina
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France, Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - Karine Cambon
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - María Dolores Sequedo
- Molecular, Cellular and Genomic Biomedicine Research Group, Health Research Institute-La Fe and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Alex J Parker
- CRCHUM, Montréal, Canada, Department de Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - José María Millán
- Molecular, Cellular and Genomic Biomedicine Research Group, Health Research Institute-La Fe and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Andreas Weiss
- Evotec AG, Manfred Eigen Campus, Hamburg, Germany and
| | - Nicole Déglon
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Christian Neri
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France, Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France,
| |
Collapse
|
12
|
Becerra S, Andrés-León E, Prieto-Sánchez S, Hernández-Munain C, Suñé C. Prp40 and early events in splice site definition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:17-32. [PMID: 26494226 DOI: 10.1002/wrna.1312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
The alternative splicing (AS) of precursor messenger RNA (pre-mRNA) is a tightly regulated process through which introns are removed to leave the resulting exons in the mRNA appropriately aligned and ligated. The AS of pre-mRNA is a key mechanism for increasing the complexity of proteins encoded in the genome. In humans, more than 90% of genes undergo AS, underscoring the importance of this process in RNA biogenesis. As such, AS misregulation underlies multiple human diseases. The splicing reaction is catalyzed by the spliceosome, a highly dynamic complex that assembles at or near the intron/exon boundaries and undergoes sequential conformational and compositional changes during splicing. The initial recognition of splice sites defines the exons that are going to be removed, which is a critical step in the highly regulated splicing process. Although the available lines of evidence are increasing, the molecular mechanisms governing AS, including the initial interactions occurring at intron/exon boundaries, and the factors that modulate these critical connections by functioning as a scaffold for active-site RNAs or proteins, remain poorly understood. In this review, we summarize the major hallmarks of the initial steps in the splicing process and the role of auxiliary factors that contribute to the assembly of the spliceosomal complex. We also discuss the role of the essential yeast Prp40 protein and its mammalian homologs in the specificity of this pre-mRNA processing event. In addition, we provide the first exhaustive phylogenetic analysis of the molecular evolution of Prp40 family members. WIREs RNA 2016, 7:17-32. doi: 10.1002/wrna.1312 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Soraya Becerra
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| |
Collapse
|
13
|
Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome. Proc Natl Acad Sci U S A 2014; 111:18219-24. [PMID: 25489109 DOI: 10.1073/pnas.1421313111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expansion of a poly-glutamine (polyQ) repeat in a group of functionally unrelated proteins is the cause of several inherited neurodegenerative disorders, including Huntington's disease. The polyQ length-dependent aggregation and toxicity of these disease proteins can be reproduced in Saccharomyces cerevisiae. This system allowed us to screen for genes that when overexpressed reduce the toxic effects of an N-terminal fragment of mutant huntingtin with 103 Q. Surprisingly, among the identified suppressors were three proteins with Q-rich, prion-like domains (PrDs): glycine threonine serine repeat protein (Gts1p), nuclear polyadenylated RNA-binding protein 3, and minichromosome maintenance protein 1. Overexpression of the PrD of Gts1p, containing an imperfect 28 residue glutamine-alanine repeat, was sufficient for suppression of toxicity. Association with this discontinuous polyQ domain did not prevent 103Q aggregation, but altered the physical properties of the aggregates, most likely early in the assembly pathway, as reflected in their increased SDS solubility. Molecular simulations suggested that Gts1p arrests the aggregation of polyQ molecules at the level of nonfibrillar species, acting as a cap that destabilizes intermediates on path to form large fibrils. Quantitative proteomic analysis of polyQ interactors showed that expression of Gts1p reduced the interaction between polyQ and other prion-like proteins, and enhanced the association of molecular chaperones with the aggregates. These findings demonstrate that short, Q-rich peptides are able to shield the interactive surfaces of toxic forms of polyQ proteins and direct them into nontoxic aggregates.
Collapse
|
14
|
Francelle L, Galvan L, Gaillard MC, Guillermier M, Houitte D, Bonvento G, Petit F, Jan C, Dufour N, Hantraye P, Elalouf JM, De Chaldée M, Déglon N, Brouillet E. Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease. Hum Mol Genet 2014; 24:1563-73. [PMID: 25398949 PMCID: PMC4381754 DOI: 10.1093/hmg/ddu571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients.
Collapse
Affiliation(s)
- Laetitia Francelle
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Laurie Galvan
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Martine Guillermier
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Diane Houitte
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Gilles Bonvento
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Fanny Petit
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Caroline Jan
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Noëlle Dufour
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France
| | - Jean-Marc Elalouf
- CEA, iBiTecS, F-91191 Gif-sur-Yvette Cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette Cedex, France, Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette Cedex, France
| | - Michel De Chaldée
- CEA, iBiTecS, F-91191 Gif-sur-Yvette Cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette Cedex, France, Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette Cedex, France
| | - Nicole Déglon
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France, Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neurociences, Lausanne University Hospital, Lausanne, Switzerland
| | - Emmanuel Brouillet
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France, Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, F-92265 Fontenay-aux-Roses, France,
| |
Collapse
|
15
|
Fàbregas A, Sánchez-Hernández N, Ticó JR, García-Montoya E, Pérez-Lozano P, Suñé-Negre JM, Hernández-Munain C, Suñé C, Miñarro M. A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: Development, characterization and DNA binding efficiency of TCERG1 expression plasmid. Int J Pharm 2014; 473:270-9. [DOI: 10.1016/j.ijpharm.2014.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
16
|
Tourette C, Farina F, Vazquez-Manrique RP, Orfila AM, Voisin J, Hernandez S, Offner N, Parker JA, Menet S, Kim J, Lyu J, Choi SH, Cormier K, Edgerly CK, Bordiuk OL, Smith K, Louise A, Halford M, Stacker S, Vert JP, Ferrante RJ, Lu W, Neri C. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant huntingtin pathogenicity. PLoS Biol 2014; 12:e1001895. [PMID: 24960609 PMCID: PMC4068980 DOI: 10.1371/journal.pbio.1001895] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/15/2014] [Indexed: 12/19/2022] Open
Abstract
The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.
Collapse
Affiliation(s)
- Cendrine Tourette
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
- Assistance Publique-Hopitaux de Paris (AP-HP), Charles Foix Hospital, Functional Exploration Unit, Ivry-sur-Seine, France
| | - Francesca Farina
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Rafael P. Vazquez-Manrique
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Anne-Marie Orfila
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Jessica Voisin
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Sonia Hernandez
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Nicolas Offner
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - J. Alex Parker
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Sophie Menet
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Jinho Kim
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jungmok Lyu
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Si Ho Choi
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Kerry Cormier
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christina K. Edgerly
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia L. Bordiuk
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karen Smith
- VA Bedford Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts, United States of America
| | - Anne Louise
- Pasteur Institute, Cytometry Platform, Paris, France
| | - Michael Halford
- Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Steven Stacker
- Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Jean-Philippe Vert
- Mines ParisTech, Center for Computational Biology, Fontainebleau, France
- Curie Institute, Research Center, Paris, France
- INSERM, Unit 900, Paris, France
| | - Robert J. Ferrante
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wange Lu
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Christian Neri
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Bard J, Wall MD, Lazari O, Arjomand J, Munoz-Sanjuan I. Advances in huntington disease drug discovery: novel approaches to model disease phenotypes. ACTA ACUST UNITED AC 2013; 19:191-204. [PMID: 24196395 DOI: 10.1177/1087057113510320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Huntington disease is a monogenic, autosomal dominant, progressive neurodegenerative disorder caused by a trinucleotide CAG repeat expansion in exon 1 of the huntingtin (HTT) gene; age of onset of clinical symptoms inversely correlates with expanded CAG repeat length. HD leads to extensive degeneration of the basal ganglia, hypothalamic nuclei, and selected cortical areas, and a wide range of molecular mechanisms have been implicated in disease pathology in animal or cellular models expressing mutated HTT (mHTT) proteins, either full-length or amino-terminal fragments. However, HD cellular models that recapitulate the slow progression of the disease have not been available due to the toxicity of overexpressed exogenous mHTT or to limitations with using primary cells for long-term studies. Most investigations of the effects of mHTT relied on cytotoxicity or aggregation end points in heterologous systems or in primary embryonic neuroglial cultures derived from HD mouse models. More innovative approaches are currently under active investigation, including screening using electrophysiological endpoints, as well as the recent use of primary blood mononuclear cells and of human embryonic stem cells derived from a variety of HD research participants. Here we describe how these cellular systems are being used to investigate HD biology as well as to identify mechanisms with therapeutic potential.
Collapse
Affiliation(s)
- Jonathan Bard
- 1CHDI Management/CHDI Foundation, Princeton, NJ, and Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
18
|
Blum ES, Schwendeman AR, Shaham S. PolyQ disease: misfiring of a developmental cell death program? Trends Cell Biol 2012; 23:168-74. [PMID: 23228508 DOI: 10.1016/j.tcb.2012.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022]
Abstract
Polyglutamine (polyQ) repeat diseases are neurodegenerative ailments elicited by glutamine-encoding CAG nucleotide expansions within endogenous human genes. Despite efforts to understand the basis of these diseases, the precise mechanism of cell death remains stubbornly unclear. Much of the data seem to be consistent with a model in which toxicity is an inherent property of the polyQ repeat, whereas host protein sequences surrounding the polyQ expansion modulate severity, age of onset, and cell specificity. Recently, a gene, pqn-41, encoding a glutamine-rich protein, was found to promote normally occurring non-apoptotic cell death in Caenorhabditis elegans. Here we review evidence for toxic and modulatory roles for polyQ repeats and their host proteins, respectively, and suggest similarities with pqn-41 function. We explore the hypothesis that toxicity mediated by glutamine-rich motifs may be important not only in pathology, but also in normal development.
Collapse
Affiliation(s)
- Elyse S Blum
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
19
|
Integration of β-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci 2012; 32:12630-40. [PMID: 22956852 DOI: 10.1523/jneurosci.0277-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the current challenges of neurodegenerative disease research is to determine whether signaling pathways that are essential to cellular homeostasis might contribute to neuronal survival and modulate the pathogenic process in human disease. In Caenorhabditis elegans, sir-2.1/SIRT1 overexpression protects neurons from the early phases of expanded polyglutamine (polyQ) toxicity, and this protection requires the longevity-promoting factor daf-16/FOXO. Here, we show that this neuroprotective effect also requires the DAF-16/FOXO partner bar-1/β-catenin and putative DAF-16-regulated gene ucp-4, the sole mitochondrial uncoupling protein (UCP) in nematodes. These results fit with a previously proposed mechanism in which the β-catenin FOXO and SIRT1 proteins may together regulate gene expression and cell survival. Knockdown of β-catenin enhanced the vulnerability to cell death of mutant-huntingtin striatal cells derived from the HdhQ111 knock-in mice. In addition, this effect was compensated by SIRT1 overexpression and accompanied by the modulation of neuronal UCP expression levels, further highlighting a cross-talk between β-catenin and SIRT1 in the modulation of mutant polyQ cytoxicity. Taken together, these results suggest that integration of β-catenin, sirtuin and FOXO signaling protects from the early phases of mutant huntingtin toxicity.
Collapse
|
20
|
Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 2012; 46:430-66. [PMID: 22944909 PMCID: PMC3461214 DOI: 10.1007/s12035-012-8316-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022]
Abstract
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Collapse
Affiliation(s)
- Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
21
|
Gau SSF, Liao HM, Hong CC, Chien WH, Chen CH. Identification of two inherited copy number variants in a male with autism supports two-hit and compound heterozygosity models of autism. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:710-7. [PMID: 22778016 DOI: 10.1002/ajmg.b.32074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/06/2012] [Indexed: 01/08/2023]
Abstract
Autism is a childhood-onset neurodevelopmental disorder with complex genetic mechanism underlying its etiology. Recent studies revealed that a few single de novo copy number variants of genomic DNA (copy number variants [CNVs]) are pathogenic and causal in some sporadic cases, adding support to the hypothesis that some sporadic autism might be caused by single rare mutation with large clinical effect. In this study, we report the detection of two novel private CNVs simultaneously in a male patient with autism. These two CNVs include a microduplication of ~4.5 Mb at chromosome 4q12-13.1 that was transmitted from his mother and a microdeletion of ~1.8 Mb at 5q32 that was transmitted from his father. Several genes such as LPHN3, POU4F3, SH3RF2, and TCERG1 mapped to these two regions have psychiatric implications. However, the parents had only mild degree of attention deficit symptoms but did not demonstrate any obvious autistic symptoms or psychopathology. Our findings indicate that each of these two CNVs alone may not be pathogenic enough to cause clinical symptoms in their respective carriers, and hence they can be transmitted within each individual family. However, concomitant presence of these two CNVs might result in the clinical phenotypes of the affected patient reported here. Thus, our report of this family may represent an example to show that two hits of CNV and the presence of compound heterozygosity might be important mechanisms underlying the pathogenesis of autism.
Collapse
Affiliation(s)
- Susan Shur-Fen Gau
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
22
|
Montes M, Becerra S, Sánchez-Álvarez M, Suñé C. Functional coupling of transcription and splicing. Gene 2012; 501:104-17. [DOI: 10.1016/j.gene.2012.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/13/2023]
|
23
|
Yin L, Unger EL, Jellen LC, Earley CJ, Allen RP, Tomaszewicz A, Fleet JC, Jones BC. Systems genetic analysis of multivariate response to iron deficiency in mice. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1282-96. [PMID: 22461179 DOI: 10.1152/ajpregu.00634.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to identify genes that influence iron regulation under varying dietary iron availability. Male and female mice from 20+ BXD recombinant inbred strains were fed iron-poor or iron-adequate diets from weaning until 4 mo of age. At death, the spleen, liver, and blood were harvested for the measurement of hemoglobin, hematocrit, total iron binding capacity, transferrin saturation, and liver, spleen and plasma iron concentration. For each measure and diet, we found large, strain-related variability. A principal-components analysis (PCA) was performed on the strain means for the seven parameters under each dietary condition for each sex, followed by quantitative trait loci (QTL) analysis on the factors. Compared with the iron-adequate diet, iron deficiency altered the factor structure of the principal components. QTL analysis, combined with PosMed (a candidate gene searching system) published gene expression data and literature citations, identified seven candidate genes, Ptprd, Mdm1, Picalm, lip1, Tcerg1, Skp2, and Frzb based on PCA factor, diet, and sex. Expression of each of these is cis-regulated, significantly correlated with the corresponding PCA factor, and previously reported to regulate iron, directly or indirectly. We propose that polymorphisms in multiple genes underlie individual differences in iron regulation, especially in response to dietary iron challenge. This research shows that iron management is a highly complex trait, influenced by multiple genes. Systems genetics analysis of iron homeostasis holds promise for developing new methods for prevention and treatment of iron deficiency anemia and related diseases.
Collapse
Affiliation(s)
- Lina Yin
- Graduate Program in Neuroscience,The Pennsylvania State University, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012; 421:466-90. [PMID: 22306404 DOI: 10.1016/j.jmb.2012.01.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 01/08/2023]
Abstract
Polyglutamine (polyQ) sequences of unknown normal function are present in a significant number of proteins, and their repeat expansion is associated with a number of genetic neurodegenerative diseases. PolyQ solution structure and properties are important not only because of the normal and abnormal biology associated with these sequences but also because they represent an interesting case of a biologically relevant homopolymer. As the common thread in expanded polyQ repeat diseases, it is important to understand the structure and properties of simple polyQ sequences. At the same time, experience has shown that sequences attached to polyQ, whether in artificial constructs or in disease proteins, can influence structure and properties. The two major contenders for the molecular source of the neurotoxicity implicit in polyQ expansion within disease proteins are a populated toxic conformation in the monomer ensemble and a toxic aggregated species. This review summarizes experimental and computational studies on the solution structure and aggregation properties of both simple and complex polyQ sequences, and their repeat-length dependence. As a representative of complex polyQ proteins, the behavior of huntingtin N-terminal fragments, such as exon-1, receives special attention.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
25
|
Ruiz M, Déglon N. Viral-mediated overexpression of mutant huntingtin to model HD in various species. Neurobiol Dis 2011; 48:202-11. [PMID: 21889981 DOI: 10.1016/j.nbd.2011.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/11/2011] [Accepted: 08/18/2011] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin (Htt) gene. Despite intensive efforts devoted to investigating the mechanisms of its pathogenesis, effective treatments for this devastating disease remain unavailable. The lack of suitable models recapitulating the entire spectrum of the degenerative process has severely hindered the identification and validation of therapeutic strategies. The discovery that the degeneration in HD is caused by a mutation in a single gene has offered new opportunities to develop experimental models of HD, ranging from in vitro models to transgenic primates. However, recent advances in viral-vector technology provide promising alternatives based on the direct transfer of genes to selected sub-regions of the brain. Rodent studies have shown that overexpression of mutant human Htt in the striatum using adeno-associated virus or lentivirus vectors induces progressive neurodegeneration, which resembles that seen in HD. This article highlights progress made in modeling HD using viral vector gene transfer. We describe data obtained with of this highly flexible approach for the targeted overexpression of a disease-causing gene. The ability to deliver mutant Htt to specific tissues has opened pathological processes to experimental analysis and allowed targeted therapeutic development in rodent and primate pre-clinical models.
Collapse
Affiliation(s)
- Marta Ruiz
- Atomic Energy Commission (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | | |
Collapse
|
26
|
Roze E, Cahill E, Martin E, Bonnet C, Vanhoutte P, Betuing S, Caboche J. Huntington's Disease and Striatal Signaling. Front Neuroanat 2011; 5:55. [PMID: 22007160 PMCID: PMC3188786 DOI: 10.3389/fnana.2011.00055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/04/2011] [Indexed: 12/05/2022] Open
Abstract
Huntington’s Disease (HD) is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG). The main clinical manifestations of HD are chorea, cognitive impairment, and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset and continues throughout the period of manifest illness. Therefore, patients could theoretically benefit from therapy at early stages of the disease. One important characteristic of HD is the striatal vulnerability to neurodegeneration, despite similar expression of the protein in other brain areas. Aggregation of the mutated Huntingtin (HTT), impaired axonal transport, excitotoxicity, transcriptional dysregulation as well as mitochondrial dysfunction, and energy deficits, are all part of the cellular events that underlie neuronal dysfunction and striatal death. Among these non-exclusive mechanisms, an alteration of striatal signaling is thought to orchestrate the downstream events involved in the cascade of striatal dysfunction.
Collapse
Affiliation(s)
- Emmanuel Roze
- UMRS 952, INSERM, UMR 7224, CNRS Université Pierre et Marie Curie - Paris-6 Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Fidan Z, Younis A, Schmieder P, Volkmer R. Chemical synthesis of the third WW domain of TCERG 1 by native chemical ligation. J Pept Sci 2011; 17:644-9. [DOI: 10.1002/psc.1383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 12/30/2022]
|
28
|
Prasad K, Prabhu GK. Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research-a review. J Med Syst 2011; 36:2621-31. [PMID: 21584771 DOI: 10.1007/s10916-011-9737-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study is to review the methods being used for image analysis of microscopic views of immunohistochemically stained specimen in medical research. The solutions available range from general purpose software to commercial packages. Many studies have developed their own custom written programs based on some general purpose software available. Many groups have reported development of computer aided image analysis programs aiming at obtaining faster, simpler and cheaper solutions. Image analysis tools namely Aperio, Lucia, Metaview, Metamorph, ImageJ, Scion, Adobe Photoshop, Image Pro Plus are also used for evaluation of expressions using immunohistochemical staining. An overview of such methods used for image analysis is provided in this paper. This study concludes that there is good scope for development of freely available software for staining intensity quantification, which a medical researcher could easily use without requiring high level computer skills.
Collapse
Affiliation(s)
- Keerthana Prasad
- Manipal Centre for Information Science, Manipal University, Manipal, India.
| | | |
Collapse
|
29
|
Prasad K, Prabhu GK. Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research-a review. J Med Syst 2011. [PMID: 21584771 DOI: 10.1007/s10916-011-9737-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study is to review the methods being used for image analysis of microscopic views of immunohistochemically stained specimen in medical research. The solutions available range from general purpose software to commercial packages. Many studies have developed their own custom written programs based on some general purpose software available. Many groups have reported development of computer aided image analysis programs aiming at obtaining faster, simpler and cheaper solutions. Image analysis tools namely Aperio, Lucia, Metaview, Metamorph, ImageJ, Scion, Adobe Photoshop, Image Pro Plus are also used for evaluation of expressions using immunohistochemical staining. An overview of such methods used for image analysis is provided in this paper. This study concludes that there is good scope for development of freely available software for staining intensity quantification, which a medical researcher could easily use without requiring high level computer skills.
Collapse
Affiliation(s)
- Keerthana Prasad
- Manipal Centre for Information Science, Manipal University, Manipal, India.
| | | |
Collapse
|
30
|
Alves S, Nascimento-Ferreira I, Dufour N, Hassig R, Auregan G, Nóbrega C, Brouillet E, Hantraye P, Pedroso de Lima MC, Déglon N, de Almeida LP. Silencing ataxin-3 mitigates degeneration in a rat model of Machado-Joseph disease: no role for wild-type ataxin-3? Hum Mol Genet 2010; 19:2380-94. [PMID: 20308049 DOI: 10.1093/hmg/ddq111] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Machado-Joseph disease or spinocerebellar ataxia type 3 (MJD/SCA3) is a fatal, autosomal dominant disorder caused by a cytosine-adenine-guanine expansion in the coding region of the MJD1 gene. RNA interference has potential as a therapeutic approach but raises the issue of the role of wild-type ataxin-3 (WT ATX3) in MJD and of whether the expression of the wild-type protein must be maintained. To address this issue, we both overexpressed and silenced WT ATX3 in a rat model of MJD. We showed that (i) overexpression of WT ATX3 did not protect against MJD pathology, (ii) knockdown of WT ATX3 did not aggravate MJD pathology and that (iii) non-allele-specific silencing of ataxin-3 strongly reduced neuropathology in a rat model of MJD. Our findings indicate that therapeutic strategies involving non-allele-specific silencing to treat MJD patients may be safe and effective.
Collapse
Affiliation(s)
- Sandro Alves
- Center for Neurosciences & Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sánchez-Álvarez M, Montes M, Sánchez-Hernández N, Hernández-Munain C, Suñé C. Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1). J Biol Chem 2010; 285:15220-15233. [PMID: 20215116 DOI: 10.1074/jbc.m109.063750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of proteins by small ubiquitin-like modifier (SUMO) is emerging as an important control of transcription and RNA processing. The human factor TCERG1 (also known as CA150) participates in transcriptional elongation and alternative splicing of pre-mRNAs. Here, we report that SUMO family proteins modify TCERG1. Furthermore, TCERG1 binds to the E2 SUMO-conjugating enzyme Ubc9. Two lysines (Lys-503 and Lys-608) of TCERG1 are the major sumoylation sites. Sumoylation does not affect localization of TCERG1 to the splicing factor-rich nuclear speckles or the alternative splicing function of TCERG1. However, mutation of the SUMO acceptor lysine residues enhanced TCERG1 transcriptional activity, indicating that SUMO modification negatively regulates TCERG1 transcriptional activity. These results reveal a regulatory role for sumoylation in controlling the activity of a transcription factor that modulates RNA polymerase II elongation and mRNA alternative processing, which are discriminated differently by this post-translational modification.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain; Departments of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra," Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Marta Montes
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Noemí Sánchez-Hernández
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Cristina Hernández-Munain
- Departments of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra," Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | - Carlos Suñé
- Departments of Molecular Biology, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain.
| |
Collapse
|
32
|
|
33
|
Banman SL, McFie PJ, Wilson HL, Roesler WJ. Nuclear redistribution of TCERG1 is required for its ability to inhibit the transcriptional and anti-proliferative activities of C/EBPα. J Cell Biochem 2009; 109:140-51. [DOI: 10.1002/jcb.22391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Diguet E, Petit F, Escartin C, Cambon K, Bizat N, Dufour N, Hantraye P, Déglon N, Brouillet E. Normal aging modulates the neurotoxicity of mutant huntingtin. PLoS One 2009; 4:e4637. [PMID: 19247483 PMCID: PMC2645678 DOI: 10.1371/journal.pone.0004637] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/26/2009] [Indexed: 11/20/2022] Open
Abstract
Aging likely plays a role in neurodegenerative disorders. In Huntington's disease (HD), a disorder caused by an abnormal expansion of a polyglutamine tract in the protein huntingtin (Htt), the role of aging is unclear. For a given tract length, the probability of disease onset increases with age. There are mainly two hypotheses that could explain adult onset in HD: Either mutant Htt progressively produces cumulative defects over time or "normal" aging renders neurons more vulnerable to mutant Htt toxicity. In the present study, we directly explored whether aging affected the toxicity of mutant Htt in vivo. We studied the impact of aging on the effects produced by overexpression of an N-terminal fragment of mutant Htt, of wild-type Htt or of a beta-Galactosidase (beta-Gal) reporter gene in the rat striatum. Stereotaxic injections of lentiviral vectors were performed simultaneously in young (3 week) and old (15 month) rats. Histological evaluation at different time points after infection demonstrated that the expression of mutant Htt led to pathological changes that were more severe in old rats, including an increase in the number of small Htt-containing aggregates in the neuropil, a greater loss of DARPP-32 immunoreactivity and striatal neurons as assessed by unbiased stereological counts.The present results support the hypothesis that "normal" aging is involved in HD pathogenesis, and suggest that age-related cellular defects might constitute potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Elsa Diguet
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Fanny Petit
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Carole Escartin
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Karine Cambon
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Nicolas Bizat
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Noëlle Dufour
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Philippe Hantraye
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Nicole Déglon
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Emmanuel Brouillet
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| |
Collapse
|
35
|
Roze E, Betuing S, Deyts C, Vidailhet M, Caboche J. Physiopathologie de la maladie de Huntington : état des connaissances. Rev Neurol (Paris) 2008; 164:977-94. [DOI: 10.1016/j.neurol.2008.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/28/2008] [Accepted: 03/26/2008] [Indexed: 12/16/2022]
|
36
|
Alves S, Nascimento-Ferreira I, Auregan G, Hassig R, Dufour N, Brouillet E, Pedroso de Lima MC, Hantraye P, Pereira de Almeida L, Déglon N. Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. PLoS One 2008; 3:e3341. [PMID: 18841197 PMCID: PMC2553199 DOI: 10.1371/journal.pone.0003341] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 09/11/2008] [Indexed: 01/29/2023] Open
Abstract
Recent studies have demonstrated that RNAi is a promising approach for treating autosomal dominant disorders. However, discrimination between wild-type and mutant transcripts is essential, to preserve wild-type expression and function. A single nucleotide polymorphism (SNP) is present in more than 70% of patients with Machado-Joseph disease (MJD). We investigated whether this SNP could be used to inactivate mutant ataxin-3 selectively. Lentiviral-mediated silencing of mutant human ataxin-3 was demonstrated in vitro and in a rat model of MJD in vivo. The allele-specific silencing of ataxin-3 significantly decreased the severity of the neuropathological abnormalities associated with MJD. These data demonstrate that RNAi has potential for use in MJD treatment and constitute the first proof-of-principle for allele-specific silencing in the central nervous system.
Collapse
Affiliation(s)
- Sandro Alves
- Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CEA, Institute of Molecular Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Orsay, France
| | - Isabel Nascimento-Ferreira
- Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Gwennaëlle Auregan
- CEA, Institute of Molecular Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Orsay, France
- CNRS URA 2210, Orsay, France
| | - Raymonde Hassig
- CEA, Institute of Molecular Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Orsay, France
- CNRS URA 2210, Orsay, France
| | - Noëlle Dufour
- CEA, Institute of Molecular Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Orsay, France
- CNRS URA 2210, Orsay, France
| | - Emmanuel Brouillet
- CEA, Institute of Molecular Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Orsay, France
- CNRS URA 2210, Orsay, France
| | - Maria C. Pedroso de Lima
- Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Sciences, University of Coimbra, Coimbra, Portugal
| | - Philippe Hantraye
- CEA, Institute of Molecular Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Orsay, France
- CNRS URA 2210, Orsay, France
| | - Luís Pereira de Almeida
- Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- * E-mail:
| | - Nicole Déglon
- CEA, Institute of Molecular Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Orsay, France
- CNRS URA 2210, Orsay, France
| |
Collapse
|
37
|
Pathophysiology of Huntington's disease: from huntingtin functions to potential treatments. Curr Opin Neurol 2008; 21:497-503. [PMID: 18607213 DOI: 10.1097/wco.0b013e328304b692] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Drugs used to treat Huntington's disease act on the symptoms but do not slow the disease process itself. This review focuses on recent pathogenetic findings and on emerging therapeutic approaches. RECENT FINDINGS Basic research is providing novel insights into the complex molecular pathways involved in the pathogenesis of Huntington's disease. Several mechanisms have been identified that mediate neuronal dysfunction and death; these include neuronal aggregation of the mutated protein, transcriptional dysregulation, excitotoxicity, altered energy metabolism, impaired axonal transport, and altered synaptic transmission. Recent experimental works have identified potential new therapeutic targets. In particular, they emphasize the role of altered histone modifications in transcriptional dysregulation, the synergistic action of glutamatergic and dopaminergic pathways in inducing excitotoxicity, the neuroprotective effect of brain-derived neurotrophic factor expression and transport restoration, and the possibility of reducing the expression of the mutant protein huntingtin and its deleterious effects by using short interfering mRNAs. SUMMARY Successful neuroprotective therapy for Huntington's disease patients is likely to involve a combined approach targeting both cellular and molecular mediators that account for the toxicity of mutated huntingtin.
Collapse
|
38
|
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.
Collapse
|
39
|
Bantubungi K, Blum D, Cuvelier L, Wislet-Gendebien S, Rogister B, Brouillet E, Schiffmann SN. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci 2008; 37:454-70. [DOI: 10.1016/j.mcn.2007.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 10/23/2007] [Accepted: 11/02/2007] [Indexed: 01/19/2023] Open
|
40
|
Benchoua A, Trioulier Y, Diguet E, Malgorn C, Gaillard MC, Dufour N, Elalouf JM, Krajewski S, Hantraye P, Déglon N, Brouillet E. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum Mol Genet 2008; 17:1446-56. [PMID: 18267960 PMCID: PMC2367694 DOI: 10.1093/hmg/ddn033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In neurodegenerative disorders associated with primary or secondary mitochondrial defects such as Huntington's disease (HD), cells of the striatum are particularly vulnerable to cell death, although the mechanisms by which this cell death is induced are unclear. Dopamine, found in high concentrations in the striatum, may play a role in striatal cell death. We show that in primary striatal cultures, dopamine increases the toxicity of an N-terminal fragment of mutated huntingtin (Htt-171-82Q). Mitochondrial complex II protein (mCII) levels are reduced in HD striatum, indicating that this protein may be important for dopamine-mediated striatal cell death. We found that dopamine enhances the toxicity of the selective mCII inhibitor, 3-nitropropionic acid. We also demonstrated that dopamine doses that are insufficient to produce cell loss regulate mCII expression at the mRNA, protein and catalytic activity level. We also show that dopamine-induced down-regulation of mCII levels can be blocked by several dopamine D2 receptor antagonists. Sustained overexpression of mCII subunits using lentiviral vectors abrogated the effects of dopamine, both by high dopamine concentrations alone and neuronal death induced by low dopamine concentrations together with Htt-171-82Q. This novel pathway links dopamine signaling and regulation of mCII activity and could play a key role in oxidative energy metabolism and explain the vulnerability of the striatum in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandra Benchoua
- Unité de Recherche Associée, Commissariat à l'Energie Atomique (CEA)-Centre Nationale de la Recherche Scientifique (CNRS) 2210, Service Hospitalier Frédéric Joliot, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pearson JL, Robinson TJ, Muñoz MJ, Kornblihtt AR, Garcia-Blanco MA. Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing. J Biol Chem 2008; 283:7949-61. [PMID: 18187414 DOI: 10.1074/jbc.m709402200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The transcription factor TCERG1 (also known as CA150) associates with RNA polymerase II holoenzyme and alters the elongation efficiency of reporter transcripts. TCERG1 is also found as a component of highly purified spliceosomes and has been implicated in splicing. To elucidate the function of TCERG1, we used short interfering RNA-mediated knockdown followed by en masse gene expression analysis to identify its cellular targets. Analysis of data from HEK293 and HeLa cells identified high confidence targets of TCERG1. We found that targets of TCERG1 were enriched in microRNA-binding sites, suggesting the possibility of post-transcriptional regulation. Consistently, reverse transcription-PCR analysis revealed that many of the changes observed upon TCERG1 knockdown were because of differences in alternative mRNA processing of the 3'-untranslated regions. Furthermore, a novel computational approach, which can identify alternatively processed events from conventional microarray data, showed that TCERG1 led to widespread alterations in mRNA processing. These findings provide the strongest support to date for a role of TCERG1 in mRNA processing and are consistent with proposals that TCERG1 couples transcription and processing.
Collapse
Affiliation(s)
- James L Pearson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
42
|
HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity. Hum Mol Genet 2007; 17:240-55. [DOI: 10.1093/hmg/ddm301] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
43
|
Perrin V, Régulier E, Abbas-Terki T, Hassig R, Brouillet E, Aebischer P, Luthi-Carter R, Déglon N. Neuroprotection by Hsp104 and Hsp27 in Lentiviral-based Rat Models of Huntington's Disease. Mol Ther 2007; 15:903-11. [PMID: 17375066 DOI: 10.1038/mt.sj.6300141] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion of glutamine repeats in the huntingtin (htt) protein. Abnormal protein folding and the accumulation of mutated htt are hallmarks of HD neuropathology. Heat-shock proteins (hsps), which refold denatured proteins, might therefore mitigate HD. We show here that hsp104 and hsp27 rescue striatal dysfunction in primary neuronal cultures and HD rat models based on lentiviral-mediated overexpression of a mutated htt fragment. In primary rat striatal cultures, production of hsp104 or hsp27 with htt171-82Q restored neuronal nuclei (NeuN)-positive cell density to that measured after infection with vector expressing the wild-type htt fragment (htt171-19Q). In vivo, both chaperones significantly reduced mutated-htt-related loss of DARPP-32 expression. Furthermore, hsps affected the distribution and size of htt inclusions, with the density of neuritic aggregates being remarkably increased in striatal neurons overexpressing hsps. We also found that htt171-82Q induced the up-regulation of endogenous hsp70 that was co-localized with htt inclusions, and that the overexpression of hsp104 and hsp27 modified the subcellular localization of hsp70 that became cytoplasmic. Finally, hsp104 induced the production of endogenous hsp27. These data demonstrate the protective effects of chaperones in mammalian models of HD.
Collapse
Affiliation(s)
- Valérie Perrin
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Conforti L, Adalbert R, Coleman MP. Neuronal death: where does the end begin? Trends Neurosci 2007; 30:159-66. [PMID: 17339056 DOI: 10.1016/j.tins.2007.02.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/22/2007] [Accepted: 02/19/2007] [Indexed: 11/21/2022]
Abstract
Neurodegenerative disorders involve death of cell bodies, axons, dendrites and synapses, but it is surprisingly difficult to determine the spatiotemporal sequence of events and the causal relationships among these events. Neuronal compartments often crucially depend upon one another for survival, and molecular defects in one compartment can trigger cellular degeneration in distant parts of the neuron. Here, we consider the novel approaches used to understand these biologically complex and technically challenging questions in amyotrophic lateral sclerosis, spinal muscular atrophy, glaucoma, Alzheimer's disease, Parkinson's disease and polyglutamine disorders. We conclude that there is partial understanding of what degenerates first and why, but that controversy remains the rule not the exception. Finally, we highlight strategies for resolving these fundamental issues.
Collapse
Affiliation(s)
- Laura Conforti
- The Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | | | | |
Collapse
|
45
|
Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR. General structural motifs of amyloid protofilaments. Proc Natl Acad Sci U S A 2006; 103:16248-53. [PMID: 17060612 PMCID: PMC1637568 DOI: 10.1073/pnas.0607815103] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human CA150, a transcriptional activator, binds to and is co-deposited with huntingtin during Huntington's disease. The second WW domain of CA150 is a three-stranded beta-sheet that folds in vitro in microseconds and forms amyloid fibers under physiological conditions. We found from exhaustive alanine scanning studies that fibrillation of this WW domain begins from its denatured conformations, and we identified a subset of residues critical for fibril formation. We used high-resolution magic-angle-spinning NMR studies on site-specific isotopically labeled fibrils to identify abundant long-range interactions between side chains. The distribution of critical residues identified by the alanine scanning and NMR spectroscopy, along with the electron microscopy data, revealed the protofilament repeat unit: a 26-residue non-native beta-hairpin. The structure we report has similarities to the hairpin formed by the A(beta)((1-40)) protofilament, yet also contains closely packed side-chains in a "steric zipper" arrangement found in the cross-beta spine formed from small peptides from the Sup35 prion protein. Fibrillation of unrelated amyloidogenic sequences shows the common feature of zippered repeat units that act as templates for fiber elongation.
Collapse
Affiliation(s)
- Neil Ferguson
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence may be addressed. E-mail:
, , or
| | - Johanna Becker
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Henning Tidow
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sandra Tremmel
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Timothy D. Sharpe
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Jeremy Flinders
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Miriana Petrovich
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John Berriman
- New York Structural Biology Center, 89 Covent Avenue at 133rd Street, New York, NY 10027
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
- To whom correspondence may be addressed. E-mail:
, , or
| | - Alan R. Fersht
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|