1
|
Carrasco A, Tamura A, Pommer S, Chouinard JA, Kurima K, Barzaghi P, Wickens JR. Multiparametric assessment of the impact of opsin expression and anesthesia on striatal cholinergic neurons and auditory brainstem activity. J Comp Neurol 2020; 528:787-804. [PMID: 31625606 DOI: 10.1002/cne.24795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 11/08/2022]
Abstract
Recent developments in genetic engineering have established murine models that permit the selective control of cholinergic neurons via optical stimulation. Despite copious benefits granted by these experimental advances, the sensory physiognomy of these organisms has remained poorly understood. Therefore, the present study evaluates sensory and neuronal response properties of animal models developed for the study of optically induced acetylcholine release regulation. Auditory brainstem responses, fluorescence imaging, and patch clamp recording techniques were used to assess the impact of viral infection, sex, age, and anesthetic agents across the ascending auditory pathway of ChAT-Cre and ChAT-ChR2(Ai32) mice. Data analyses revealed that neither genetic configuration nor adeno-associated viral infection alters the early stages of auditory processing or the cellular response properties of cholinergic neurons. However, anesthetic agent and dosage amount profoundly modulate the response properties of brainstem neurons. Last, analyses of age-related hearing loss in virally infected ChAT-Cre mice did not differ from those reported in wild type animals. This investigation demonstrates that ChAT-Cre and ChAT-ChR2(Ai32) mice are viable models for the study of cholinergic modulation in auditory processing, and it emphasizes the need for prudence in the selection of anesthetic procedures.
Collapse
Affiliation(s)
- Andres Carrasco
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Atsushi Tamura
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Stefan Pommer
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Julie A Chouinard
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kiyoto Kurima
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Paolo Barzaghi
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Jeffery R Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
2
|
Butler BE, de la Rua A, Ward-Able T, Lomber SG. Cortical and thalamic connectivity to the second auditory cortex of the cat is resilient to the onset of deafness. Brain Struct Funct 2017; 223:819-835. [PMID: 28940055 DOI: 10.1007/s00429-017-1523-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
It has been well established that following sensory loss, cortical areas that would normally be involved in perceiving stimuli in the absent modality are recruited to subserve the remaining senses. Despite this compensatory functional reorganization, there is little evidence to date for any substantial change in the patterns of anatomical connectivity between sensory cortices. However, while many auditory areas are contracted in the deaf, the second auditory cortex (A2) of the cat undergoes a volumetric expansion following hearing loss, suggesting this cortical area may demonstrate a region-specific pattern of structural reorganization. To address this hypothesis, and to complement existing literature on connectivity within auditory cortex, we injected a retrograde neuronal tracer across the breadth and cortical thickness of A2 to provide the first comprehensive quantification of projections from cortical and thalamic auditory and non-auditory regions to the second auditory cortex, and to determine how these patterns are affected by the onset of deafness. Neural projections arising from auditory, visual, somatomotor, and limbic cortices, as well as thalamic nuclei, were compared across normal hearing, early-deaf, and late-deaf animals. The results demonstrate that, despite previously identified changes in A2 volume, the pattern of projections into this cortical region are unaffected by the onset of hearing loss. These results fail to support the idea that crossmodal plasticity reflects changes in the pattern of projections between cortical regions and provides evidence that the pattern of connectivity that supports normal hearing is retained in the deaf brain.
Collapse
Affiliation(s)
- Blake E Butler
- Cerebral Systems Laboratory, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Brain and Mind Institute, University of Western Ontario, London, ON, N6A 5B7, Canada. .,National Centre for Audiology, University of Western Ontario, London, ON, N6G 1H1, Canada.
| | - Alexandra de la Rua
- Cerebral Systems Laboratory, University of Western Ontario, London, ON, N6A 5C2, Canada.,Neuroscience Undergraduate Program, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Taylor Ward-Able
- Cerebral Systems Laboratory, University of Western Ontario, London, ON, N6A 5C2, Canada.,Neuroscience Undergraduate Program, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Stephen G Lomber
- Cerebral Systems Laboratory, University of Western Ontario, London, ON, N6A 5C2, Canada.,Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada.,Brain and Mind Institute, University of Western Ontario, London, ON, N6A 5B7, Canada.,National Centre for Audiology, University of Western Ontario, London, ON, N6G 1H1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
3
|
Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat. PLoS Biol 2016; 14:e1002397. [PMID: 26950883 PMCID: PMC4780834 DOI: 10.1371/journal.pbio.1002397] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. This study of higher-order auditory cortex strengthens the case for long-latency stimulus-specific adaptation as a genuine neural correlate of the mismatch negativity, which flags salient stimuli. Sensory systems automatically detect salient events in a monotonous ambient background. In humans, this change detection process is indexed by the mismatch negativity (MMN), a mid-late component of the auditory-evoked potentials that has become a central tool in cognitive and clinical neuroscience over the last 40 years. However, the neuronal correlate of MMN remains controversial. Stimulus-specific adaptation (SSA) is a special type of adaptation recorded at the neuronal level in the auditory pathway. Attenuating the response only to repetitive, background stimuli is a very efficient mechanism to enhance the saliency of any upcoming deviant or novel stimulus. Thus, SSA was originally proposed as a neural correlate of the MMN, but previous studies in the auditory cortex reported SSA only at very early latencies (circa 20–30 ms) and only within the primary auditory cortex (A1), whereas MMN analogs in the rat occur later, between 50 and 100 ms after change onset, and are generated mainly within nonprimary fields. Here, we report very strong SSA in nonprimary fields within the latency range of the MMN in the rat, providing empirical evidence of the missing link between single neuron response studies in animal models and the human MMN.
Collapse
|
4
|
High-field fMRI reveals tonotopically-organized and core auditory cortex in the cat. Hear Res 2015; 325:1-11. [DOI: 10.1016/j.heares.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/26/2015] [Accepted: 03/05/2015] [Indexed: 01/12/2023]
|
5
|
Malmierca MS, Anderson LA, Antunes FM. The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding. Front Syst Neurosci 2015; 9:19. [PMID: 25805974 PMCID: PMC4353371 DOI: 10.3389/fnsys.2015.00019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 02/02/2023] Open
Abstract
To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should “trigger” the network’s response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex.
Collapse
Affiliation(s)
- Manuel S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain ; Faculty of Medicine, Department of Cell Biology and Pathology, University of Salamanca Salamanca, Spain
| | - Lucy A Anderson
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain
| | - Flora M Antunes
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain
| |
Collapse
|
6
|
Kok MA, Stolzberg D, Brown TA, Lomber SG. Dissociable influences of primary auditory cortex and the posterior auditory field on neuronal responses in the dorsal zone of auditory cortex. J Neurophysiol 2015; 113:475-86. [PMID: 25339709 DOI: 10.1152/jn.00682.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Current models of hierarchical processing in auditory cortex have been based principally on anatomical connectivity while functional interactions between individual regions have remained largely unexplored. Previous cortical deactivation studies in the cat have addressed functional reciprocal connectivity between primary auditory cortex (A1) and other hierarchically lower level fields. The present study sought to assess the functional contribution of inputs along multiple stages of the current hierarchical model to a higher order area, the dorsal zone (DZ) of auditory cortex, in the anaesthetized cat. Cryoloops were placed over A1 and posterior auditory field (PAF). Multiunit neuronal responses to noise burst and tonal stimuli were recorded in DZ during cortical deactivation of each field individually and in concert. Deactivation of A1 suppressed peak neuronal responses in DZ regardless of stimulus and resulted in increased minimum thresholds and reduced absolute bandwidths for tone frequency receptive fields in DZ. PAF deactivation had less robust effects on DZ firing rates and receptive fields compared with A1 deactivation, and combined A1/PAF cooling was largely driven by the effects of A1 deactivation at the population level. These results provide physiological support for the current anatomically based model of both serial and parallel processing schemes in auditory cortical hierarchical organization.
Collapse
Affiliation(s)
- Melanie A Kok
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Brain and Mind Institute, Department of Psychology, University of Western Ontario, London, Canada; Cerebral Systems Laboratory, University of Western Ontario, London, Canada
| | - Daniel Stolzberg
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, London, Canada; Cerebral Systems Laboratory, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada; and
| | - Trecia A Brown
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, London, Canada; Cerebral Systems Laboratory, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada; and
| | - Stephen G Lomber
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Brain and Mind Institute, Department of Psychology, University of Western Ontario, London, Canada; Cerebral Systems Laboratory, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada; and National Centre for Audiology, University of Western Ontario, London, Canada
| |
Collapse
|
7
|
Carrasco A, Brown TA, Lomber SG. Spectral and Temporal Acoustic Features Modulate Response Irregularities within Primary Auditory Cortex Columns. PLoS One 2014; 9:e114550. [PMID: 25494365 PMCID: PMC4262427 DOI: 10.1371/journal.pone.0114550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
Assemblies of vertically connected neurons in the cerebral cortex form information processing units (columns) that participate in the distribution and segregation of sensory signals. Despite well-accepted models of columnar architecture, functional mechanisms of inter-laminar communication remain poorly understood. Hence, the purpose of the present investigation was to examine the effects of sensory information features on columnar response properties. Using acute recording techniques, extracellular response activity was collected from the right hemisphere of eight mature cats (felis catus). Recordings were conducted with multichannel electrodes that permitted the simultaneous acquisition of neuronal activity within primary auditory cortex columns. Neuronal responses to simple (pure tones), complex (noise burst and frequency modulated sweeps), and ecologically relevant (con-specific vocalizations) acoustic signals were measured. Collectively, the present investigation demonstrates that despite consistencies in neuronal tuning (characteristic frequency), irregularities in discharge activity between neurons of individual A1 columns increase as a function of spectral (signal complexity) and temporal (duration) acoustic variations.
Collapse
Affiliation(s)
- Andres Carrasco
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Trecia A. Brown
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- National Centre for Audiology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Goldring AB, Cooke DF, Baldwin MKL, Recanzone GH, Gordon AG, Pan T, Simon SI, Krubitzer L. Reversible deactivation of higher-order posterior parietal areas. II. Alterations in response properties of neurons in areas 1 and 2. J Neurophysiol 2014; 112:2545-60. [PMID: 25143537 DOI: 10.1152/jn.00141.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role that posterior parietal (PPC) and motor cortices play in modulating neural responses in somatosensory areas 1 and 2 was examined with reversible deactivation by transient cooling. Multiunit recordings from neurons in areas 1 and 2 were collected from six anesthetized adult monkeys (Macaca mulatta) before, during, and after reversible deactivation of areas 5L or 7b or motor cortex (M1/PM), while select locations on the hand and forelimb were stimulated. Response changes were quantified as increases and decreases to stimulus-driven activity relative to baseline and analyzed during three recording epochs: during deactivation ("cool") and at two time points after deactivation ("rewarm 1," "rewarm 2"). Although the type of response change observed was variable, for neurons at the recording sites tested >90% exhibited a significant change in response during cooling of 7b while cooling area 5L or M1/PM produced a change in 75% and 64% of sites, respectively. These results suggest that regions in the PPC, and to a lesser extent motor cortex, shape the response characteristics of neurons in areas 1 and 2 and that this kind of feedback modulation is necessary for normal somatosensory processing. Furthermore, this modulation appears to happen on a minute-by-minute basis and may serve as the substrate for phenomena such as somatosensory attention.
Collapse
Affiliation(s)
- Adam B Goldring
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California
| | - Mary K L Baldwin
- Department of Psychology, University of California, Davis, California
| | - Gregg H Recanzone
- Department of Psychology, University of California, Davis, California; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | - Adam G Gordon
- Center for Neuroscience, University of California, Davis, California
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California, Davis, California
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, California
| | - Leah Krubitzer
- Center for Neuroscience, University of California, Davis, California; Department of Psychology, University of California, Davis, California;
| |
Collapse
|
9
|
McClelland JL, Mirman D, Bolger DJ, Khaitan P. Interactive Activation and Mutual Constraint Satisfaction in Perception and Cognition. Cogn Sci 2014; 38:1139-89. [DOI: 10.1111/cogs.12146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/01/2013] [Accepted: 11/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
| | - Daniel Mirman
- Department of Psychology; Drexel University and Moss Rehabilitation Research Institute
| | | | | |
Collapse
|
10
|
Carrasco A, Lomber SG. Influence of inter-field communication on neuronal response synchrony across auditory cortex. Hear Res 2013; 304:57-69. [DOI: 10.1016/j.heares.2013.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 11/25/2022]
|
11
|
Carrasco A, Kok MA, Lomber SG. Effects of core auditory cortex deactivation on neuronal response to simple and complex acoustic signals in the contralateral anterior auditory field. Cereb Cortex 2013; 25:84-96. [PMID: 23960202 DOI: 10.1093/cercor/bht205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interhemispheric communication has been implicated in various functions of sensory signal processing and perception. Despite ample evidence demonstrating this phenomenon in the visual and somatosensory systems, to date, limited functional assessment of transcallosal transmission during periods of acoustic signal exposure has hindered our understanding of the role of interhemispheric connections between auditory cortical fields. Consequently, the present investigation examines the impact of core auditory cortical field deactivation on response properties of contralateral anterior auditory field (AAF) neurons in the felis catus. Single-unit responses to simple and complex acoustic signals were measured across AAF before, during, and after individual and combined cooling deactivation of contralateral primary auditory cortex (A1) and AAF neurons. Data analyses revealed that on average: 1) interhemispheric projections from core auditory areas to contralateral AAF neurons are predominantly excitatory, 2) changes in response strength vary based on acoustic features, 3) A1 and AAF projections can modulate AAF activity differently, 4) decreases in response strength are not specific to particular cortical laminae, and 5) contralateral inputs modulate AAF neuronal response thresholds. Collectively, these observations demonstrate that A1 and AAF neurons predominantly modulate AAF response properties via excitatory projections.
Collapse
Affiliation(s)
- Andres Carrasco
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| | - Melanie A Kok
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| | - Stephen G Lomber
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| |
Collapse
|
12
|
Ma H, Qin L, Dong C, Zhong R, Sato Y. Comparison of neural responses to cat meows and human vowels in the anterior and posterior auditory field of awake cats. PLoS One 2013; 8:e52942. [PMID: 23301004 PMCID: PMC3534661 DOI: 10.1371/journal.pone.0052942] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
For humans and animals, the ability to discriminate speech and conspecific vocalizations is an important physiological assignment of the auditory system. To reveal the underlying neural mechanism, many electrophysiological studies have investigated the neural responses of the auditory cortex to conspecific vocalizations in monkeys. The data suggest that vocalizations may be hierarchically processed along an anterior/ventral stream from the primary auditory cortex (A1) to the ventral prefrontal cortex. To date, the organization of vocalization processing has not been well investigated in the auditory cortex of other mammals. In this study, we examined the spike activities of single neurons in two early auditory cortical regions with different anteroposterior locations: anterior auditory field (AAF) and posterior auditory field (PAF) in awake cats, as the animals were passively listening to forward and backward conspecific calls (meows) and human vowels. We found that the neural response patterns in PAF were more complex and had longer latency than those in AAF. The selectivity for different vocalizations based on the mean firing rate was low in both AAF and PAF, and not significantly different between them; however, more vocalization information was transmitted when the temporal response profiles were considered, and the maximum transmitted information by PAF neurons was higher than that by AAF neurons. Discrimination accuracy based on the activities of an ensemble of PAF neurons was also better than that of AAF neurons. Our results suggest that AAF and PAF are similar with regard to which vocalizations they represent but differ in the way they represent these vocalizations, and there may be a complex processing stream between them.
Collapse
Affiliation(s)
- Hanlu Ma
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Ling Qin
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- Department of Physiology, China Medical University, Shenyang, People’s Republic of China
- * E-mail:
| | - Chao Dong
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Renjia Zhong
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- Department of Physiology, China Medical University, Shenyang, People’s Republic of China
| | - Yu Sato
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
13
|
Brown TA, Joanisse MF, Gati JS, Hughes SM, Nixon PL, Menon RS, Lomber SG. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI. Neuroimage 2012; 64:458-65. [PMID: 23000258 DOI: 10.1016/j.neuroimage.2012.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022] Open
Abstract
Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex.
Collapse
Affiliation(s)
- Trecia A Brown
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada N6A 3K7.
| | | | | | | | | | | | | |
Collapse
|
14
|
Carrasco A, Lomber SG. Neuronal activation times to simple, complex, and natural sounds in cat primary and nonprimary auditory cortex. J Neurophysiol 2011; 106:1166-78. [DOI: 10.1152/jn.00940.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions between living organisms and the environment are commonly regulated by accurate and timely processing of sensory signals. Hence, behavioral response engagement by an organism is typically constrained by the arrival time of sensory information to the brain. While psychophysical response latencies to acoustic information have been investigated, little is known about how variations in neuronal response time relate to sensory signal characteristics. Consequently, the primary objective of the present investigation was to determine the pattern of neuronal activation induced by simple (pure tones), complex (noise bursts and frequency modulated sweeps), and natural (conspecific vocalizations) acoustic signals of different durations in cat auditory cortex. Our analysis revealed three major cortical response characteristics. First, latency measures systematically increase in an antero-dorsal to postero-ventral direction among regions of auditory cortex. Second, complex acoustic stimuli reliably provoke faster neuronal response engagement than simple stimuli. Third, variations in neuronal response time induced by changes in stimulus duration are dependent on acoustic spectral features. Collectively, these results demonstrate that acoustic signals, regardless of complexity, induce a directional pattern of activation in auditory cortex.
Collapse
Affiliation(s)
- Andres Carrasco
- Centre for Brain and Mind, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry and Cerebral Systems Laboratory, Department of Psychology, Faculty of Social Science, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- Centre for Brain and Mind, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry and Cerebral Systems Laboratory, Department of Psychology, Faculty of Social Science, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Pienkowski M, Munguia R, Eggermont JJ. Passive exposure of adult cats to bandlimited tone pip ensembles or noise leads to long-term response suppression in auditory cortex. Hear Res 2011; 277:117-26. [DOI: 10.1016/j.heares.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
16
|
Passive exposure of adult cats to moderate-level tone pip ensembles differentially decreases AI and AII responsiveness in the exposure frequency range. Hear Res 2010; 268:151-62. [DOI: 10.1016/j.heares.2010.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/22/2010] [Accepted: 05/21/2010] [Indexed: 11/21/2022]
|
17
|
Lee CC, Winer JA. Convergence of thalamic and cortical pathways in cat auditory cortex. Hear Res 2010; 274:85-94. [PMID: 20576491 DOI: 10.1016/j.heares.2010.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/05/2010] [Accepted: 05/17/2010] [Indexed: 11/25/2022]
Abstract
Cat auditory cortex (AC) receives input from many thalamic nuclei and cortical areas. Previous connectional studies often focused on one connectional system in isolation, limiting perspectives on AC computational processes. Here we review the convergent thalamic, commissural, and corticocortical projections to thirteen AC areas in the cat. Each input differs in strength and may thus serve unique roles. We compared the convergent intrinsic and extrinsic input to each area quantitatively. The intrinsic input was almost half the total. Among extrinsic projections, ipsilateral cortical sources contributed 75%, thalamic input contributed 15%, and contralateral sources contributed 10%. The patterns of distribution support the division of AC areas into families of tonotopic, non-tonotopic, multisensory, and limbic-related areas, each with convergent input arising primarily from within its group. The connections within these areal families suggest a form of processing in which convergence of input to an area could enable new forms of integration. In contrast, the lateral connections between families could subserve integration between categorical representations, allowing otherwise independent streams to communicate and thereby coordinating operations over wide spatial and functional scales. These patterns of serial and interfamilial cooperation challenge more classical models of organization that underestimate the diversity and complexity of AC connectivity.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, United States.
| | | |
Collapse
|
18
|
Hackett TA. Information flow in the auditory cortical network. Hear Res 2010; 271:133-46. [PMID: 20116421 DOI: 10.1016/j.heares.2010.01.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/15/2010] [Accepted: 01/22/2010] [Indexed: 11/16/2022]
Abstract
Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network.
Collapse
Affiliation(s)
- Troy A Hackett
- Dept. of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 301 Wilson Hall, 111 21st Avenue South Nashville, TN 37203, USA.
| |
Collapse
|