1
|
Mitra R, Richhariya S, Hasan G. Orai-mediated calcium entry determines activity of central dopaminergic neurons by regulation of gene expression. eLife 2024; 12:RP88808. [PMID: 38289659 PMCID: PMC10945566 DOI: 10.7554/elife.88808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Maturation and fine-tuning of neural circuits frequently require neuromodulatory signals that set the excitability threshold, neuronal connectivity, and synaptic strength. Here, we present a mechanistic study of how neuromodulator-stimulated intracellular Ca2+ signals, through the store-operated Ca2+ channel Orai, regulate intrinsic neuronal properties by control of developmental gene expression in flight-promoting central dopaminergic neurons (fpDANs). The fpDANs receive cholinergic inputs for release of dopamine at a central brain tripartite synapse that sustains flight (Sharma and Hasan, 2020). Cholinergic inputs act on the muscarinic acetylcholine receptor to stimulate intracellular Ca2+ release through the endoplasmic reticulum (ER) localised inositol 1,4,5-trisphosphate receptor followed by ER-store depletion and Orai-mediated store-operated Ca2+ entry (SOCE). Analysis of gene expression in fpDANs followed by genetic, cellular, and molecular studies identified Orai-mediated Ca2+ entry as a key regulator of excitability in fpDANs during circuit maturation. SOCE activates the transcription factor trithorax-like (Trl), which in turn drives expression of a set of genes, including Set2, that encodes a histone 3 lysine 36 methyltransferase (H3K36me3). Set2 function establishes a positive feedback loop, essential for receiving neuromodulatory cholinergic inputs and sustaining SOCE. Chromatin-modifying activity of Set2 changes the epigenetic status of fpDANs and drives expression of key ion channel and signalling genes that determine fpDAN activity. Loss of activity reduces the axonal arborisation of fpDANs within the MB lobe and prevents dopamine release required for the maintenance of long flight.
Collapse
Affiliation(s)
- Rishav Mitra
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
2
|
Ehrhardt E, Whitehead SC, Namiki S, Minegishi R, Siwanowicz I, Feng K, Otsuna H, Meissner GW, Stern D, Truman J, Shepherd D, Dickinson MH, Ito K, Dickson BJ, Cohen I, Card GM, Korff W. Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542897. [PMID: 37398009 PMCID: PMC10312520 DOI: 10.1101/2023.05.31.542897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Samuel C Whitehead
- Physics Department, Cornell University, 271 Clark Hall, Ithaca, New York 14853, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - FlyLight Project Team
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - David Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Jim Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - David Shepherd
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ
| | - Michael H. Dickinson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Itai Cohen
- Physics Department, Cornell University, 271 Clark Hall, Ithaca, New York 14853, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| |
Collapse
|
3
|
Effects of aversive conditioning on expression of physiological stress in honey bees (Apis mellifera). Neurobiol Learn Mem 2020; 178:107363. [PMID: 33333317 DOI: 10.1016/j.nlm.2020.107363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
Stress is defined as any deviation from an organism's baseline physiological levels. Therefore, introduction of new stimuli and information, such as in learning, can be defined as a stressor. A large body of research exists examining the role that stress plays in learning, but virtually none addresses whether or not learning itself is a measurable cause of stress. The current study used a wide variety of learning centric stress responses. Researchers examined changes in expression of ten stress and learning related genes in various physiological systems in domesticated honey bees (Apis mellifera) as a result of exposure to an aversive conditioning task. Gene expression was examined using quantitative real-time polymerase chain reaction following the learning task. Results indicate that learning affects expression of some stress related genes.
Collapse
|
4
|
Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels. eNeuro 2019; 6:ENEURO.0181-19.2019. [PMID: 31253715 PMCID: PMC6709211 DOI: 10.1523/eneuro.0181-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20-60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
Collapse
|
5
|
Lee J, Iyengar A, Wu CF. Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles. J Neurogenet 2019; 33:125-142. [PMID: 30982417 DOI: 10.1080/01677063.2019.1581188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Drosophila, high-frequency electrical stimulation across the brain triggers a highly stereotypic repertoire of spasms. These electroconvulsive seizures (ECS) manifest as distinctive spiking discharges across the nervous system and can be stably assessed throughout the seizure repertoire in the large indirect flight muscles dorsal longitudinal muscles (DLMs) to characterize modifications in seizure-prone mutants. However, the relationships between ECS-spike patterns and native motor programs, including flight and grooming, are not known and their similarities and distinctions remain to be characterized. We employed quantitative spike pattern analyses for the three motor patterns including: (1) overall firing frequency, (2) spike timing between contralateral fibers, and (3) short-term variability in spike interval regularity (CV2) and instantaneous firing frequency (ISI-1). This base-line information from wild-type (WT) flies facilitated quantitative characterization of mutational effects of major neurotransmitter systems: excitatory cholinergic (Cha), inhibitory GABAergic (Rdl) and electrical (ShakB) synaptic transmission. The results provide an initial glimpse on the vulnerability of individual motor patterns to different perturbations. We found marked alterations of ECS discharge spike patterns in terms of either seizure threshold, spike frequency or spiking regularity. In contrast, no gross alterations during grooming and a small but noticeable reduction of firing frequency during Rdl mutant flight were found, suggesting a role for GABAergic modulation of flight motor programs. Picrotoxin (PTX), a known pro-convulsant that inhibits GABAA receptors, induced DLM spike patterns that displayed some features, e.g. left-right coordination and ISI-1 range, that could be found in flight or grooming, but distinct from ECS discharges. These quantitative techniques may be employed to reveal overlooked relationships among aberrant motor patterns as well as their links to native motor programs.
Collapse
Affiliation(s)
- Jisue Lee
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Atulya Iyengar
- a Department of Biology , University of Iowa , Iowa City , IA , USA.,b Interdisiplinary Graduate Program in Neuroscience , University of Iowa , Iowa City , IA , USA
| | - Chun-Fang Wu
- a Department of Biology , University of Iowa , Iowa City , IA , USA.,b Interdisiplinary Graduate Program in Neuroscience , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
6
|
Shimizu T, Kanai K, Sugawara Y, Uchida C, Uchida T. Prolyl Isomerase Pin1 Directly Regulates Calcium/Calmodulin-Dependent Protein Kinase II Activity in Mouse Brains. Front Pharmacol 2018; 9:1351. [PMID: 30532705 PMCID: PMC6265371 DOI: 10.3389/fphar.2018.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/05/2018] [Indexed: 11/28/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is abundant in the brain and functions as a mediator of calcium signaling. We found that the relative activity of CaMKII was significantly lower in the WT mouse brains than in the Pin1-/- mouse brains. Pin1 binds to phosphorylated CaMKII and weakens its activity. For this reason, the phosphorylation level of tau in the presence of Pin1 is lower than that in the absence of Pin1, and microtubule polymerization is not downregulated by CaMKII when Pin1 is present. These results suggest a novel mechanism of action of Pin1 to prevent neurodegeneration.
Collapse
Affiliation(s)
- Taiki Shimizu
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenta Kanai
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yui Sugawara
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chiyoko Uchida
- Department of Human Development and Culture, Fukushima University, Fukushima, Japan
| | - Takafumi Uchida
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Kadas D, Papanikolopoulou K, Xirou S, Consoulas C, Skoulakis EMC. Human Tau isoform-specific presynaptic deficits in a Drosophila Central Nervous System circuit. Neurobiol Dis 2018; 124:311-321. [PMID: 30529489 DOI: 10.1016/j.nbd.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023] Open
Abstract
Accumulation of normal or mutant human Tau isoforms in Central Nervous System (CNS) neurons of vertebrate and invertebrate models underlies pathologies ranging from behavioral deficits to neurodegeneration that broadly recapitulate human Tauopathies. Although some functional differences have begun to emerge, it is still largely unclear whether normal and mutant Tau isoforms induce differential effects on the synaptic physiology of CNS neurons. We use the oligosynaptic Giant Fiber System in the adult Drosophila CNS to address this question and reveal that 3R and 4R isoforms affect distinct synaptic parameters. Whereas 0N3R increased failure rate upon high frequency stimulation, 0N4R compromised stimulus conduction and response speed at a specific cholinergic synapse in an age-dependent manner. In contrast, accumulation of the R406W mutant of 0N4R induced mild, age-dependent conduction velocity defects. Because 0N4R and its mutant isoform are expressed equivalently, this demonstrates that the defects are not merely consequent of exogenous human Tau accumulation and suggests distinct functional properties of 3R and 4R isoforms in cholinergic presynapses.
Collapse
Affiliation(s)
- Dimitrios Kadas
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Katerina Papanikolopoulou
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming str, Vari 16672, Greece
| | - Sofia Xirou
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Consoulas
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming str, Vari 16672, Greece.
| |
Collapse
|
8
|
Kabbani N, Nichols RA. Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors. Trends Pharmacol Sci 2018; 39:354-366. [PMID: 29428175 DOI: 10.1016/j.tips.2018.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel (LGIC) that plays an important role in cellular calcium signaling and contributes to several neurological diseases. Agonist binding to the α7 nAChR induces fast channel activation followed by inactivation and prolonged desensitization while triggering long-lasting calcium signaling. These activities foster neurotransmitter release, synaptic plasticity, and somatodendritic regulation in the brain. We discuss here the ability of α7 nAChRs to operate in ionotropic (α7i) and metabotropic (α7m) modes, leading to calcium-induced calcium release (CICR) and G protein-associated inositol trisphosphate (IP3)-induced calcium release (IICR), respectively. Metabotropic activity extends the spatial and temporal aspects of calcium signaling by the α7 channel beyond its ionotropic limits, persisting into the desensitized state. Delineation of the ionotropic and metabotropic properties of the α7 nAChR will provide definitive indicators of moment-to-moment receptor functional status that will, in turn, spearhead new drug development.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
9
|
Oka M, Fujisaki N, Maruko-Otake A, Ohtake Y, Shimizu S, Saito T, Hisanaga SI, Iijima KM, Ando K. Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. J Biochem 2017; 162:335-342. [PMID: 28992057 DOI: 10.1093/jb/mvx038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 01/07/2023] Open
Abstract
Abnormal deposition of the microtubule-associated protein tau is a common pathological feature of multiple neurodegenerative diseases, including Alzheimer's disease (AD), and plays critical roles in their pathogenesis. Disruption of calcium homeostasis and the downstream kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) coincides with pathological phosphorylation of tau in AD brains. However, it remains unclear whether and how dysregulation of CaMKII affects tau toxicity. Using a Drosophila model, we found that CaMKII promotes neurodegeneration caused by tau phosphorylated at the AD-associated sites Ser262/356. Overexpression of CaMKII promoted, while RNA-mediated knockdown of CaMKII and inhibition of CaMKII activity by expression of an inhibitory peptide suppressed, tau-mediated neurodegeneration. Blocking tau phosphorylation at Ser262/356 by alanine substitutions suppressed promotion of tau toxicity by CaMKII, suggesting that tau phosphorylation at these sites is required for this phenomenon. However, neither knockdown nor overexpression of CaMKII affected tau phosphorylation levels at Ser262/356, suggesting that CaMKII is not directly involved in tau phosphorylation at Ser262/356 in this model. These results suggest that a pathological cascade of events, including elevated levels of tau phosphorylated at Ser262/356 and aberrant activation of CaMKII, work in concert to promote tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- Mikiko Oka
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoki Fujisaki
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-machi, Obu, Aichi 474-8511, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sawako Shimizu
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-machi, Obu, Aichi 474-8511, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
10
|
Dutta S, Rieche F, Eckl N, Duch C, Kretzschmar D. Glial expression of Swiss cheese (SWS), the Drosophila orthologue of neuropathy target esterase (NTE), is required for neuronal ensheathment and function. Dis Model Mech 2015; 9:283-94. [PMID: 26634819 PMCID: PMC4826977 DOI: 10.1242/dmm.022236] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/26/2015] [Indexed: 01/04/2023] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) or its vertebrate orthologue neuropathy target esterase (NTE), respectively, cause progressive neuronal degeneration in Drosophila and mice and a complex syndrome in humans that includes mental retardation, spastic paraplegia and blindness. SWS and NTE are widely expressed in neurons but can also be found in glia; however, their function in glia has, until now, remained unknown. We have used a knockdown approach to specifically address SWS function in glia and to probe for resulting neuronal dysfunctions. This revealed that loss of SWS in pseudocartridge glia causes the formation of multi-layered glial whorls in the lamina cortex, the first optic neuropil. This phenotype was rescued by the expression of SWS or NTE, suggesting that the glial function is conserved in the vertebrate protein. SWS was also found to be required for the glial wrapping of neurons by ensheathing glia, and its loss in glia caused axonal damage. We also detected severe locomotion deficits in glial sws-knockdown flies, which occurred as early as 2 days after eclosion and increased further with age. Utilizing the giant fibre system to test for underlying functional neuronal defects showed that the response latency to a stimulus was unchanged in knockdown flies compared to controls, but the reliability with which the neurons responded to increasing frequencies was reduced. This shows that the loss of SWS in glia impairs neuronal function, strongly suggesting that the loss of glial SWS plays an important role in the phenotypes observed in the sws mutant. It is therefore likely that changes in glia also contribute to the pathology observed in humans that carry mutations in NTE.
Collapse
Affiliation(s)
- Sudeshna Dutta
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, OR 97239, USA
| | - Franziska Rieche
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Nina Eckl
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Carsten Duch
- Institut für Zoologie III - Neurobiologie, Universität Mainz, Colonel-Kleinmann-Weg 2, Mainz D-55099, Germany
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, OR 97239, USA
| |
Collapse
|
11
|
Ryglewski S, Kadas D, Hutchinson K, Schuetzler N, Vonhoff F, Duch C. Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior. Proc Natl Acad Sci U S A 2014; 111:18049-54. [PMID: 25453076 PMCID: PMC4273390 DOI: 10.1073/pnas.1416247111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Dimitrios Kadas
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Katie Hutchinson
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Natalie Schuetzler
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Fernando Vonhoff
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | - Carsten Duch
- Institute of Neurobiology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| |
Collapse
|
12
|
List O, Calas-List D, Taillebois E, Juchaux M, Heuland E, Thany SH. Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine- and clothianidin-induced currents. J Neurochem 2014; 130:507-13. [DOI: 10.1111/jnc.12752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Olivier List
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM); UPRES EA 2647/USC INRA 1330/SFR 4207 QUASAV; Université d'Angers; UFR Sciences; Angers France
| | - Delphine Calas-List
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM); UPRES EA 2647/USC INRA 1330/SFR 4207 QUASAV; Université d'Angers; UFR Sciences; Angers France
| | - Emiliane Taillebois
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM); UPRES EA 2647/USC INRA 1330/SFR 4207 QUASAV; Université d'Angers; UFR Sciences; Angers France
| | | | - Emilie Heuland
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM); UPRES EA 2647/USC INRA 1330/SFR 4207 QUASAV; Université d'Angers; UFR Sciences; Angers France
| | - Steeve H. Thany
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM); UPRES EA 2647/USC INRA 1330/SFR 4207 QUASAV; Université d'Angers; UFR Sciences; Angers France
| |
Collapse
|
13
|
Taillebois E, Heuland E, Bourdin CM, Griveau A, Quinchard S, Tricoire-Leignel H, Legros C, Thany SH. Ca²⁺/calmodulin-dependent protein kinase II in the cockroach Periplaneta americana: identification of five isoforms and their tissues distribution. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:138-150. [PMID: 23740573 DOI: 10.1002/arch.21102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key kinase that transduces Ca²⁺ signals into downstream effects acting on a range of cellular processes in nervous system and muscular tissues. In insects, different CaMKII isoforms have been reported in Drosophila melanogaster, Apis florae, Bombus terrestris, and Bombus impatiens but little is known on the organization and tissue-specific expression of these isoforms with the exception of Drosophila. The present study reports the cloning of five CaMKII splice variants issued from a single gene and their tissue-specific expression in the cockroach Periplaneta americana. Each CaMKII isoform shared 82-90% identity with Drosophila CaMKII isoforms and accordingly were named PaCaMKII-A, PaCaMKII-B,PaCaMKII-C,PaCaMKII-D, and PaCaMKII-E. PaCaMKII-A and PaCaMKII-D isoforms are ubiquitously expressed in all tissues, but some such as PaCaMKII-B andPaCaMKII-C are preferentially expressed in the nerve cord and muscle. In addition, using single-cell reverse transcriptase-polymerase chain reaction (RT-PCR), we found a tissue-specific expression of PaCaMKII-E in the dorsal unpaired median neurons. Alternative splicing of PaCaMKII transcripts is likely a common mechanism in insects to control the pattern of isoform expression in the different tissues.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kuehn C, Duch C. Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron. Eur J Neurosci 2013; 37:860-75. [PMID: 23279094 PMCID: PMC3604049 DOI: 10.1111/ejn.12104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/24/2022]
Abstract
Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies.
Collapse
Affiliation(s)
- Claudia Kuehn
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|