1
|
Toral PG, Hervás G, Frutos P. INVITED REVIEW: Research on ruminal biohydrogenation: Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J Dairy Sci 2024:S0022-0302(24)01070-1. [PMID: 39154717 DOI: 10.3168/jds.2023-24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Scientific knowledge about ruminal biohydrogenation (BH) has improved greatly since this metabolic process was empirically confirmed in 1951. For years, BH had mostly been perceived as a process to be avoided to increase the post-ruminal flow of UFA from the diet. Two milestones changed this perception and stimulated great interest in BH intermediates themselves: In 1987, the in vitro anticarcinogenic properties of CLA were described, and in 2000, the inhibition of milk fat synthesis by trans-10 cis-12 CLA was confirmed. Since then, numerous BH metabolites have been described in small and large ruminants, and the major deviation from the common BH pathway (i.e., the trans-10 shift) has been reasonably well established. However, there are some less well-characterized alterations, and the comprehensive description of new BH intermediates (e.g., using isotopic tracers) has not been coupled with research on their biological effects. In this regard, the low quality of some published fatty acid profiles may also be limiting the advance of knowledge in BH. Furthermore, although BH seems to no longer be considered a metabolic niche inhabited by a few bacterial species with a highly specific metabolic capability, researchers have failed to elucidate which specific microbial groups are involved in the process and the basis for alterations in BH pathways (i.e., changes in microbial populations or their activity). Unraveling both issues may be beneficial for the description of new microbial enzymes involved in ruminal lipid metabolism that have industrial interest. From the perspective of diary science, other knowledge gaps that require additional research in the coming years are evaluation of the relationship between BH and feed efficiency and enteric methane emissions, as well as improving our understanding of how alterations in BH are involved in milk fat depression. Addressing these issues will have relevant practical implications in dairy science.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
2
|
Muramatsu D, Vidal LV, Costa ER, Yoda K, Yabe T, Gordo M. Low-cost thermoregulation of wild sloths revealed by heart rate and temperature loggers. J Therm Biol 2022; 110:103387. [DOI: 10.1016/j.jtherbio.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
|
3
|
Khiaosa-Ard R, Mahmood M, Lerch F, Traintinger FP, Petri RM, Münnich M, Zebeli Q. Physicochemical stressors and mixed alkaloid supplementation modulate ruminal microbiota and fermentation in vitro. Anaerobe 2020; 65:102263. [PMID: 32861779 DOI: 10.1016/j.anaerobe.2020.102263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 08/22/2020] [Indexed: 11/26/2022]
Abstract
The drop of ruminal pH and heat are common physicochemical stressors challenging ruminal microbiota, nutrient digestion and cattle performance. We characterized the ruminal microbiota and digestive activity in response to different pH (6.0 and 6.6) and temperature (39.5 and 42 °C), as well as established the effective dose of alkaloid supplementation (0, 0.088 and 0.175% of feedstock DM) to modulate ruminal fermentation under these conditions. The acidotic condition decreased microbial diversity and abundances of minor bacterial families whereas most of the highly abundant families like Lactobacillaceae, Prevotellaceae, and Bifidobacteriaceae thrived under the stress. Abundances of all three methanogenic archaea taxa detected increased with heat, as did methane production. However, while Methanomassiliicoccaceae benefited from the low pH, Methanomicrobiaceae diminished and methane production decreased. The low dose of alkaloid addition shifted the fermentation to more propionate and less acetate and the high dose decreased methane and ammonia concentration under the low pH. In conclusion, physicochemical stressors shape the microbial community and function. Mixed alkaloid supplementation facilitates the activity of rumen microbial community under acidotic stress.
Collapse
Affiliation(s)
- Ratchaneewan Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| | - Mubarik Mahmood
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria; Section of Animal Nutrition, Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore Sub-campus Jhang, 12 KM Chiniot Road, Jhang, Pakistan
| | - Frederike Lerch
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Franz-Pius Traintinger
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Renée Maxine Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Matthias Münnich
- Phytobiotics Futterzusatzstoffe GmbH, Wallufer Str. 10 a, 65343, Eltville, Germany
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| |
Collapse
|
4
|
Tao S, Orellana Rivas RM, Marins TN, Chen YC, Gao J, Bernard JK. Impact of heat stress on lactational performance of dairy cows. Theriogenology 2020; 150:437-444. [PMID: 32173067 DOI: 10.1016/j.theriogenology.2020.02.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/07/2023]
Abstract
Lactating dairy cows exhibit a myriad of responses to heat stress. These responses partially facilitate the thermal balance between heat gain and heat loss, but also account for reduction in productivity. Decreased milk yield is the most recognized impact of heat stress on a dairy cow and results in significant economic loss to dairy producers. The reduced milk yield by heat stress is observed when daily average temperature-humidity index exceeds 68, above which the milk yield of a cow is negatively correlated with temperature-humidity index or dry bulb temperature. Milk yield is also positively correlated with body temperature of the cows under evaporative cooling, which reflects the positive relationship between metabolic heat production and milk yield. During summer, feed intake is positively correlated with milk yield, and the decreased intake explains at least half of the reduction in milk yield by heat stress. These emphasize the importance of maintaining intake on productivity during summer. Although not entirely clear, mechanisms that mediate the reduced milk yield by heat stress in addition to intake may be multifactorial. These could include but are not limited to altered metabolism, potential activation of immune system and inflammation, changes in behavior, and altered mammary gland development and function.
Collapse
Affiliation(s)
- Sha Tao
- Department of Animal and Dairy Science, University of Georgia, 110 Research Way, Building 4603, Tifton, GA, 31793, USA.
| | - Ruth M Orellana Rivas
- Department of Animal and Dairy Science, University of Georgia, 110 Research Way, Building 4603, Tifton, GA, 31793, USA
| | - Thiago N Marins
- Department of Animal and Dairy Science, University of Georgia, 110 Research Way, Building 4603, Tifton, GA, 31793, USA
| | - Yun-Chu Chen
- Department of Animal and Dairy Science, University of Georgia, 110 Research Way, Building 4603, Tifton, GA, 31793, USA
| | - Jing Gao
- Department of Animal and Dairy Science, University of Georgia, 110 Research Way, Building 4603, Tifton, GA, 31793, USA
| | - John K Bernard
- Department of Animal and Dairy Science, University of Georgia, 110 Research Way, Building 4603, Tifton, GA, 31793, USA
| |
Collapse
|
5
|
Zhong S, Ding Y, Wang Y, Zhou G, Guo H, Chen Y, Yang Y. Temperature and humidity index (THI)-induced rumen bacterial community changes in goats. Appl Microbiol Biotechnol 2019; 103:3193-3203. [DOI: 10.1007/s00253-019-09673-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023]
|
6
|
Pragna P, Sejian V, Soren NM, Bagath M, Krishnan G, Beena V, Devi PI, Bhatta R. Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (Osmanabadi, Malabari and Salem Black) goat breeds. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1386891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Prathap Pragna
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V. Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - N. M. Soren
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - M. Bagath
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - G. Krishnan
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V. Beena
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - P. Indira Devi
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Raghavendra Bhatta
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| |
Collapse
|
7
|
Cliffe RN, Haupt RJ, Avey-Arroyo JA, Wilson RP. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus). PeerJ 2015; 3:e875. [PMID: 25861559 PMCID: PMC4389270 DOI: 10.7717/peerj.875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/12/2015] [Indexed: 11/20/2022] Open
Abstract
Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg(-1)day(-1) (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.
Collapse
Affiliation(s)
- Rebecca N. Cliffe
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
- The Sloth Sanctuary of Costa Rica, Limon, Costa Rica, Central America
| | - Ryan J. Haupt
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY, United States
| | | | - Rory P. Wilson
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|