1
|
Deblonde GJP. Biogeochemistry of Actinides: Recent Progress and Perspective. ACS ENVIRONMENTAL AU 2024; 4:292-306. [PMID: 39582760 PMCID: PMC11583103 DOI: 10.1021/acsenvironau.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Actinides are elements that are often feared because of their radioactive nature and potentially devastating consequences to humans and the environment if not managed properly. As such, their chemical interactions with the biosphere and geochemical environment, i.e., their "biogeochemistry," must be studied and understood in detail. In this Review, a summary of the past discoveries and recent advances in the field of actinide biogeochemistry is provided with a particular emphasis on actinides other than thorium and uranium (i.e., actinium, neptunium, plutonium, americium, curium, berkelium, and californium) as they originate from anthropogenic activities and can be mobile in the environment. The nuclear properties of actinide isotopes found in the environment and used in research are reviewed with historical context. Then, the coordination chemistry properties of actinide ions are contrasted with those of common metal ions naturally present in the environment. The typical chelators that can impact the biogeochemistry of actinides are then reviewed. Then, the role of metalloproteins in the biogeochemistry of actinides is put into perspective since recent advances in the field may have ramifications in radiochemistry and for the long-term management of nuclear waste. Metalloproteins are ubiquitous ligands in nature but, as discussed in this Review, they have largely been overlooked for actinide chemistry, especially when compared to traditional environmental chelators. Without discounting the importance of abundant and natural actinide ions (i.e., Th4+ and UO2 2+), the main focus of this review is on trivalent actinides because of their prevalence in the fields of nuclear fuel cycles, radioactive waste management, heavy element research, and, more recently, nuclear medicine. Additionally, trivalent actinides share chemical similarities with the rare earth elements, and recent breakthroughs in the field of lanthanide-binding chelators may spill into the field of actinide biogeochemistry, as discussed hereafter.
Collapse
Affiliation(s)
- Gauthier J.-P. Deblonde
- Physical and Life Sciences
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| |
Collapse
|
2
|
Liu Z, Wang Q, Chai Z, Wang D. Recognition of Actinides by Siderocalin. Inorg Chem 2024; 63:923-927. [PMID: 38156893 DOI: 10.1021/acs.inorgchem.3c03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Plain simulations and enhanced sampling unveil a novel siderocalin (Scn) recognition mode for An-Ent (where An = actinides and Ent = enterobactin) complexes and identify a "seesaw" relationship between actinide affinity to Ent and Scn recognition to an An-Ent complex. Electrostatic interactions predominantly govern competitive binding in both processes. Additionally, hydrolysis-induced negative charge, water expulsion-driven entropy, and Ent's conformational adaptability collectively enhance high-affinity recognition.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhifang Chai
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Radiation Medicine and Protection and School of Radiation Medicine and Interdisciplinary Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Deblonde GJP, Morrison K, Mattocks JA, Cotruvo JA, Zavarin M, Kersting AB. Impact of a Biological Chelator, Lanmodulin, on Minor Actinide Aqueous Speciation and Transport in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20830-20843. [PMID: 37897703 DOI: 10.1021/acs.est.3c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Keith Morrison
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
4
|
Van der Meeren A, Berthomieu C, Moureau A, Defrance M, Griffiths NM. Use of an Acellular Assay to Study Interactions between Actinides and Biological or Synthetic Ligands. Biomolecules 2022; 12:1553. [PMID: 36358903 PMCID: PMC9687942 DOI: 10.3390/biom12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2024] Open
Abstract
Speciation of actinides, and more particularly bioligand-binding ability, influences in vivo behavior. Understanding these interactions is essential for estimation of radiological dose and improvement of decorporation strategies for accidentally contaminated victims. Because the handling of actinides imposes overwhelming difficulties, in vitro assays carried out in physiological conditions are lacking and data regarding such interactions are scarce. In this study, we used a bi-compartmental and dynamic assay, providing physiological conditions (presence of inorganic ions, pH, temperature) to explore interactions between the actinides plutonium (Pu) and americium (Am) and endogenous (proteins transferrin and ferritin) or exogenous ligands (the chelating agent diethylenetriaminpentaacetic acid, DTPA). In this assay, an agarose gel represents the retention compartment of actinides and a dynamic fluid phase, the transfer compartment. The proportion of actinides transferred from static to dynamic phase reflects interactions between Pu/Am and various ligands. The results show differences in the formation of actinide-protein or actinide-DTPA complexes in physiologically relevant media depending on which ligand is present and where. We observed differential behavior for Pu and Am similar to in vivo studies. Thus, our assay may be used to determine the ability of various actinides to interact with specific proteins or with drug candidates for decorporation in complex physiologically relevant environments.
Collapse
Affiliation(s)
- Anne Van der Meeren
- Laboratory of Radio Toxicology, Commissariat à l’énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France
| | - Catherine Berthomieu
- Protein-Metal Interactions Laboratory, Commissariat à l’énergie Atomique et aux Energies Alternatives (CEA), Aix Marseille University, Centre National de Recherche Scientifique (CNRS), 13108 Saint Paul-Lez-Durance, France
| | - Agnès Moureau
- Laboratory of Radio Toxicology, Commissariat à l’énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France
| | - Martine Defrance
- Laboratory of Radio Toxicology, Commissariat à l’énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France
| | - Nina M. Griffiths
- Laboratory of Radio Toxicology, Commissariat à l’énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France
| |
Collapse
|
5
|
Mattocks JA, Cotruvo JA, Deblonde GJP. Engineering lanmodulin's selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions. Chem Sci 2022; 13:6054-6066. [PMID: 35685815 PMCID: PMC9132084 DOI: 10.1039/d2sc01261h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Developing chelators that combine high affinity and selectivity for lanthanides and/or actinides is paramount for numerous industries, including rare earths mining, nuclear waste management, and cancer medicine. In particular, achieving selectivity between actinides and lanthanides is notoriously difficult. The protein lanmodulin (LanM) is one of Nature's most selective chelators for trivalent actinides and lanthanides. However, mechanistic understanding of LanM's affinity and selectivity for f-elements remains limited. In order to decipher, and possibly improve, the features of LanM's metal-binding sites that contribute to this actinide/lanthanide selectivity, we characterized five LanM variants, substituting the aspartate residue at the 9th position of each metal-binding site with asparagine, histidine, alanine, methionine, and selenomethionine. Spectroscopic measurements with lanthanides (Nd3+ and Eu3+) and actinides (243Am3+ and 248Cm3+) reveal that, contrary to the behavior of small chelator complexes, metal-coordinated water molecules enhance LanM's affinity for f-elements and pH-stability of its complexes. Furthermore, the results show that the native aspartate does not coordinate the metal directly but rather hydrogen bonds to coordinated solvent. By tuning this first-sphere/second-sphere interaction, the asparagine variant nearly doubles LanM's selectivity for actinides versus lanthanides. This study not only clarifies the essential role of coordinated solvent for LanM's physiological function and separation applications, but it also demonstrates that LanM's preference for actinides over lanthanides can be further improved. More broadly, it demonstrates how biomolecular scaffolds possess an expanded repertoire of tunable interactions compared to most small-molecule ligands - providing an avenue for high-performance LanM-based actinide/lanthanide separation methods and bio-engineered chelators optimized for specific medical isotopes.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore California 94550 USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory Livermore California 94550 USA
| |
Collapse
|
6
|
Deblonde GJP, Mattocks JA, Wang H, Gale EM, Kersting AB, Zavarin M, Cotruvo JA. Characterization of Americium and Curium Complexes with the Protein Lanmodulin: A Potential Macromolecular Mechanism for Actinide Mobility in the Environment. J Am Chem Soc 2021; 143:15769-15783. [PMID: 34542285 DOI: 10.1021/jacs.1c07103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein's high selectivity over 243Am's daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Eric M Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Annie B Kersting
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mavrik Zavarin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Creff G, Zurita C, Jeanson A, Carle G, Vidaud C, Den Auwer C. What do we know about actinides-proteins interactions? RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Since the early 40s when the first research related to the development of the atomic bomb began for the Manhattan Project, actinides (An) and their association with the use of nuclear energy for civil applications, such as in the generation of electricity, have been a constant source of interest and fear. In 1962, the first Society of Toxicology (SOT), led by H. Hodge, was established at the University of Rochester (USA). It was commissioned as part of the Manhattan Project to assess the impact of nuclear weapons production on workers’ health. As a result of this initiative, the retention and excretion rates of radioactive heavy metals, their physiological impact in the event of acute exposure and their main biological targets were assessed. In this context, the scientific community began to focus on the role of proteins in the transportation and in vivo accumulation of An. The first studies focused on the identification of these proteins. Thereafter, the continuous development of physico-chemical characterization techniques has made it possible to go further and specify the modes of interaction with proteins from both a thermodynamic and structural point of view, as well as from the point of view of their biological activity. This article reviews the work performed in this area since the Manhattan Project. It is divided into three parts: first, the identification of the most affine proteins; second, the study of the affinity and structure of protein-An complexes; and third, the impact of actinide ligation on protein conformation and function.
Collapse
Affiliation(s)
- Gaëlle Creff
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Cyril Zurita
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Aurélie Jeanson
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Georges Carle
- Université Côte d’Azur, CEA, UMR E-4320 TIRO-MATOs , 06100 Nice , France
| | - Claude Vidaud
- CEA DRF, CNRS, UMR 7265, Institut de Biosciences et Biotechnologies d’Aix-Marseille , 13108 Saint-Paul-lez-Durance , France
| | - Christophe Den Auwer
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| |
Collapse
|
8
|
Barkleit A, Hennig C, Ikeda-Ohno A. Interaction of Uranium(VI) with α-Amylase and Its Implication for Enzyme Activity. Chem Res Toxicol 2018; 31:1032-1041. [DOI: 10.1021/acs.chemrestox.8b00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Astrid Barkleit
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Christoph Hennig
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
9
|
Adam N, Trumm M, Smith VC, MacGillivray RTA, Panak PJ. Incorporation of transuranium elements: coordination of Cm(iii) to human serum transferrin. Dalton Trans 2018; 47:14612-14620. [DOI: 10.1039/c8dt02915f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure determination of Cm(iii)-transferrin by a combined spectroscopic and theoretical approach gives insight into the biochemical behaviour of incorporated actinides.
Collapse
Affiliation(s)
- Nicole Adam
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| | - Michael Trumm
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| | - Val C. Smith
- University of British Columbia
- Department of Biochemistry and Molecular Biology and Centre for Blood Research
- Vancouver
- Canada
| | - Ross T. A. MacGillivray
- University of British Columbia
- Department of Biochemistry and Molecular Biology and Centre for Blood Research
- Vancouver
- Canada
| | - Petra J. Panak
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| |
Collapse
|
10
|
Bauer N, Smith VC, MacGillivray RTA, Panak PJ. Complexation of Cm(iii) with the recombinant N-lobe of human serum transferrin studied by time-resolved laser fluorescence spectroscopy (TRLFS). Dalton Trans 2015; 44:1850-7. [DOI: 10.1039/c4dt03403a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexation of Cm(iii) with the recombinant N-lobe of human serum transferrin hTf/2N is investigated using TRLFS. The results reveal significant differences in the complexation properties of transferrin and the half molecule.
Collapse
Affiliation(s)
- N. Bauer
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| | - V. C. Smith
- University of British Columbia
- Department of Biochemistry and Molecular Biology and Centre for Blood Research
- Vancouver
- Canada
| | - R. T. A. MacGillivray
- University of British Columbia
- Department of Biochemistry and Molecular Biology and Centre for Blood Research
- Vancouver
- Canada
| | - P. J. Panak
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| |
Collapse
|
11
|
Bauer N, Panak PJ. Influence of carbonate on the complexation of Cm(iii) with human serum transferrin studied by time-resolved laser fluorescence spectroscopy (TRLFS). NEW J CHEM 2015. [DOI: 10.1039/c4nj01877j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of carbonate on the complexation of Cm(iii) with transferrin is investigated using TRLFS. The results prove directly that carbonate acts as a synergistic anion for Cm(iii) complexation with transferrin.
Collapse
Affiliation(s)
- Nicole Bauer
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| | - Petra J. Panak
- Karlsruhe Institute of Technology (KIT)
- Campus North
- Institute for Nuclear Waste Disposal (INE)
- 76021 Karlsruhe
- Germany
| |
Collapse
|
12
|
Viehweger K. How plants cope with heavy metals. BOTANICAL STUDIES 2014; 55:35. [PMID: 28510963 PMCID: PMC5432744 DOI: 10.1186/1999-3110-55-35] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 11/13/2013] [Indexed: 05/19/2023]
Abstract
Heavy metals are naturally occurring in the earth's crust but anthropogenic and industrial activities have led to drastic environmental pollutions in distinct areas. Plants are able to colonize such sites due to several mechanisms of heavy metal tolerance. Understanding of these pathways enables different fruitful approaches like phytoremediation and biofortification.Therefore, this review addresses mechanisms of heavy metal tolerance and toxicity in plants possessing a sophisticated network for maintenance of metal homeostasis. Key elements of this are chelation and sequestration which result either in removal of toxic metal from sensitive sites or conduct essential metal to their specific cellular destination. This implies shared pathways which can result in toxic symptoms especially in an excess of metal. These overlaps go on with signal transduction pathways induced by heavy metals which include common elements of other signal cascades. Nevertheless, there are specific reactions some of them will be discussed with special focus on the cellular level.
Collapse
Affiliation(s)
- Katrin Viehweger
- Radiotherapeutics Division, Helmholtz-Zentrum Dresden-Rossendorf eV; Institute of Radiopharmacy, P.O. Box 510119, D-01314, Dresden, Germany.
| |
Collapse
|
13
|
Bauer N, Fröhlich DR, Panak PJ. Interaction of Cm(iii) and Am(iii) with human serum transferrin studied by time-resolved laser fluorescence and EXAFS spectroscopy. Dalton Trans 2014; 43:6689-700. [DOI: 10.1039/c3dt53371a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Studies of aqueous U(VI)–thiosalicylate complex formation via UV–Vis absorption spectrophotometry, TRLFS and potentiometry. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.02.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Gorman-Lewis D, Aryal BP, Paunesku T, Vogt S, Lai B, Woloschak GE, Jensen MP. Direct determination of the intracellular oxidation state of plutonium. Inorg Chem 2011; 50:7591-7. [PMID: 21755934 PMCID: PMC3688463 DOI: 10.1021/ic200588p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microprobe X-ray absorption near edge structure (μ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1-μm(2) areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 h in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits were always consistent with tetravalent Pu even though the intracellular milieu is generally reducing.
Collapse
Affiliation(s)
- Drew Gorman-Lewis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Arnold PL, Potter NA, Magnani N, Apostolidis C, Griveau JC, Colineau E, Morgenstern A, Caciuffo R, Love JB. Synthesis of bimetallic uranium and neptunium complexes of a binucleating macrocycle and determination of the solid-state structure by magnetic analysis. Inorg Chem 2010; 49:5341-3. [PMID: 20503974 DOI: 10.1021/ic100374j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Syntheses of the bimetallic uranium(III) and neptunium(III) complexes [(UI)(2)(L)], [(NpI)(2)(L)], and [{U(BH(4))}(2)(L)] of the Schiff-base pyrrole macrocycles L are described. In the absence of single-crystal structural data, fitting of the variable-temperature solid-state magnetic data allows the prediction of polymeric structures for these compounds in the solid state.
Collapse
Affiliation(s)
- Polly L Arnold
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jeanson A, Ferrand M, Funke H, Hennig C, Moisy P, Solari P, Vidaud C, Den Auwer C. The Role of Transferrin in Actinide(IV) Uptake: Comparison with Iron(III). Chemistry 2010; 16:1378-87. [DOI: 10.1002/chem.200901209] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Lestaevel P, Romero E, Dhieux B, Ben Soussan H, Berradi H, Dublineau I, Voisin P, Gourmelon P. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology 2008; 258:1-9. [PMID: 19154773 DOI: 10.1016/j.tox.2008.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 02/01/2023]
Abstract
Uranium is not only a heavy metal but also an alpha particle emitter. The main toxicity of uranium is expected to be due to chemiotoxicity rather than to radiotoxicity. Some studies have demonstrated that uranium induced some neurological disturbances, but without clear explanations. A possible mechanism of this neurotoxicity could be the oxidative stress induced by reactive oxygen species imbalance. The aim of the present study was to determine whether a chronic ingestion of uranium induced anti-oxidative defence mechanisms in the brain of rats. Rats received depleted (DU) or 4% enriched (EU) uranyl nitrate in the drinking water at 2mg(-1)kg(-1)day(-1) for 9 months. Cerebral cortex analyses were made by measuring mRNA and protein levels and enzymatic activities. Lipid peroxidation, an oxidative stress marker, was significantly enhanced after EU exposure, but not after DU. The gene expression or activity of the main antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), increased significantly after chronic exposure to DU. On the contrary, oral EU administration induced a decrease of these antioxidant enzymes. The NO-ergic pathway was almost not perturbed by DU or EU exposure. Finally, DU exposure increased significantly the transporters (Divalent-Metal-Transporter1; DMT1), the storage molecule (ferritin) and the ferroxidase enzyme (ceruloplasmin), but not EU. These results illustrate that oxidative stress plays a key role in the mechanism of uranium neurotoxicity. They showed that chronic exposure to DU, but not EU, seems to induce an increase of several antioxidant agents in order to counteract the oxidative stress. Finally, these results demonstrate the importance of the double toxicity, chemical and radiological, of uranium.
Collapse
Affiliation(s)
- P Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de RadioToxicologie Expérimentale. IRSN, Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Koban A, Bernhard G. Uranium(VI) complexes with phospholipid model compounds--a laser spectroscopic study. J Inorg Biochem 2007; 101:750-7. [PMID: 17320184 DOI: 10.1016/j.jinorgbio.2007.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 01/03/2007] [Accepted: 01/09/2007] [Indexed: 11/22/2022]
Abstract
We present the complex formation of the uranyl ion (UO(2)(2+)) in the aqueous system with phosphocholine, O-phosphoethanolamine and O-phosphoserine. These phosphonates (R-O-PO(3)(2-)) represent the hydrophilic head groups of phospholipids. The complexation was investigated by time-resolved laser-induced fluorescence spectroscopy (TRLFS) at pH=2-6. An increase of the fluorescence intensity, connected with a strong red-shift of about 8 nm compared to the free uranyl ion, indicates a complex formation between UO(2)(2+) and the phosphonates already at pH=2. Even at pH=6 these complexes prevail over the uranyl hydroxide and carbonate species, which are generated naturally at this pH. At pH=4 and higher a 1:2 complex between uranyl and O-phosphoserine was found. Complexes with a metal-to-ligand ratio of 1:1 were observed for all other ligands. Fluorescence lifetimes, emission maxima and complex stability constants at T=22+/-1 degrees C are reported. The TRLFS spectra of uranyl complexes with two phosphatidic acids (1,2-dimyristoyl-sn-glycero-3-phosphate and 1,2-dipalmitoyl-sn-glycero-3-phosphate), which represent the apolaric site of phospholipids, show in each case two different species.
Collapse
Affiliation(s)
- A Koban
- Forschungszentrum Dresden-Rossendorf e.V., Institute of Radiochemistry, P.O. Box 510119, D-01314 Dresden, Germany.
| | | |
Collapse
|
20
|
Gutowski KE, Cocalia VA, Griffin ST, Bridges NJ, Dixon DA, Rogers RD. Interactions of 1-Methylimidazole with UO2(CH3CO2)2 and UO2(NO3)2: Structural, Spectroscopic, and Theoretical Evidence for Imidazole Binding to the Uranyl Ion. J Am Chem Soc 2006; 129:526-36. [PMID: 17227015 DOI: 10.1021/ja064592i] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first definitive high-resolution single-crystal X-ray structure for the coordination of the 1-methylimidazole (Meimid) ligand to UO2(Ac)2 (Ac = CH3CO2) is reported. The crystal structure evidence is confirmed by IR, Raman, and UV-vis spectroscopic data. Direct participation of the nitrogen atom of the Meimid ligand in binding to the uranium center is confirmed. Structural analysis at the DFT (B3LYP) level of theory showed a conformational difference of the Meimid ligand in the free gas-phase complex versus the solid state due to small energetic differences and crystal packing effects. Energetic analysis at the MP2 level in the gas phase supported stronger Meimid binding over H2O binding to both UO2(Ac)2 and UO2(NO3)2. In addition, self-consistent reaction field COSMO calculations were used to assess the aqueous phase energetics of combination and displacement reactions involving H2O and Meimid ligands to UO2R2 (R = Ac, NO3). For both UO2(NO3)2 and UO2(Ac)2, the displacement of H2O by Meimid was predicted to be energetically favorable, consistent with experimental results that suggest Meimid may bind uranyl at physiological pH. Also, log(Knitrate/KAc) calculations supported experimental evidence that the binding stoichiometry of the Meimid ligand is dependent upon the nature of the reactant uranyl complex. These results clearly demonstrate that imidazole binds to uranyl and suggest that binding of histidine residues to uranyl could occur under normal biological conditions.
Collapse
Affiliation(s)
- Keith E Gutowski
- Department of Chemistry and Center for Green Manufacturing, The University of Alabama, Shelby Hall, Box 870336, Tuscaloosa, Alabama 35487-0336, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ansoborlo E, Prat O, Moisy P, Den Auwer C, Guilbaud P, Carriere M, Gouget B, Duffield J, Doizi D, Vercouter T, Moulin C, Moulin V. Actinide speciation in relation to biological processes. Biochimie 2006; 88:1605-18. [PMID: 16996675 DOI: 10.1016/j.biochi.2006.06.011] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/26/2006] [Indexed: 11/21/2022]
Abstract
In case of accidental release of radionuclides into the environment, actinides represent a severe health risk to human beings following internal contamination (inhalation, ingestion or wound). For a better understanding of the actinide behaviour in man (in term of metabolism, retention, excretion) and in specific biological systems (organs, cells or biochemical pathways), it is of prime importance to have a good knowledge of the relevant actinide solution chemistry and biochemistry, in particular of the thermodynamic constants needed for computing actinide speciation. To a large extent, speciation governs bioavailability and toxicity of elements and has a significant impact on the mechanisms by which toxics accumulate in cell compartments and organs and by which elements are transferred and transported from cell to cell. From another viewpoint, speciation is the prerequisite for the design and success of potential decorporation therapies. The purpose of this review is to present the state of the art of actinide knowledge within biological media. It is also to discuss how actinide speciation can be determined or predicted and to highlight the areas where information is lacking with the aim to encourage new research efforts.
Collapse
Affiliation(s)
- Eric Ansoborlo
- CEA/DEN/DRCP/CETAMA, VRH-Marcoule, BP 17171, 30207 Bagnols sur Cèze, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|