1
|
Shinada M, Suzuki H, Hanyu M, Igarashi C, Matsumoto H, Takahashi M, Hihara F, Tachibana T, Sogawa C, Zhang MR, Higashi T, Sato H, Kurihara H, Yoshii Y, Doi Y. Trace Metal Impurities Effects on the Formation of [ 64Cu]Cu-diacetyl-bis( N4-methylthiosemicarbazone) ([ 64Cu]Cu-ATSM). Pharmaceuticals (Basel) 2023; 17:10. [PMID: 38275997 PMCID: PMC10821298 DOI: 10.3390/ph17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
[64Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent being investigated in clinical trials for malignant brain tumors. For the quality management of [64Cu]Cu-ATSM, understanding trace metal impurities' effects on the chelate formation of 64Cu and ATSM is important. In this study, we conducted coordination chemistry studies on metal-ATSM complexes. First, the effects of nonradioactive metal ions (Cu2+, Ni2+, Zn2+, and Fe2+) on the formation of [64Cu]Cu-ATSM were evaluated. When the amount of Cu2+ or Ni2+ added was 1.2 mol or 288 mol, equivalent to ATSM, the labeling yield of [64Cu]Cu-ATSM fell below 90%. Little effect was observed even when excess amounts of Zn2+ or Fe2+ were added to the ATSM. Second, these metals were reacted with ATSM, and chelate formation was measured using ultraviolet-visible (UV-Vis) absorption spectra. UV-Vis spectra showed a rapid formation of Cu2+ and the ATSM complex upon mixing. The rate of chelate formation by Ni2+ and ATSM was lower than that by Cu-ATSM. Zn2+ and Fe2+ showed much slower reactions with the ATSM than Ni2+. Trace amounts of Ni2+, Zn2+, and Fe2+ showed little effect on [64Cu]Cu-ATSM' quality, while the concentration of impurity Cu2+ must be controlled. These results can provide process management tools for radiopharmaceuticals.
Collapse
Affiliation(s)
- Mitsuhiro Shinada
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hisashi Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Masayuki Hanyu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Masashi Takahashi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tomoko Tachibana
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chizuru Sogawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Ming-Rong Zhang
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Hidemitsu Sato
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroaki Kurihara
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yoshihiro Doi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
| |
Collapse
|
2
|
AlHokbany N, AlJammaz I, AlOtaibi B, AlMalki Y, AlJammaz B, Okarvi SM. Development of new copper-64 labeled rhodamine: a potential PET myocardial perfusion imaging agent. EJNMMI Radiopharm Chem 2022; 7:19. [PMID: 35870027 PMCID: PMC9308844 DOI: 10.1186/s41181-022-00171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Myocardial perfusion imaging (MPI) is one of the most commonly performed investigations in nuclear medicine procedures. Due to the longer half-life of the emerging positron emitter copper-64 and its availability from low energy cyclotron, together with its well-known coordination chemistry, we have synthesized 64Cu-labeled NOTA- and 64Cu-NOTAM-rhodamine conjugates as potential cardiac imaging agents using PET. Results 64Cu-NOTA- and 64Cu-NOTAM-rhodamine conjugates were synthesized using a traightforward and one-step simple reaction. Radiochemical yields were greater than 97% (decay corrected), with a total synthesis time of less than 25 min. Radiochemical purities were always greater than 98% as assessed by TLC and HPLC. These synthetic approaches hold considerable promise as a simple method for 64Cu-rhodamine conjugates synthesis, with high radiochemical yield and purity. Biodistribution studies in normal Fischer rats at 60 min post-injection, demonstrated significant heart uptake and a good biodistribution profile for both the radioconjugates. However, the 64Cu-NOTAM-rhodamine conjugate has shown more heart uptake (~ 10% ID/g) over the 64Cu-NOTA-rhodamine conjugate (5.6% ID/g). Conclusions These results demonstrate that these radioconjugates may be useful probes for the PET evaluation of MPI.
Collapse
|
3
|
Mieszkowska M, Grdeń M. Electrochemical deposition of nickel targets from aqueous electrolytes for medical radioisotope production in accelerators: a review. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04950-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThis paper reviews reported methods of the electrochemical deposition of nickel layers which are used as target materials for accelerator production of medical radioisotopes. The review focuses on the electrodeposition carried out from aqueous electrolytes. It describes the main challenges related to the preparation of suitable Ni target layers, such as work with limited amounts of expensive isotopically enriched nickel; electrodeposition of sufficiently thick, smooth and free of cracks layers; and recovery of unreacted Ni isotopes from the irradiated targets and from used electrolytic baths.
Collapse
|
4
|
|
5
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
6
|
Fiedler L, Kellner M, Oos R, Böning G, Ziegler S, Bartenstein P, Zeidler R, Gildehaus FJ, Lindner S. Fully Automated Production and Characterization of 64 Cu and Proof-of-Principle Small-Animal PET Imaging Using 64 Cu-Labelled CA XII Targeting 6A10 Fab. ChemMedChem 2018; 13:1230-1237. [PMID: 29667369 DOI: 10.1002/cmdc.201800130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Indexed: 01/26/2023]
Abstract
64 Cu is a cyclotron-produced radionuclide which offers, thanks to its characteristic decay scheme, the possibility of combining positron emission tomography (PET) investigations with radiotherapy. We evaluated the Alceo system from Comecer SpA to automatically produce 64 Cu for radiolabelling purposes. We established a 64 Cu production routine with high yields and radionuclide purity in combination with excellent operator radiation protection. The carbonic anhydrase XII targeting 6A10 antibody Fab fragment was successfully radiolabelled with the produced 64 Cu, and proof-of-principle small-animal PET experiments on mice bearing glioma xenografts were performed. We obtained a high tumor-to-contralateral muscle ratio, which encourages further in vivo investigations of the radioconjugate regarding a possible application in diagnostic tumor imaging.
Collapse
Affiliation(s)
- Luise Fiedler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Markus Kellner
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Reinhard Zeidler
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany.,Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
7
|
Qaim SM, Spahn I. Development of novel radionuclides for medical applications. J Labelled Comp Radiopharm 2017; 61:126-140. [PMID: 29110328 DOI: 10.1002/jlcr.3578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/12/2022]
Abstract
Medical radionuclide production technology is well established. There is, however, a constant need for further development of radionuclides. The present efforts are mainly devoted to nonstandard positron emitters (eg, 64 Cu, 86 Y, 124 I, and 73 Se) and novel therapeutic radionuclides emitting low-range β- particles (eg, 67 Cu and 186 Re), conversion or Auger electrons (eg, 117m Sn and 77 Br), and α particles (eg, 225 Ac). A brief account of various aspects of development work (ie, nuclear data, targetry, chemical processing, and quality control) is given. For each radionuclide under consideration, the status of technology for clinical scale production is discussed. The increasing need of intermediate-energy multiple-particle accelerating cyclotrons is pointed out.
Collapse
Affiliation(s)
- Syed M Qaim
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, Jülich, Germany
| | - Ingo Spahn
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
8
|
Gillet R, Roux A, Brandel J, Huclier-Markai S, Camerel F, Jeannin O, Nonat AM, Charbonnière LJ. A Bispidol Chelator with a Phosphonate Pendant Arm: Synthesis, Cu(II) Complexation, and 64Cu Labeling. Inorg Chem 2017; 56:11738-11752. [DOI: 10.1021/acs.inorgchem.7b01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raphaël Gillet
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Amandine Roux
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Jérémy Brandel
- Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sandrine Huclier-Markai
- GIP Arronax, 1 rue Aronnax, CS 10112, F-44817 Saint-Herblain, France
- Subatech Laboratory, UMR 6457, Ecole des Mines de Nantes, IN2P3/CNRS, Université de Nantes, 4 rue Alfred Kastler, F-44307 Nantes, France
| | - Franck Camerel
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Olivier Jeannin
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Aline M. Nonat
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Loïc J. Charbonnière
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
9
|
Šillerová H, Chrastný V, Vítková M, Francová A, Jehlička J, Gutsch MR, Kocourková J, Aspholm PE, Nilsson LO, Berglen TF, Jensen HKB, Komárek M. Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:149-157. [PMID: 28528262 DOI: 10.1016/j.envpol.2017.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM10). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ60Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ65Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ60Ni and δ65Cu values determined in the smelter, i.e. in feeding material and slag (δ60Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ65Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ60Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ65Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment.
Collapse
Affiliation(s)
- Hana Šillerová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Anna Francová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Jan Jehlička
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Marissa R Gutsch
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Jana Kocourková
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Paul E Aspholm
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway
| | - Lars O Nilsson
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway
| | - Tore F Berglen
- Department Urban Environment and Industry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | | | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| |
Collapse
|
10
|
Singh A, Kulkarni HR, Baum RP. Imaging of Prostate Cancer Using 64 Cu-Labeled Prostate-Specific Membrane Antigen Ligand. PET Clin 2017; 12:193-203. [DOI: 10.1016/j.cpet.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Roux A, Gillet R, Huclier-Markai S, Ehret-Sabatier L, Charbonnière LJ, Nonat AM. Bifunctional bispidine derivatives for copper-64 labelling and positron emission tomography. Org Biomol Chem 2017; 15:1475-1483. [DOI: 10.1039/c6ob02712a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A bispidine cage coordinates 64Cu2+ rapidly and quantitatively at room temperature, and biotin and maleimide functions allow for targeted PET imaging.
Collapse
Affiliation(s)
- Amandine Roux
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| | - Raphaël Gillet
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| | | | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique
- Université de Strasbourg
- CNRS
- IPHC UMR 7178
- F-67000 Strasbourg
| | - Loïc J. Charbonnière
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| | - Aline M. Nonat
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| |
Collapse
|
12
|
Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Fukumura T, Zhang MR. Efficient preparation of high-quality 64 Cu for routine use. Nucl Med Biol 2016; 43:685-691. [DOI: 10.1016/j.nucmedbio.2016.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022]
|
13
|
Paúrová M, Havlíčková J, Pospíšilová A, Vetrík M, Císařová I, Stephan H, Pietzsch HJ, Hrubý M, Hermann P, Kotek J. Bifunctional Cyclam-Based Ligands with Phosphorus Acid Pendant Moieties for Radiocopper Separation: Thermodynamic and Kinetic Studies. Chemistry 2015; 21:4671-87. [DOI: 10.1002/chem.201405777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/08/2022]
|
14
|
The copper radioisotopes: a systematic review with special interest to 64Cu. BIOMED RESEARCH INTERNATIONAL 2014; 2014:786463. [PMID: 24895611 PMCID: PMC4033511 DOI: 10.1155/2014/786463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/18/2014] [Indexed: 11/18/2022]
Abstract
Copper (Cu) is an important trace element in humans; it plays a role as a cofactor for numerous enzymes and other proteins crucial for respiration, iron transport, metabolism, cell growth, and hemostasis. Natural copper comprises two stable isotopes, (63)Cu and (65)Cu, and 5 principal radioisotopes for molecular imaging applications ((60)Cu, (61)Cu, (62)Cu, and (64)Cu) and in vivo targeted radiation therapy ((64)Cu and (67)Cu). The two potential ways to produce Cu radioisotopes concern the use of the cyclotron or the reactor. A noncopper target is used to produce noncarrier-added Cu thanks to a chemical separation from the target material using ion exchange chromatography achieving a high amount of radioactivity with the lowest possible amount of nonradioactive isotopes. In recent years, Cu isotopes have been linked to antibodies, proteins, peptides, and nanoparticles for preclinical and clinical research; pathological conditions that influence Cu metabolism such as Menkes syndrome, Wilson disease, inflammation, tumor growth, metastasis, angiogenesis, and drug resistance have been studied. We aim to discuss all Cu radioisotopes application focusing on (64)Cu and in particular its form (64)CuCl2 that seems to be the most promising for its half-life, radiation emissions, and stability with chelators, allowing several applications in oncological and nononcological fields.
Collapse
|