1
|
Williamson AJ, Binet M, Sergeant C. Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents. Crit Rev Biotechnol 2024; 44:698-716. [PMID: 37258417 DOI: 10.1080/07388551.2023.2194505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/07/2022] [Accepted: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Civilian and military nuclear programs of several nations over more than 70 years have led to significant quantities of heterogenous solid, organic, and aqueous radioactive wastes bearing actinides, fission products, and activation products. While many physicochemical treatments have been developed to remediate, decontaminate and reduce waste volumes, they can involve high costs (energy input, expensive sorbants, ion exchange resins, chemical reducing/precipitation agents) or can lead to further secondary waste forms. Microorganisms can directly influence radionuclide solubility, via sorption, accumulation, precipitation, redox, and volatilization pathways, thus offering a more sustainable approach to remediation or effluent treatments. Much work to date has focused on fundamentals or laboratory-scale remediation trials, but there is a paucity of information toward field-scale bioremediation and, to a lesser extent, toward biological liquid effluent treatments. From the few biostimulation studies that have been conducted at legacy weapon production/test sites and uranium mining and milling sites, some marked success via bioreduction and biomineralisation has been observed. However, rebounding of radionuclide mobility from (a)biotic scale-up factors are often encountered. Radionuclide, heavy metal, co-contaminant, and/or matrix effects provide more challenging conditions than traditional industrial wastewater systems, thus innovative solutions via indirect interactions with stable element biogeochemical cycles, natural or engineered cultures or communities of metal and irradiation tolerant strains and reactor design inspirations from existing metal wastewater technologies, are required. This review encompasses the current state of the art in radionuclide biogeochemistry fundamentals and bioremediation and establishes links toward transitioning these concepts toward future radioactive effluent treatments.
Collapse
Affiliation(s)
| | - Marie Binet
- EDF R&D, LNHE (Laboratoire National d'Hydraulique et Environnement), Chatou, France
| | | |
Collapse
|
2
|
Hilpmann S, Moll H, Drobot B, Vogel M, Hübner R, Stumpf T, Cherkouk A. Europium(III) as luminescence probe for interactions of a sulfate-reducing microorganism with potentially toxic metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115474. [PMID: 37716067 DOI: 10.1016/j.ecoenv.2023.115474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344T, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste. D. hippei DSM 8344T showed a weak interaction with Eu(III), most likely due to a complexation with lactate in artificial Opalinus Clay pore water. Hence, a low removal of the lanthanide from the supernatant was observed. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed a bioprecipitation of Eu(III) with phosphates potentially excreted from the cells. This demonstrates that the ongoing interaction mechanisms are more complex than a simple biosorption process. The bioprecipitation was also verified by luminescence spectroscopy, which showed that the formation of the Eu(III) phosphate compounds starts almost immediately after the addition of the cells. Moreover, chemical microscopy provided information on the local distribution of the different Eu(III) species in the formed cell aggregates. These results provide first insights into the interaction mechanisms of Eu(III) with sulfate-reducing bacteria and contribute to a comprehensive safety concept for a high-level radioactive waste repository, as well as to a better understanding of the fate of heavy metals (especially rare earth elements) in the environment.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e. V., Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
3
|
Barton F, Spencer BF, Tartèse R, Graham J, Shaw S, Morris K, Lloyd JR. The potential role of biofilms in promoting fouling formation in radioactive discharge pipelines. BIOFOULING 2023; 39:785-799. [PMID: 37877442 DOI: 10.1080/08927014.2023.2269532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Nuclear facility discharge pipelines accumulate inorganic and microbial fouling and radioactive contamination, however, research investigating the mechanisms that lead to their accumulation is limited. Using the Sellafield discharge pipeline as a model system, this study utilised modified Robbins devices to investigate the potential interplay between inorganic and biological processes in supporting fouling formation and radionuclide uptake. Initial experiments showed polyelectrolytes (present in pipeline effluents), had minimal effects on fouling formation. Biofilms were, however, found to be the key component promoting fouling, leading to increased uptake of inorganic particulates and metal contaminants (Cs, Sr, Co, Eu and Ru) compared to a non-biofilm control system. Biologically-mediated uptake mechanisms were implicated in Co and Ru accumulation, with a potential bioreduced Ru species identified on the biofilm system. This research emphasised the key role of biofilms in promoting fouling in discharge pipelines, advocating for the use of biocide treatments methods.
Collapse
Affiliation(s)
- Franky Barton
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ben F Spencer
- Henry Royce Institute and Department of Materials, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Romain Tartèse
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - James Graham
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria, United Kingdom
| | - Samuel Shaw
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Swanson J, Navarrette A, Knox J, Kim H, Stanley F. Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository. Microorganisms 2023; 11:1370. [PMID: 37374872 DOI: 10.3390/microorganisms11061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Biologically enhanced transport of radionuclides is one of several processes that can affect the performance of a nuclear waste repository. In this work, several microbial isolates from the Waste Isolation Pilot Plant (WIPP) were tested for their influence on the concentration of neodymium, as an analog for +3 actinides, in simple sodium chloride solutions and in anoxic WIPP brines. Batch sorption experiments were carried out over a period of 4-5 weeks. In many cases, the effect on neodymium in solution was immediate and extensive and assumed to be due to surface complexation. However, over time, the continued loss of Nd from the solution was more likely due to biologically induced precipitation and/or mineralization and possible entrapment in extracellular polymeric substances. The results showed no correlation between organism type and the extent of its influence on neodymium in solution. However, a correlation was observed between different test matrices (simple NaCl versus high-magnesium brine versus high-NaCl brine). Further experiments were conducted to test these matrix effects, and the results showed a significant effect of magnesium concentration on the ability of microorganisms to remove Nd from solution. Possible mechanisms include cation competition and the alteration of cell surface structures. This suggests that the aqueous chemistry of the WIPP environs could play a larger role in the final disposition of +3 actinides than the microbiology.
Collapse
Affiliation(s)
- Julie Swanson
- Los Alamos National Laboratory, Carlsbad, NM 88220, USA
| | | | - Jandi Knox
- Los Alamos National Laboratory, Carlsbad, NM 88220, USA
| | - Hannah Kim
- Los Alamos National Laboratory, Carlsbad, NM 88220, USA
| | - Floyd Stanley
- Los Alamos National Laboratory, Carlsbad, NM 88220, USA
| |
Collapse
|
5
|
Mandal P, Kretzschmar J, Drobot B. Not just a background: pH buffers do interact with lanthanide ions-a Europium(III) case study. J Biol Inorg Chem 2022; 27:249-260. [PMID: 35150337 PMCID: PMC8907096 DOI: 10.1007/s00775-022-01930-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022]
Abstract
The interaction between Eu(III) ion and different pH buffers, popular in biology and biochemistry, viz. HEPES, PIPES, MES, MOPS, and TRIS, has been studied by solution nuclear magnetic resonance spectroscopy (NMR) and time-resolved laser-induced fluorescence spectroscopy (TRLFS) techniques. The Good's buffers reveal non-negligible interaction with Eu(III) as determined from their complex stability constants, where the sites of interaction are the morpholine and piperazine nitrogen atoms, respectively. In contrast, TRIS buffer shows practically no affinity towards Eu(III). Therefore, when investigating lanthanides, TRIS buffer should be preferred over Good's buffers.
Collapse
Affiliation(s)
- Poulami Mandal
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Jerome Kretzschmar
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
6
|
Ruiz-Fresneda MA, Lopez-Fernandez M, Martinez-Moreno MF, Cherkouk A, Ju-Nam Y, Ojeda JJ, Moll H, Merroun ML. Molecular Binding of Eu III/Cm III by S tenotrophomonas bentonitica and Its Impact on the Safety of Future Geodisposal of Radioactive Waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15180-15190. [PMID: 33185105 DOI: 10.1021/acs.est.0c02418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial communities occurring in reference materials for artificial barriers (e.g., bentonites) in future deep geological repositories of radioactive waste can influence the migration behavior of radionuclides such as curium (CmIII). This study investigates the molecular interactions between CmIII and its inactive analogue europium (EuIII) with the indigenous bentonite bacterium Stenotrophomonas bentonitica at environmentally relevant concentrations. Potentiometric studies showed a remarkably high concentration of phosphates at the bacterial cell wall compared to other bacteria, revealing the great potential of S. bentonitica for metal binding. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the role of phosphates and carboxylate groups from the cell envelope in the bioassociation of EuIII. Additionally, time-resolved laser-induced fluorescence spectroscopy (TRLFS) identified phosphoryl and carboxyl groups from bacterial envelopes, among other released complexing agents, to be involved in the EuIII and CmIII coordination. The ability of this bacterium to form a biofilm at the surface of bentonites allows them to immobilize trivalent lanthanide and actinides in the environment.
Collapse
Affiliation(s)
| | | | | | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Yon Ju-Nam
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Swansea, U.K
| | - Jesus J Ojeda
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Swansea, U.K
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | | |
Collapse
|
7
|
Brewer A, Chang E, Park DM, Kou T, Li Y, Lammers LN, Jiao Y. Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface Adsorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7714-7723. [PMID: 31198021 DOI: 10.1021/acs.est.9b00301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The increasing demand for rare earth elements (REEs) in the modern economy motivates the development of novel strategies for cost-effective REE recovery from nontraditional feedstocks. We previously engineered E. coli to express lanthanide binding tags on the cell surface, which increased the REE biosorption capacity and selectivity. Here we examined how REE adsorption by the engineered E. coli is affected by various geochemical factors relevant to geothermal fluids, including total dissolved solids (TDS), temperature, pH, and the presence of specific competing metals. REE biosorption is robust to TDS, with high REE recovery efficiency and selectivity observed with TDS as high as 165,000 ppm. Among several metals tested, U, Al, and Pb were found to be the most competitive, causing >25% reduction in REE biosorption when present at concentrations ∼3- to 11-fold higher than the REEs. Optimal REE biosorption occurred between pH 5-6, and sorption capacity was reduced by ∼65% at pH 2. REE recovery efficiency and selectivity increased as a function of temperature up to ∼70 °C due to the thermodynamic properties of metal complexation on the bacterial surface. Together, these data define the optimal and boundary conditions for biosorption and demonstrate its potential utility for selective REE recovery from geofluids.
Collapse
Affiliation(s)
- Aaron Brewer
- Physical and Life Science Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
- Department of Earth and Space Sciences , University of Washington , Seattle , Washington 98185 , United States
| | - Elliot Chang
- Department of Environmental Science, Policy, and Management , University of California Berkeley , Berkeley , California 94270 , United States
| | - Dan M Park
- Physical and Life Science Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Tianyi Kou
- Chemistry and Biochemistry Department , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Yat Li
- Chemistry and Biochemistry Department , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Laura N Lammers
- Department of Environmental Science, Policy, and Management , University of California Berkeley , Berkeley , California 94270 , United States
| | - Yongqin Jiao
- Physical and Life Science Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| |
Collapse
|
8
|
Bader M, Moll H, Steudtner R, Lösch H, Drobot B, Stumpf T, Cherkouk A. Association of Eu(III) and Cm(III) onto an extremely halophilic archaeon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9352-9364. [PMID: 30721439 DOI: 10.1007/s11356-019-04165-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
In addition to geological, geochemical, and geophysical aspects, also, microbial aspects have to be taken into account when considering the final storage of high-level radioactive waste in a deep geological repository. Rock salt is a potential host rock formation for such a repository. One indigenous microorganism, that is, common in rock salt, is the halophilic archaeon Halobacterium noricense DSM15987T, which was used in our study to investigate its interactions with the trivalent actinide curium and its inactive analogue europium as a function of time and concentration. Time-resolved laser-induced fluorescence spectroscopy was applied to characterize formed species in the micromolar europium concentration range. An extended evaluation of the data with parallel factor analysis revealed the association of Eu(III) to a phosphate compound released by the cells (F2/F1 ratio, 2.50) and a solid phosphate species (F2/F1 ratio, 1.80). The association with an aqueous phosphate species and a solid phosphate species was proven with site-selective TRLFS. Experiments with Cm(III) in the nanomolar concentration range showed a time- and pCH+-dependent species distribution. These species were characterized by red-shifted emission maxima, 600-602 nm, in comparison to the free Cm(III) aqueous ion, 593.8 nm. After 24 h, 40% of the luminescence intensity was measured on the cells corresponding to 0.18 μg Cm(III)/gDBM. Our results demonstrate that Halobacterium noricense DSM15987T interacts with Eu(III) by the formation of phosphate species, whereas for Cm(III), a complexation with carboxylic functional groups was also observed.
Collapse
Affiliation(s)
- Miriam Bader
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Henry Moll
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Henry Lösch
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Björn Drobot
- Max Planck Institute of Molecular Cell Biology and Genetics, Tang Lab, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Andrea Cherkouk
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
9
|
Bader M, Rossberg A, Steudtner R, Drobot B, Großmann K, Schmidt M, Musat N, Stumpf T, Ikeda-Ohno A, Cherkouk A. Impact of Haloarchaea on Speciation of Uranium-A Multispectroscopic Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12895-12904. [PMID: 30125086 DOI: 10.1021/acs.est.8b02667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Haloarchaea represent a predominant part of the microbial community in rock salt, which can serve as host rock for the disposal of high level radioactive waste. However, knowledge is missing about how Haloarchaea interact with radionuclides. Here, we used a combination of spectroscopic and microscopic methods to study the interactions of an extremely halophilic archaeon with uranium, one of the major radionuclides in high level radioactive waste, on a molecular level. The obtained results show that Halobacterium noricense DSM 15987T influences uranium speciation as a function of uranium concentration and incubation time. X-ray absorption spectroscopy reveals the formation of U(VI) phosphate minerals, such as meta-autunite, as the major species at a lower uranium concentration of 30 μM, while U(VI) is mostly associated with carboxylate groups of the cell wall and extracellular polymeric substances at a higher uranium concentration of 85 μM. For the first time, we identified uranium biomineralization in the presence of Halobacterium noricense DSM 15987T cells. These findings highlight the potential importance of Archaea in geochemical cycling of uranium and their role in biomineralization in hypersaline environments, offering new insights into the microbe-actinide interactions in highly saline conditions relevant to the disposal of high-level radioactive waste as well as bioremediation.
Collapse
Affiliation(s)
- Miriam Bader
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
- Technische Universität Dresden , Central Radionuclide Laboratory , Zellescher Weg 19 , 01062 Dresden , Germany
| | - Kay Großmann
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research , Department of Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Niculina Musat
- Helmholtz Centre for Environmental Research , Department of Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| |
Collapse
|
10
|
Reed KB, Alper HS. Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering. Synth Syst Biotechnol 2018; 3:20-33. [PMID: 29911196 PMCID: PMC5884228 DOI: 10.1016/j.synbio.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/08/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic engineering offers an exquisite capacity to produce new molecules in a renewable manner. However, most industrial applications have focused on only a small subset of elements from the periodic table, centered around carbon biochemistry. This review aims to illustrate the expanse of chemical elements that can currently (and potentially) be integrated into useful products using cellular systems. Specifically, we describe recent advances in expanding the cellular scope to include the halogens, selenium and the metalloids, and a variety of metal incorporations. These examples range from small molecules, heteroatom-linked uncommon elements, and natural products to biomining and nanotechnology applications. Collectively, this review covers the promise of an expanded range of elemental incorporations and the future impacts it may have on biotechnology.
Collapse
Affiliation(s)
- Kevin B. Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|
11
|
Bader M, Müller K, Foerstendorf H, Schmidt M, Simmons K, Swanson JS, Reed DT, Stumpf T, Cherkouk A. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea. PLoS One 2018; 13:e0190953. [PMID: 29329319 PMCID: PMC5766140 DOI: 10.1371/journal.pone.0190953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/23/2017] [Indexed: 11/18/2022] Open
Abstract
Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense.
Collapse
Affiliation(s)
- Miriam Bader
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Katharina Müller
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Harald Foerstendorf
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Leipzig, Germany
| | - Karen Simmons
- Los Alamos National Laboratory Carlsbad Operations, Repository Science and Operations, Carlsbad, New Mexico, United States of America
| | - Juliet S. Swanson
- Los Alamos National Laboratory Carlsbad Operations, Repository Science and Operations, Carlsbad, New Mexico, United States of America
| | - Donald T. Reed
- Los Alamos National Laboratory Carlsbad Operations, Repository Science and Operations, Carlsbad, New Mexico, United States of America
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
- * E-mail:
| |
Collapse
|
12
|
Bader M, Müller K, Foerstendorf H, Drobot B, Schmidt M, Musat N, Swanson JS, Reed DT, Stumpf T, Cherkouk A. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:225-232. [PMID: 28081458 DOI: 10.1016/j.jhazmat.2016.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.
Collapse
Affiliation(s)
- Miriam Bader
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Katharina Müller
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Harald Foerstendorf
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research-UFZ, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig, Germany
| | - Niculina Musat
- Helmholtz Centre for Environmental Research-UFZ, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig, Germany
| | - Juliet S Swanson
- Los Alamos National Laboratory, Repository Science and Operations, 1400 University Drive, Carlsbad, NM, 88220, USA
| | - Donald T Reed
- Los Alamos National Laboratory, Repository Science and Operations, 1400 University Drive, Carlsbad, NM, 88220, USA
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
13
|
Park DM, Reed DW, Yung MC, Eslamimanesh A, Lencka MM, Anderko A, Fujita Y, Riman RE, Navrotsky A, Jiao Y. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2735-42. [PMID: 26836847 PMCID: PMC5381720 DOI: 10.1021/acs.est.5b06129] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.
Collapse
Affiliation(s)
- Dan M. Park
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 92550, United States
| | - David W. Reed
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Mimi C. Yung
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 92550, United States
| | - Ali Eslamimanesh
- OLI Systems, Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, New Jersey 07927, United States
| | - Malgorzata M. Lencka
- OLI Systems, Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, New Jersey 07927, United States
| | - Andrzej Anderko
- OLI Systems, Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, New Jersey 07927, United States
| | - Yoshiko Fujita
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, United States
| | - Yongqin Jiao
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 92550, United States
| |
Collapse
|
14
|
A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl Environ Microbiol 2015; 81:3062-8. [PMID: 25710372 DOI: 10.1128/aem.00300-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/19/2015] [Indexed: 11/20/2022] Open
Abstract
With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions.
Collapse
|
15
|
KOZAI N, OHNUKI T, SAKAMOTO F, SUZUKI Y, TANAKA K, IEFUJI H, SAKAI T. Accumulation of Co in Yeast Cells under Metabolically Active Condition—Implication for Role of Yeast in Migration of Radioactive Co—. J NUCL SCI TECHNOL 2011. [DOI: 10.1080/18811248.2011.9711808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Collins RN, Saito T, Aoyagi N, Payne TE, Kimura T, Waite TD. Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:731-741. [PMID: 21546659 DOI: 10.2134/jeq2010.0166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry.
Collapse
Affiliation(s)
- Richard N Collins
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Kuwahara C, Fukumoto A, Nishina M, Sugiyama H, Anzai Y, Kato F. Characteristics of cesium accumulation in the filamentous soil bacterium Streptomyces sp. K202. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2011; 102:138-144. [PMID: 21163559 DOI: 10.1016/j.jenvrad.2010.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 10/04/2010] [Accepted: 11/05/2010] [Indexed: 05/30/2023]
Abstract
A filamentous soil bacterium, strain K202, was isolated from soil where an edible mushroom (Boletopsis leucomelas) was growing and identified as belonging to the genus Streptomyces on the basis of its morphological characteristics and the presence of LL-2, 6-diaminopimelic acid. We studied the existence states of Cs and its migration from extracellular to intracellular fluid in the mycelia of Streptomyces sp. K202. The results indicated that Cs accumulated in the cells through at least 2 steps: in the first step, Cs(+) was immediately and non-specifically adsorbed on the negatively charged cell surface, and in the second step, this adsorbed Cs(+) was taken up into the cytoplasm, and a part of the Cs entering the cytoplasm was taken up by an energy-dependent transport system(s). Further, we confirmed that a part of the Cs(+) was taken up into the mycelia competitively with K(+), because K(+) uptake into the intact mycelia of the strain was significantly inhibited by the presence of Cs(+) in the culture media. This suggested that part of the Cs is transported by the potassium transport system. Moreover, (133)Cs-NMR spectra and SEM-EDX spectra of the mycelia that accumulated Cs showed the presence of at least 2 intracellular Cs states: Cs(+) trapped by intercellular materials such as polyphosphate and Cs(+) present in a cytoplasmic pool.
Collapse
Affiliation(s)
- Chikako Kuwahara
- Chemistry Division, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki-shi, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
KOZAI N, OHNUKI T, SAKAMOTO F, SUZUKI Y, TANAKA K, IEFUJI H, SAKAI T. Accumulation of Co in Yeast Cells under Metabolically Active Condition —Implication for Role of Yeast in Migration of Radioactive Co—. J NUCL SCI TECHNOL 2011. [DOI: 10.3327/jnst.48.1206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Ozaki T, Kimura T, Ohnuki T, Francis AJ. Effects of ionic strength on the coordination of Eu(III) and Cm(III) to a Gram-negative bacterium,Paracoccus denitrificans. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2006.94.9-11.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We studied the effect of ionic strength on the interactions of Europium(III) and Curium(III) with a Gram-negative bacteriumParacoccus denitrificans. Bacterial cells grown in 0.5-, 3.5-, and 5.0% NaCl were used in adsorption experiments and laser experiments that were performed at the same ionic strengths as those in the original growth media. The distribution ratio (logKd) for Eu(III) and Cm(III) was determined at pHs 3−5. To elucidate the coordination environment of Eu(III) adsorbed onP. denitrificans, we estimated the number of water molecules in the inner sphere and strength of the ligand field by time-resolved laser-induced fluorescence spectroscopy (TRLFS) at pHs 4−6. The logKdof Eu(III) and Cm(III) increased with an increase of pH at all ionic strengths because there was less competition for ligands in cells with H+at higher pHs, wherein less H+was present in solution: cation adsorption generally occurs through an exchange with H+on the functional groups of coordination sites. No significant differences were observed in the logKdof Eu(III) and Cm(III) at each pH in 0.5-, 3.5-, and 5.0% NaCl solutions, though competition for ligands with Na+would be expected to increase at higher NaCl concentrations. The logKdof Eu(III) was almost equivalent to that of Cm(III) under all the experimental conditions. TRLFS showed that the coordination environments of Eu(III) did not differ from each other at 0.5-, 3.5-, and 5.0% NaCl at pHs 4−6. TRLFS also showed that the characteristic of the coordination environment of Eu(III) onP. denitrificanswas similar to that on a halophile,Nesterenkonia halobia, while it significantly differed from that on a non-halophile,Pseudomonas putida. These findings indicate that the number of coordination sites for Eu(III) onP. denitrificans, whose cell surface may have similar structures to that of halophiles, increased with increasing ionic strength, though their structure remained unchanged.
Collapse
|
20
|
Vlachou A, Symeopoulos BD, Koutinas AA. A comparative study of neodymium sorption by yeast cells. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2009.1632] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Ozaki T, Kimura T, Ohnuki T, Francisc AJ. Associations of Eu (III) with Gram-Negative Bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans. ACTA ACUST UNITED AC 2005. [DOI: 10.14494/jnrs2000.6.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
|
23
|
Nakao A, Yoshida T, Ozaki T, Ohnuki T, Funakawa S, Kosaki T. Cs Accumulation Behavior by Pseudomonas fluorescens. ACTA ACUST UNITED AC 2005. [DOI: 10.14494/jnrs2000.6.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|