1
|
Werth V, Volgmann K, Islam MM, Heitjans P, Bredow T. Density Functional Theory Evaluated for Structural and Electronic Properties of 1T-Li
x
TiS2 and Lithium Ion Migration in 1T-Li0.94TiS2. Z PHYS CHEM 2017. [DOI: 10.1515/zpch-2016-0919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In many applications it has been found that the standard generalized gradient approximation (GGA) does not accurately describe weak chemical bond and electronic properties of solids containing transition metals. In this work, we have considered the intercalation material 1T-Li
x
TiS2 (0≤x≤1) as a model system for the evaluation of the accuracy of GGA and corrected GGA with reference to the availabile experimental data. The influence of two different dispersion corrections (D3 and D-TS) and an on-site Coulomb repulsion term (GGA+U) on the calculated structural and electronic properties is tested. All calculations are based on the Perdew-Burke-Ernzerhof (PBE) functional. An effective U value of 3.5 eV is used for titanium. The deviation of the calculated lattice parameter c for TiS2 from experiment is reduced from 14 % with standard PBE to −2 % with PBE+U and Grimme’s D3 dispersion correction. 1T-TiS2 has a metallic ground state at PBE level whereas PBE+U predicts an indirect gap of 0.19 eV in agreement with experiment. The 7Li chemical shift and quadrupole coupling constants are in reasonable agreement with the experimental data only for PBE+U-D3. An activation energy of 0.4 eV is calculated with PBE+U-D3 for lithium migration via a tetrahedral interstitial site. This result is closer to experimental values than the migration barriers previously obtained at LDA level. The proposed method PBE+U-D3 gives a reasonable description of structural and electronic properties of 1T-Li
x
TiS2 in the whole range 0≤x≤1.
Collapse
Affiliation(s)
- Vanessa Werth
- Institut für Physikalische Chemie und Elektrochemie , Leibniz Universität Hannover , Callinstr. 3-3a , 30167 Hannover , Germany
| | - Kai Volgmann
- Institut für Physikalische Chemie und Elektrochemie , Leibniz Universität Hannover , Callinstr. 3-3a , 30167 Hannover , Germany
- Zentrum für Festkörperchemie und Neue Materialien (ZFM) , Leibniz Universität Hannover , Callinstr. 3-3a , 30167 Hannover , Germany
| | - Mazharul M. Islam
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie , Universität Bonn , Beringstr. 4 , 53115 Bonn , Germany
| | - Paul Heitjans
- Institut für Physikalische Chemie und Elektrochemie , Leibniz Universität Hannover , Callinstr. 3-3a , 30167 Hannover , Germany
- Zentrum für Festkörperchemie und Neue Materialien (ZFM) , Leibniz Universität Hannover , Callinstr. 3-3a , 30167 Hannover , Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie , Universität Bonn , Beringstr. 4 , 53115 Bonn , Germany
| |
Collapse
|
2
|
Wiedemann D, Islam MM, Bredow T, Lerch M. Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors. Z PHYS CHEM 2017. [DOI: 10.1515/zpch-2016-0918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Geometric information about ion migration (diffusion pathways) and knowledge about the associated energy landscape (migration activation barriers) are essential cornerstones for a comprehensive understanding of lithium transport in solids. Although many lithium-ion conductors are discussed, developed, and already used as energy-storage materials, fundamental knowledge is often still lacking. In this microreview, we give an introduction to the experimental and computational methods used in our subproject within the research unit FOR 1277, “Mobility of Lithium Ions in Solids (molife)”. These comprise, amongst others, neutron diffraction, topological analyses (procrystal-void analysis and Voronoi–Dirichlet partitioning), examination of scattering-length density maps reconstructed via maximum-entropy methods (MEM), analysis of probability-density functions (PDFs) and one-particle potentials (OPPs), as well as climbing-image nudged-elastic-band (cNEB) computations at density-functional theory (DFT) level. The results of our studies using these approaches on ternary lithium oxides and sulfides with different conduction characteristics (fast/slow) and dimensionalities (one-/two-/three-dimensional) are summarized, focusing on the close orbit of the research unit. Not only did the investigations elucidate the lithium-diffusion pathways and migration activation energies in the studied compounds, but we also established a versatile set of methods for the evaluation of data of differing quality.
Collapse
Affiliation(s)
- Dennis Wiedemann
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , 10623 Berlin , Germany
| | - Mazharul M. Islam
- Mulliken Center for Theoretical Chemistry , Universität Bonn, Beringstraße 4 , 53115 Bonn , Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry , Universität Bonn, Beringstraße 4 , 53115 Bonn , Germany
| | - Martin Lerch
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , 10623 Berlin , Germany
| |
Collapse
|
3
|
|