Climent V, Feliu J. Single Crystal Electrochemistry as an In Situ Analytical Characterization Tool.
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020;
13:201-222. [PMID:
32243760 DOI:
10.1146/annurev-anchem-061318-115541]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electrochemical behavior of platinum single crystal surfaces can be taken as a model response for the interpretation of the activity of heterogeneous electrodes. The cyclic voltammogram of a given platinum electrode can be considered a fingerprint characteristic of the distribution of sites on its surface. We start this review by providing some simple mathematical descriptions of the voltammetric response in the presence of adsorption processes. We then describe the voltammogram of platinum basal planes, followed by the response of stepped surfaces. The voltammogram of polycrystalline materials can be understood as a composition of the response of the different basal contributions. Further resolution in the discrimination of different surface sites can be achieved with the aid of surface modification using adatoms such as bismuth or germanium. The application of these ideas is exemplified with the consideration of real catalysts composed of platinum nanoparticles with preferential shapes.
Collapse