1
|
Shenderovich IG. Weak, Broken, but Working-Intramolecular Hydrogen Bond in 2,2'-bipyridine. Int J Mol Sci 2023; 24:10390. [PMID: 37373539 DOI: 10.3390/ijms241210390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
From an academic and practical point of view, it is desirable to be able to assess the possibility of the proton exchange of a given molecular system just by knowing the positions of the proton acceptor and the proton donor. This study addresses the difference between intramolecular hydrogen bonds in 2,2'-bipyridinium and 1,10-phenanthrolinium. Solid-state 15N NMR and model calculations show that these hydrogen bonds are weak; their energies are 25 kJ/mol and 15 kJ/mol, respectively. Neither these hydrogen bonds nor N-H stretches can be responsible for the fast reversible proton transfer observed for 2,2'-bipyridinium in a polar solvent down to 115 K. This process must have been caused by an external force, which was a fluctuating electric field present in the solution. However, these hydrogen bonds are the grain that tips the scales precisely because they are an integral part of a large system of interactions, including both intramolecular interactions and environmental influence.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Shenderovich IG, Denisov GS. Modeling of the Response of Hydrogen Bond Properties on an External Electric Field: Geometry, NMR Chemical Shift, Spin-Spin Scalar Coupling. Molecules 2021; 26:molecules26164967. [PMID: 34443575 PMCID: PMC8399935 DOI: 10.3390/molecules26164967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
The response of the geometric and NMR properties of molecular systems to an external electric field has been studied theoretically in a wide field range. It has been shown that this adduct under field approach can be used to model the geometric and spectral changes experienced by molecular systems in polar media if the system in question has one and only one bond, the polarizability of which significantly exceeds the polarizability of other bonds. If this requirement is met, then it becomes possible to model even extreme cases, for example, proton dissociation in hydrogen halides. This requirement is fulfilled for many complexes with one hydrogen bond. For such complexes, this approach can be used to facilitate a detailed analysis of spectral changes associated with geometric changes in the hydrogen bond. For example, in hydrogen-bonded complexes of isocyanide C≡15N-1H⋯X, 1J(15N1H) depends exclusively on the N-H distance, while δ(15N) is also slightly influenced by the nature of X.
Collapse
Affiliation(s)
- Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia;
- Correspondence:
| | - Gleb S. Denisov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia;
| |
Collapse
|
3
|
NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The isotopically enriched cyanide anion, (13C≡15N)−, has a great potential as the NMR probe of non-covalent interactions. However, hydrogen cyanide is highly toxic and can decompose explosively. It is therefore desirable to be able to theoretically estimate any valuable results of certain experiments in advance in order to carry out experimental studies only for the most suitable molecular systems. We report the effect of hydrogen bonding on NMR properties of 15N≡13CH···X and 13C≡15NH···X hydrogen bonding complexes in solution, where X = 19F, 15N, and O=31P, calculated at the ωB97XD/def2tzvp and the polarizable continuum model (PCM) approximations. In many cases, the isotropic 13C and 15N chemical shieldings of the cyanide anion are not the most informative NMR properties of such complexes. Instead, the anisotropy of these chemical shieldings and the values of scalar coupling constants, including those across hydrogen bonds, can be used to characterize the geometry of such complexes in solids and solutions. 1J(15N13C) strongly correlates with the length of the N≡C bond.
Collapse
|
4
|
Actual Symmetry of Symmetric Molecular Adducts in the Gas Phase, Solution and in the Solid State. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This review discusses molecular adducts, whose composition allows a symmetric structure. Such adducts are popular model systems, as they are useful for analyzing the effect of structure on the property selected for study since they allow one to reduce the number of parameters. The main objectives of this discussion are to evaluate the influence of the surroundings on the symmetry of these adducts, steric hindrances within the adducts, competition between different noncovalent interactions responsible for stabilizing the adducts, and experimental methods that can be used to study the symmetry at different time scales. This review considers the following central binding units: hydrogen (proton), halogen (anion), metal (cation), water (hydrogen peroxide).
Collapse
|
5
|
Modeling of Solute-Solvent Interactions Using an External Electric Field-From Tautomeric Equilibrium in Nonpolar Solvents to the Dissociation of Alkali Metal Halides. Molecules 2021; 26:molecules26051283. [PMID: 33652943 PMCID: PMC7956811 DOI: 10.3390/molecules26051283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
An implicit account of the solvent effect can be carried out using traditional static quantum chemistry calculations by applying an external electric field to the studied molecular system. This approach allows one to distinguish between the effects of the macroscopic reaction field of the solvent and specific solute-solvent interactions. In this study, we report on the dependence of the simulation results on the use of the polarizable continuum approximation and on the importance of the solvent effect in nonpolar solvents. The latter was demonstrated using experimental data on tautomeric equilibria between the pyridone and hydroxypyridine forms of 2,6-di-tert-butyl-4-hydroxy-pyridine in cyclohexane and chloroform.
Collapse
|
6
|
Shenderovich IG. Editorial to the Special Issue "Gulliver in the Country of Lilliput: An Interplay of Noncovalent Interactions". Molecules 2020; 26:E158. [PMID: 33396433 PMCID: PMC7794748 DOI: 10.3390/molecules26010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
Noncovalent interactions allow our world to exist [...].
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Abstract
Magnetic shielding depends on molecular structure and noncovalent interactions. This study shows that it is also measurably dependent on the electric field generated by surrounding molecules. This effect has been observed explicitly for 31P nucleus using the adduct under field approach. The results obtained indicate that the field strength experienced by molecules in crystals consisting of molecules with large dipole moments is similar to that in polar solvents. Therefore, magnetic shielding should explicitly depend on solvent polarity. It is important to note that this effect cannot be reproduced correctly within the polarizable continuum model approach.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Jóźwiak K, Jezierska A, Panek JJ, Goremychkin EA, Tolstoy PM, Shenderovich IG, Filarowski A. Inter- vs. Intramolecular Hydrogen Bond Patterns and Proton Dynamics in Nitrophthalic Acid Associates. Molecules 2020; 25:E4720. [PMID: 33066679 PMCID: PMC7587347 DOI: 10.3390/molecules25204720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/18/2023] Open
Abstract
Noncovalent interactions are among the main tools of molecular engineering. Rational molecular design requires knowledge about a result of interplay between given structural moieties within a given phase state. We herein report a study of intra- and intermolecular interactions of 3-nitrophthalic and 4-nitrophthalic acids in the gas, liquid, and solid phases. A combination of the Infrared, Raman, Nuclear Magnetic Resonance, and Incoherent Inelastic Neutron Scattering spectroscopies and the Car-Parrinello Molecular Dynamics and Density Functional Theory calculations was used. This integrated approach made it possible to assess the balance of repulsive and attractive intramolecular interactions between adjacent carboxyl groups as well as to study the dependence of this balance on steric confinement and the effect of this balance on intermolecular interactions of the carboxyl groups.
Collapse
Affiliation(s)
- Kinga Jóźwiak
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Eugene A. Goremychkin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 6 F. Joliot-Curie str., 141980 Dubna, Russia;
| | - Peter M. Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia;
| | - Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| | - Aleksander Filarowski
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| |
Collapse
|
9
|
Shenderovich IG. Experimentally Established Benchmark Calculations of
31
P NMR Quantities. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/cmtd.202000033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ilya G. Shenderovich
- Ilya G. Shenderovich Institute of Organic Chemistry University of Regensburg Universitaetstrasse 31 93053 Regensburg Germany
| |
Collapse
|
10
|
Shenderovich IG, Denisov GS. Adduct under Field-A Qualitative Approach to Account for Solvent Effect on Hydrogen Bonding. Molecules 2020; 25:molecules25030436. [PMID: 31973045 PMCID: PMC7037398 DOI: 10.3390/molecules25030436] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
The location of a mobile proton in acid-base complexes in aprotic solvents can be predicted using a simplified Adduct under Field (AuF) approach, where solute–solvent effects on the geometry of hydrogen bond are simulated using a fictitious external electric field. The parameters of the field have been estimated using experimental data on acid-base complexes in CDF3/CDClF2. With some limitations, they can be applied to the chemically similar CHCl3 and CH2Cl2. The obtained data indicate that the solute–solvent effects are critically important regardless of the type of complexes. The temperature dependences of the strength and fluctuation rate of the field explain the behavior of experimentally measured parameters.
Collapse
Affiliation(s)
- Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
- Correspondence: ; Tel.:+49-941-9434027
| | - Gleb S. Denisov
- Department of Physics, Saint-Petersburg State University, 198504 Saint-Petersburg, Russia;
| |
Collapse
|
11
|
Shenderovich IG, Denisov GS. Solvent effects on acid-base complexes. What is more important: A macroscopic reaction field or solute-solvent interactions? J Chem Phys 2019; 150:204505. [PMID: 31153188 DOI: 10.1063/1.5096946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Can the geometry of an acid-base complex in solution be reproduced in calculations using an implicit accounting for the solvent effect in the form of a macroscopic reaction field? The answer is, "Yes, it can." Is this field equal to the real electric field experienced by the complex in solution? The answer is, "No, it is not." How can the geometry be correct under wrong conditions? This question is answered using density functional theory modeling of geometric and NMR parameters of pyridine⋯HF⋯(HCF3)n adducts in the absence and presence of an external electric field. This adduct under field approach shows that the N⋯H distance is a function of the H-F distance whatever method is used to change the geometry of the latter. An explicit account for solute-solvent interactions is required to get a realistic value of the solvent reaction field. Besides that, this approach reveals how certain NMR parameters depend on the solvent reaction field, the solute-solvent interactions, and the geometry of the N⋯H-F hydrogen bond. For some of them, the obtained dependences are far from self-evident.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| | - Gleb S Denisov
- Department of Physics, St.Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
12
|
Chernyshov IY, Vener MV, Shenderovich IG. Local-structure effects on 31P NMR chemical shift tensors in solid state. J Chem Phys 2019; 150:144706. [PMID: 30981271 DOI: 10.1063/1.5075519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The effect of the local structure on the 31P NMR chemical shift tensor (CST) has been studied experimentally and simulated theoretically using the density functional theory gauge-independent-atomic-orbital approach. It has been shown that the dominating impact comes from a small number of noncovalent interactions between the phosphorus-containing group under question and the atoms of adjacent molecules. These interactions can be unambiguously identified using the Bader analysis of the electronic density. A robust and computationally effective approach designed to attribute a given experimental 31P CST to a certain local morphology has been elaborated. This approach can be useful in studies of surfaces, complex molecular systems, and amorphous materials.
Collapse
Affiliation(s)
- Ivan Yu Chernyshov
- Department of Quantum Chemistry, D. Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Mikhail V Vener
- Department of Quantum Chemistry, D. Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Shenderovich IG. Simplified calculation approaches designed to reproduce the geometry of hydrogen bonds in molecular complexes in aprotic solvents. J Chem Phys 2018; 148:124313. [PMID: 29604820 DOI: 10.1063/1.5011163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The impact of the environment onto the geometry of hydrogen bonds can be critically important for the properties of the questioned molecular system. The paper reports on the design of calculation approaches capable to simulate the effect of aprotic polar solvents on the geometric and NMR parameters of intermolecular hydrogen bonds. A hydrogen fluoride and pyridine complex has been used as the main model system because the experimental estimates of these parameters are available for it. Specifically, F-H, F⋯N, and H-N distances, the values of 15N NMR shift, and spin-spin coupling constants 1J(19F1H), 1hJ(1H15N), and 2hJ(19F15N) have been analyzed. Calculation approaches based on the gas-phase and the Polarizable Continuum Model (PCM) approximations and their combinations with geometric constraints and additional noncovalent interactions have been probed. The main result of this work is that the effect of an aprotic polar solvent on the geometry of a proton-donor⋯H⋯proton-acceptor complex cannot be reproduced under the PCM approximation if no correction for solvent-solute interactions is made. These interactions can be implicitly accounted for using a simple computational protocol.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Gurinov AA, Denisov GS, Borissova AO, Goloveshkin AS, Greindl J, Limbach HH, Shenderovich IG. NMR Study of Solvation Effect on the Geometry of Proton-Bound Homodimers of Increasing Size. J Phys Chem A 2017; 121:8697-8705. [PMID: 29064692 DOI: 10.1021/acs.jpca.7b09285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen bond geometries in the proton-bound homodimers of quinoline and acridine derivatives in an aprotic polar solution have been experimentally studied using 1H NMR at 120 K. The reported results show that an increase of the dielectric permittivity of the medium results in contraction of the N···N distance. The degree of contraction depends on the homodimer's size and its substituent-specific solvation features. Neither of these effects can be reproduced using conventional implicit solvent models employed in computational studies. In general, the N···N distance in the homodimers of pyridine, quinoline, and acridine derivatives decreases in the sequence gas phase > solid state > polar solvent.
Collapse
Affiliation(s)
- Andrei A Gurinov
- Institute of Chemistry and Biochemistry, Free University Berlin , Takustrasse 3, 14195 Berlin, Germany.,The Imaging and Characterization Core Lab, King Abdullah University of Science and Technology , Al-Khawarizimi Building 01, Thuwal 23955-6900, Saudi Arabia
| | - Gleb S Denisov
- Institute of Physics, St. Petersburg State University , Ulyanovskaya str. 1, 198504 St. Petersburg, Russian Federation
| | - Alexandra O Borissova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991, Vavilov Str., 28, Moscow, Russia
| | - Alexander S Goloveshkin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 119991, Vavilov Str., 28, Moscow, Russia
| | - Julian Greindl
- Institute of Organic Chemistry, University of Regensburg , Universitaetstrasse 31, 93053 Regensburg, Germany
| | - Hans-Heinrich Limbach
- Institute of Chemistry and Biochemistry, Free University Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Ilya G Shenderovich
- Institute of Chemistry and Biochemistry, Free University Berlin , Takustrasse 3, 14195 Berlin, Germany.,Institute of Organic Chemistry, University of Regensburg , Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Yamamoto K, Kanematsu Y, Nagashima U, Ueda A, Mori H, Tachikawa M. Multicomponent DFT study of geometrical H/D isotope effect on hydrogen-bonded organic conductor, κ-H 3 (Cat EDT-ST) 2. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Pylaeva SA, Elgabarty H, Sebastiani D, Tolstoy PM. Symmetry and dynamics of FHF− anion in vacuum, in CD2Cl2 and in CCl4. Ab initio MD study of fluctuating solvent–solute hydrogen and halogen bonds. Phys Chem Chem Phys 2017; 19:26107-26120. [DOI: 10.1039/c7cp04493c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Asymmetric solvation of FHF− by halogen- and hydrogen-bonding solvents breaks the symmetry of the anion.
Collapse
Affiliation(s)
- S. A. Pylaeva
- Institute of Chemistry, Martin-Luther Universität Halle-Wittenberg
- Germany
| | - H. Elgabarty
- Institute of Chemistry, Martin-Luther Universität Halle-Wittenberg
- Germany
| | - D. Sebastiani
- Institute of Chemistry, Martin-Luther Universität Halle-Wittenberg
- Germany
| | - P. M. Tolstoy
- Center for Magnetic Resonance, St. Petersburg State University
- Russia
| |
Collapse
|
17
|
Yamamoto K, Kanematsu Y, Nagashima U, Ueda A, Mori H, Tachikawa M. Theoretical study of the H/D isotope effect on phase transition of hydrogen-bonded organic conductor κ-H3(Cat-EDT-TTF)2. Phys Chem Chem Phys 2016; 18:29673-29680. [DOI: 10.1039/c6cp05414e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
κ-H3(Cat-EDT-TTF)2 (H-TTF) is a hydrogen-bonded π-electron system. Only its isotopologue, D-TTF, shows the phase transition. We obtained a symmetric single-well effective-PEC for H-TTF and low-barrier effective-PEC for D-TTF.
Collapse
Affiliation(s)
- Kaichi Yamamoto
- Graduate School of Nanobioscience
- Yokohama City University
- Yokohama-City
- Japan
| | - Yusuke Kanematsu
- Faculty of Information Sciences
- Hiroshima City University
- Hiroshima
- Japan
| | | | - Akira Ueda
- The Institute for Solid State Physics
- The University of Tokyo
- Kashiwa
- Japan
| | - Hatsumi Mori
- The Institute for Solid State Physics
- The University of Tokyo
- Kashiwa
- Japan
| | - Masanori Tachikawa
- Graduate School of Nanobioscience
- Yokohama City University
- Yokohama-City
- Japan
| |
Collapse
|
18
|
[FHF]−—The Strongest Hydrogen Bond under the Influence of External Interactions. CRYSTALS 2015. [DOI: 10.3390/cryst6010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Kanematsu Y, Tachikawa M. Theoretical analysis of geometry and NMR isotope shift in hydrogen-bonding center of photoactive yellow protein by combination of multicomponent quantum mechanics and ONIOM scheme. J Chem Phys 2015; 141:185101. [PMID: 25399161 DOI: 10.1063/1.4900987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multicomponent quantum mechanical (MC_QM) calculation has been extended with ONIOM (our own N-layered integrated molecular orbital + molecular mechanics) scheme [ONIOM(MC_QM:MM)] to take account of both the nuclear quantum effect and the surrounding environment effect. The authors have demonstrated the first implementation and application of ONIOM(MC_QM:MM) method for the analysis of the geometry and the isotope shift in hydrogen-bonding center of photoactive yellow protein. ONIOM(MC_QM:MM) calculation for a model with deprotonated Arg52 reproduced the elongation of O-H bond of Glu46 observed by neutron diffraction crystallography. Among the unique isotope shifts in different conditions, the model with protonated Arg52 with solvent effect reasonably provided the best agreement with the corresponding experimental values from liquid NMR measurement. Our results implied the availability of ONIOM(MC_QM:MM) to distinguish the local environment around hydrogen bonds in a biomolecule.
Collapse
Affiliation(s)
- Yusuke Kanematsu
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
20
|
Kanematsu Y, Tachikawa M. Performance Test of Multicomponent Quantum Mechanical Calculation with Polarizable Continuum Model for Proton Chemical Shift. J Phys Chem A 2015; 119:4933-8. [PMID: 25915075 DOI: 10.1021/jp512877a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Kanematsu
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
21
|
Kanematsu Y, Tachikawa M. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift. J Chem Phys 2014; 140:164111. [DOI: 10.1063/1.4872006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Borissova AO, Lyssenko KA, Gurinov AA, Shenderovich IG. Energy Analysis of Competing Non-Covalent Interaction in 1:1 and 1:2 Adducts of Collidine with Benzoic Acids by Means of X-Ray Diffraction. ACTA ACUST UNITED AC 2013. [DOI: 10.1524/zpch.2013.0400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The hydrogen bond pattern and the types of non-covalent interactions in the crystals of the 1:1 and 1:2 adducts of 2,4,6-trimethylpyridine and benzoic acids are studied using high-resolution X-ray diffraction. The geometries of the hydrogen bonds are estimated using a combined XRD/DFT approach that provides the geometrical parameters within the margin of error of neutron diffraction studies. The energies of the non-covalent interactions are estimated on the base of the experimental electron density distribution function. It is shown that the structures of the adducts are governed by the NOH and OHO hydrogen bonds. In turn, C-H...O contacts and stacking interactions define the packing of the adducts in the crystal. On the other hand, it is important to note that the latter interactions affect the competition of the former hydrogen bonds in some 1:2 adducts.
Collapse
Affiliation(s)
| | - Konstantin A. Lyssenko
- Russian Academy of Sciences, A.N. Nesmeyanov Institute of Organoelement Compoun, Moscow, Russische Föderation
| | - Andrey A. Gurinov
- St. Petersburg State University, Department of Physics, St. Petersburg, Russische Föderation
| | | |
Collapse
|
23
|
Guo J, Tolstoy PM, Koeppe B, Golubev NS, Denisov GS, Smirnov SN, Limbach HH. Hydrogen Bond Geometries and Proton Tautomerism of Homoconjugated Anions of Carboxylic Acids Studied via H/D Isotope Effects on 13C NMR Chemical Shifts. J Phys Chem A 2012; 116:11180-8. [DOI: 10.1021/jp304943h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Guo
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Peter M. Tolstoy
- Department of Chemistry, St. Petersburg State University, Universitetsky Pr.
26, 198504, St. Petersburg, Russia
| | - Benjamin Koeppe
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Nikolai S. Golubev
- Department of Physics, St. Petersburg State University, Uljanovskaja 1, 198504,
St. Petersburg, Russia
| | - Gleb S. Denisov
- Department of Physics, St. Petersburg State University, Uljanovskaja 1, 198504,
St. Petersburg, Russia
| | - Sergei N. Smirnov
- Department of Chemistry, St. Petersburg State University, Universitetsky Pr.
26, 198504, St. Petersburg, Russia
| | - Hans-Heinrich Limbach
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| |
Collapse
|
24
|
Melikova S, Rutkowski K, Gurinov A, Denisov G, Rospenk M, Shenderovich I. FTIR study of the hydrogen bond symmetry in protonated homodimers of pyridine and collidine in solution. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2011.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Guo J, Tolstoy PM, Koeppe B, Denisov GS, Limbach HH. NMR study of conformational exchange and double-well proton potential in intramolecular hydrogen bonds in monoanions of succinic acid and derivatives. J Phys Chem A 2011; 115:9828-36. [PMID: 21809856 DOI: 10.1021/jp201073j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a (1)H, (2)H, and (13)C NMR study of the monoanions of succinic (1), meso- and rac-dimethylsuccinic (2, 3), and methylsuccinic (4) acids (with tetraalkylammonium as the counterion) dissolved in CDF(3)/CDF(2)Cl at 300-120 K. In all four monoanions, the carboxylic groups are linked by a short intramolecular OHO hydrogen bond revealed by the bridging-proton chemical shift of about 20 ppm. We show that the flexibility of the carbon skeleton allows for two gauche isomers in monoanions 1, 2, and 4, interconverting through experimental energy barriers of 10-15 kcal/mol (the process itself and the energy barrier are also reproduced in MP2/6-311++G** calculations). In 3, one of the gauche forms is absent because of the steric repulsion of the methyl groups. In all four monoanions, the bridging proton is located in a double-well potential and subject, at least to some extent, to proton tautomerism, for which we estimate the two proton positions to be separated by ca. 0.2 Å. In 1 and 3, the proton potential is symmetric. In 2, slowing the conformational interconversion introduces an asymmetry to the proton potential, an effect that might be strong enough even to synchronize the proton tautomerism with the interconversion of the two gauche forms. In 4, the asymmetry of the proton potential is due to the asymmetric substitution. The intramolecular H-bond is likely to remain intact during the interconversion of the gauche forms in 1, 3, and 4, whereas the situation in 2 is less clear.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Chemistry and Biochemistry, Free University of Berlin , Takustrasse 3, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
26
|
Golubev NS, Denisov GS, Macholl S, Smirnov SN, Shenderovich IG, Tolstoy PM. NMR Study of Blue-Shifting Hydrogen Bonds Formed by Fluoroform in Solution. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2008.5385] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Low-temperature (193 K) 1H, 13C and 15N NMR spectra of blue- and red-shifting H-bonded complexes formed by fluoroform with various proton acceptors were measured. Experimental NMR parameters were plotted versus the ab initio calculated H-bond strength (MP2/6–31+G(d, p); interaction energy varies from ~5 up to 25 kJ · mol−1 in the series). We show that experimental 1H and 15N shieldings, as well as the H/D isotope effect on 13C shielding change monotonously with the calculated H-bond strengthening. The 13C chemical shift and the CH scalar coupling change non-monotonously and the extremum points are situated approximately in the region of transformation from blue- to red-shifting H-bonds. The most informative NMR feature is the H/D isotope effect on 15N shielding which changes its sign upon transformation from blue- to red-shifting H-bonds.
To rationalize these observations, ab initio calculations of 13C and 15N shieldings as functions of C···H and C···N distances were performed for complexes of CHF3 with acetonitrile (blue-shifting) and pyridine (red-shifting). The coupling of the vibrations of the covalent and hydrogen bonds has been accounted for by direct computation of the distance C···N = f(C···H) dependence. We demonstrate that the unusual sign of the H/D isotope effect on 15N chemical shift across a blue-shifting H-bond can be explained as a result of the inversion of the dynamic coupling of two vibrations.
Collapse
Affiliation(s)
- Nicolai S. Golubev
- St. Petersburg State University, Inst. of Physics, St. Petersburg, Russische Föderation
| | | | | | | | | | | |
Collapse
|
27
|
Golubev NS, Detering C, Smirnov SN, Shenderovich IG, Denisov GS, Limbach HH, Tolstoy PM. H/D isotope effects on NMR chemical shifts of nuclei involved in a hydrogen bridge of hydrogen isocyanide complexes with fluoride anion. Phys Chem Chem Phys 2009; 11:5154-9. [DOI: 10.1039/b900152b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Shenderovich IG. Qualitative analysis of the geometry of the hydrogen bond in the homoconjugated pyridine ion. RUSS J GEN CHEM+ 2007. [DOI: 10.1134/s1070363207040202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Shibl MF, Pietrzak M, Limbach HH, Kühn O. Geometric H/D Isotope Effects and Cooperativity of the Hydrogen Bonds in Porphycene. Chemphyschem 2007; 8:315-21. [PMID: 17177226 DOI: 10.1002/cphc.200600511] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigate the primary, secondary, and vicinal hydrogen/deuterium (H/D) isotope effects on the geometry of the two intramolecular hydrogen bonds in porphycene. Multidimensional potential energy surfaces describing the anharmonic motion in the vicinity of the trans isomer are calculated for the different symmetric (HH/DD) and asymmetric (HD) isotopomers. From the solution of the nuclear Schrödinger equation the ground-state wavefunction is obtained, which is further used to determine the quantum corrections to the classical equilibrium geometries of the hydrogen bonds and thus the geometric isotope effects. In particular, it is found that the hydrogen bonds are cooperative, that is, both expand simultaneously even in the case of an asymmetric isotopic substitution. The theoretical predictions compare favorably with NMR chemical-shift data.
Collapse
Affiliation(s)
- Mohamed F Shibl
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Golubev NS, Tolstoi PM, Shchepkin DN. Estimation of the contribution of vibronic interaction to the isotope effect on the nuclear magnetic shielding constant of a hydrogen bridge. RUSS J GEN CHEM+ 2006. [DOI: 10.1134/s1070363206080019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Shenderovich IG. Maximum value of the chemical shift in the 1H NMR spectrum of a hydrogen-bonded complex. RUSS J GEN CHEM+ 2006. [DOI: 10.1134/s1070363206040013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Schlund S, Mladenovic M, Basílio Janke EM, Engels B, Weisz K. Geometry and Cooperativity Effects in Adenosine−Carboxylic Acid Complexes. J Am Chem Soc 2005; 127:16151-8. [PMID: 16287303 DOI: 10.1021/ja0531430] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR experiments and theoretical investigations were performed on hydrogen bonded complexes of specifically 1- and 7-15N-labeled adenine nucleosides with carboxylic acids. By employing a freonic solvent of CDClF2 and CDF3, NMR spectra were acquired at temperatures as low as 123 K, where the regime of slow hydrogen bond exchange is reached and several higher-order complexes were found to coexist in solution. Unlike acetic acid, chloroacetic acid forms Watson-Crick complexes with the proton largely displaced from oxygen to the nitrogen acceptor in an ion pairing structure. Calculated geometries and chemical shifts of the proton in the hydrogen bridge favorably agree with experimentally determined values if vibrational averaging and solvent effects are taken into account. The results indicate that binding a second acidic ligand at the adenine Hoogsteen site in a ternary complex weakens the hydrogen bond to the Watson-Crick bound carboxylic acid. However, substituting a second adenine nucleobase for a carboxylic acid in the trimolecular complex leads to cooperative binding at Watson-Crick and Hoogsteen faces of adenosine.
Collapse
Affiliation(s)
- Sebastian Schlund
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Tolstoy PM, Smirnov SN, Shenderovich IG, Golubev NS, Denisov GS, Limbach HH. NMR studies of solid state—solvent and H/D isotope effects on hydrogen bond geometries of 1:1 complexes of collidine with carboxylic acids. J Mol Struct 2004. [DOI: 10.1016/j.molstruc.2004.02.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Solvent induced temperature dependencies of NMR parameters of hydrogen bonded anionic clusters. J Mol Struct 2004. [DOI: 10.1016/s0022-2860(03)00423-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|