1
|
Arai Y, Shitama H, Yamagishi M, Ono S, Kashima A, Hiraizumi M, Tsuda N, Katayama K, Tanaka K, Koda Y, Kato S, Sakata K, Nureki O, Miyazaki H. Optimization of α-amido boronic acids via cryo-electron microscopy analysis: Discovery of a novel highly selective immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual inhibitor. Bioorg Med Chem 2024; 109:117790. [PMID: 38906067 DOI: 10.1016/j.bmc.2024.117790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
The immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual blockade has been reported to suppress B cell differentiation and activation, suggesting that the dual inhibition of LMP7/LMP2 is a promising approach for treating autoimmune diseases. In contrast, the inhibition of the constitutive proteasome subunit β5c correlates with cytotoxicity against non-immune cells. Therefore, LMP7/LMP2 dual inhibitors with high selectivity over β5c may be desirable for treating autoimmune diseases. In this study, we present the optimization and discovery of α-amido boronic acids using cryo-electron microscopy (cryo-EM). The exploitation of structural differences between the proteasome subunits led to the identification of a highly selective LMP7/LMP2 dual inhibitor 19. Molecular dynamics simulation based on cryo-EM structures of the proteasome subunits complexed with 19 explained the inhibitory activity profile. In mice immunized with 4-hydroxy-3-nitrophenylacetyl conjugated to ovalbumin, results indicate that 19 is orally bioavailable and shows promise as potential treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Yuuki Arai
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| | - Hiroaki Shitama
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahito Yamagishi
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Satoshi Ono
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Akiko Kashima
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiro Hiraizumi
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Naoki Tsuda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Koushirou Katayama
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kouji Tanaka
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Yuzo Koda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Sayuka Kato
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kei Sakata
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Miyazaki
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| |
Collapse
|
2
|
Ólafsson G, Haase MAB, Boeke JD. Humanization reveals pervasive incompatibility of yeast and human kinetochore components. G3 (BETHESDA, MD.) 2023; 14:jkad260. [PMID: 37962556 PMCID: PMC10755175 DOI: 10.1093/g3journal/jkad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Kinetochores assemble on centromeres to drive chromosome segregation in eukaryotic cells. Humans and budding yeast share most of the structural subunits of the kinetochore, whereas protein sequences have diverged considerably. The conserved centromeric histone H3 variant, CenH3 (CENP-A in humans and Cse4 in budding yeast), marks the site for kinetochore assembly in most species. A previous effort to complement Cse4 in yeast with human CENP-A was unsuccessful; however, co-complementation with the human core nucleosome was not attempted. Previously, our lab successfully humanized the core nucleosome in yeast; however, this severely affected cellular growth. We hypothesized that yeast Cse4 is incompatible with humanized nucleosomes and that the kinetochore represented a limiting factor for efficient histone humanization. Thus, we argued that including the human CENP-A or a Cse4-CENP-A chimera might improve histone humanization and facilitate kinetochore function in humanized yeast. The opposite was true: CENP-A expression reduced histone humanization efficiency, was toxic to yeast, and disrupted cell cycle progression and kinetochore function in wild-type (WT) cells. Suppressors of CENP-A toxicity included gene deletions of subunits of 3 conserved chromatin remodeling complexes, highlighting their role in CenH3 chromatin positioning. Finally, we attempted to complement the subunits of the NDC80 kinetochore complex, individually and in combination, without success, in contrast to a previous study indicating complementation by the human NDC80/HEC1 gene. Our results suggest that limited protein sequence similarity between yeast and human components in this very complex structure leads to failure of complementation.
Collapse
Affiliation(s)
- Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 14 11201, USA
| |
Collapse
|
3
|
Sultana S, Abdullah M, Li J, Hochstrasser M, Kachroo AH. Species-specific protein-protein interactions govern the humanization of the 20S proteasome in yeast. Genetics 2023; 225:iyad117. [PMID: 37364278 PMCID: PMC10471208 DOI: 10.1093/genetics/iyad117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Yeast and humans share thousands of genes despite a billion years of evolutionary divergence. While many human genes can functionally replace their yeast counterparts, nearly half of the tested shared genes cannot. For example, most yeast proteasome subunits are "humanizable," except subunits comprising the β-ring core, including β2c (HsPSMB7, a constitutive proteasome subunit). We developed a high-throughput pipeline to humanize yeast proteasomes by generating a large library of Hsβ2c mutants and screening them for complementation of a yeast β2 (ScPup1) knockout. Variants capable of replacing ScPup1 included (1) those impacting local protein-protein interactions (PPIs), with most affecting interactions between the β2c C-terminal tail and the adjacent β3 subunit, and (2) those affecting β2c proteolytic activity. Exchanging the full-length tail of human β2c with that of ScPup1 enabled complementation. Moreover, wild-type human β2c could replace yeast β2 if human β3 was also provided. Unexpectedly, yeast proteasomes bearing a catalytically inactive HsPSMB7-T44A variant that blocked precursor autoprocessing were viable, suggesting an intact propeptide stabilizes late assembly intermediates. In contrast, similar modifications in human β2i (HsPSMB10), an immunoproteasome subunit and the co-ortholog of yeast β2, do not enable complementation in yeast, suggesting distinct interactions are involved in human immunoproteasome core assembly. Broadly, our data reveal roles for specific PPIs governing functional replaceability across vast evolutionary distances.
Collapse
Affiliation(s)
- Sarmin Sultana
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| | - Mudabir Abdullah
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| | - Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Aashiq H Kachroo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
4
|
Lignet F, Esdar C, Walter-Bausch G, Friese-Hamim M, Stinchi S, Drouin E, El Bawab S, Becker AD, Gimmi C, Sanderson MP, Rohdich F. Translational PK/PD Modeling of Tumor Growth Inhibition and Target Inhibition to Support Dose Range Selection of the LMP7 Inhibitor M3258 in Relapsed/Refractory Multiple Myeloma. J Pharmacol Exp Ther 2023; 384:163-172. [PMID: 36273822 DOI: 10.1124/jpet.122.001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Abstract
M3258 is an orally bioavailable, potent, selective, reversible inhibitor of the large multifunctional peptidase 7 (LMP7, β5i, PSMB8) proteolytic subunit of the immunoproteasome, a component of the cellular protein degradation machinery, highly expressed in malignant hematopoietic cells including multiple myeloma. Here we describe the fit-for-purpose pharmacokinetic (PK)/pharmacodynamic (PD)/efficacy modeling of M3258 based on preclinical data from several species. The inhibition of LMP7 activity (PD) and tumor growth (efficacy) were tested in human multiple myeloma xenografts in mice. PK and efficacy data were correlated yielding a free M3258 concentration of 45 nM for half-maximal tumor growth inhibition (KC50). As M3258 only weakly inhibits LMP7 in mouse cells, both in vitro and in vivo bridging studies were performed in rats, monkeys, and dogs for translational modeling. These data indicated that the PD response in human xenograft models was closely reflected in dog PBMCs. A PK/PD model was established, predicting a free IC50 value of 9 nM for M3258 in dogs in vivo, in close agreement with in vitro measurements. In parallel, the human PK parameters of M3258 were predicted by various approaches including in vitro extrapolation and allometric scaling. Using PK/PD/efficacy simulations, the efficacious dose range and corresponding PD response in human were predicted. Taken together, these efforts supported the design of a phase Ia study of M3258 in multiple myeloma patients (NCT04075721). At the lowest tested dose level, the predicted exposure matched well with the observed exposure while the duration of LMP7 inhibition was underpredicted by the model. SIGNIFICANCE STATEMENT: M3258 is a novel inhibitor of the immunoproteasome subunit LMP7. The human PK and human efficacious dose range of M3258 were predicted using in vitro-in vivo extrapolation and allometric scaling methods together with a fit-for-purpose PK/PD and efficacy model based on data from several species. A comparison with data from the Phase Ia clinical study showed that the human PK was accurately predicted, while the extent and duration of PD response were more pronounced than estimated.
Collapse
Affiliation(s)
- Floriane Lignet
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Christina Esdar
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Gina Walter-Bausch
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Manja Friese-Hamim
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Sofia Stinchi
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Elise Drouin
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Samer El Bawab
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Andreas D Becker
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Claude Gimmi
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Michael P Sanderson
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Felix Rohdich
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| |
Collapse
|
5
|
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat Commun 2022; 13:6962. [PMID: 36379934 PMCID: PMC9666519 DOI: 10.1038/s41467-022-34691-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
Collapse
|
6
|
Identification of N, C-capped di- and tripeptides as selective immunoproteasome inhibitors. Eur J Med Chem 2022; 234:114252. [DOI: 10.1016/j.ejmech.2022.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
7
|
Kisselev AF. Site-Specific Proteasome Inhibitors. Biomolecules 2021; 12:54. [PMID: 35053202 PMCID: PMC8773591 DOI: 10.3390/biom12010054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Proteasome is a multi-subunit protein degradation machine, which plays a key role in the maintenance of protein homeostasis and, through degradation of regulatory proteins, in the regulation of numerous cell functions. Proteasome inhibitors are essential tools for biomedical research. Three proteasome inhibitors, bortezomib, carfilzomib, and ixazomib are approved by the FDA for the treatment of multiple myeloma; another inhibitor, marizomib, is undergoing clinical trials. The proteolytic core of the proteasome has three pairs of active sites, β5, β2, and β1. All clinical inhibitors and inhibitors that are widely used as research tools (e.g., epoxomicin, MG-132) inhibit multiple active sites and have been extensively reviewed in the past. In the past decade, highly specific inhibitors of individual active sites and the distinct active sites of the lymphoid tissue-specific immunoproteasome have been developed. Here, we provide a comprehensive review of these site-specific inhibitors of mammalian proteasomes and describe their utilization in the studies of the biology of the active sites and their roles as drug targets for the treatment of different diseases.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Kollár L, Gobec M, Proj M, Smrdel L, Knez D, Imre T, Gömöry Á, Petri L, Ábrányi-Balogh P, Csányi D, Ferenczy GG, Gobec S, Sosič I, Keserű GM. Fragment-Sized and Bidentate (Immuno)Proteasome Inhibitors Derived from Cysteine and Threonine Targeting Warheads. Cells 2021; 10:3431. [PMID: 34943940 PMCID: PMC8700061 DOI: 10.3390/cells10123431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the β5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and β5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the β5, β5i, β1, and β1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either β5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Lara Smrdel
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| | - Ágnes Gömöry
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Dorottya Csányi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; (M.G.); (M.P.); (L.S.); (D.K.); (S.G.)
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary; (L.K.); (L.P.); (P.Á.-B.); (D.C.); (G.G.F.)
| |
Collapse
|
9
|
Sanderson MP, Friese-Hamim M, Walter-Bausch G, Busch M, Gaus S, Musil D, Rohdich F, Zanelli U, Downey-Kopyscinski SL, Mitsiades CS, Schadt O, Klein M, Esdar C. M3258 Is a Selective Inhibitor of the Immunoproteasome Subunit LMP7 (β5i) Delivering Efficacy in Multiple Myeloma Models. Mol Cancer Ther 2021; 20:1378-1387. [PMID: 34045234 PMCID: PMC9398180 DOI: 10.1158/1535-7163.mct-21-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023]
Abstract
Large multifunctional peptidase 7 (LMP7/β5i/PSMB8) is a proteolytic subunit of the immunoproteasome, which is predominantly expressed in normal and malignant hematolymphoid cells, including multiple myeloma, and contributes to the degradation of ubiquitinated proteins. Described herein for the first time is the preclinical profile of M3258; an orally bioavailable, potent, reversible and highly selective LMP7 inhibitor. M3258 demonstrated strong antitumor efficacy in multiple myeloma xenograft models, including a novel model of the human bone niche of multiple myeloma. M3258 treatment led to a significant and prolonged suppression of tumor LMP7 activity and ubiquitinated protein turnover and the induction of apoptosis in multiple myeloma cells both in vitro and in vivo Furthermore, M3258 showed superior antitumor efficacy in selected multiple myeloma and mantle cell lymphoma xenograft models compared with the approved nonselective proteasome inhibitors bortezomib and ixazomib. The differentiated preclinical profile of M3258 supported the initiation of a phase I study in patients with multiple myeloma (NCT04075721).
Collapse
Affiliation(s)
- Michael P. Sanderson
- Merck KGaA, Darmstadt, Germany.,Corresponding Author: Michael P. Sanderson, Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany. Phone: 49-615-1725-6970; Fax: 49-61-517-2914-9106; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Cells 2021; 10:cells10081929. [PMID: 34440698 PMCID: PMC8394499 DOI: 10.3390/cells10081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
At the heart of the ubiquitin-proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.
Collapse
|
11
|
Klein M, Busch M, Friese-Hamim M, Crosignani S, Fuchss T, Musil D, Rohdich F, Sanderson MP, Seenisamy J, Walter-Bausch G, Zanelli U, Hewitt P, Esdar C, Schadt O. Structure-Based Optimization and Discovery of M3258, a Specific Inhibitor of the Immunoproteasome Subunit LMP7 (β5i). J Med Chem 2021; 64:10230-10245. [PMID: 34228444 DOI: 10.1021/acs.jmedchem.1c00604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (β1, β2, and β5). LMP7 (β5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.
Collapse
Affiliation(s)
- Markus Klein
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Michael Busch
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | - Thomas Fuchss
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Djordje Musil
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Felix Rohdich
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | | | - Ugo Zanelli
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Philip Hewitt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | - Oliver Schadt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| |
Collapse
|
12
|
Li X, Hong D, Zhang M, Xu L, Zhou Y, Li J, Liu T. Development of peptide epoxyketones as selective immunoproteasome inhibitors. Eur J Med Chem 2021; 221:113556. [PMID: 34087498 DOI: 10.1016/j.ejmech.2021.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022]
Abstract
A series of epoxyketone analogues with varying N-caps and P3-configurations were designed, synthesized and evaluated. We found that D-Ala in P3 was crucial for β5i selectivity over β5c. Notably, compounds 20j (β5i IC50 = 26.0 nM, 25-fold selectivity) and 20l (β5i IC50 = 25.1 nM, 24-fold selectivity) with the D-configuration at P3 were the most selective inhibitors. Although 20j and 20l showed only moderate anti-proliferative activity against RPMI-8226 and MM.1S cell lines, based on our experiments, it indicates that the inhibition of β5i alone is not sufficient to exert anticancer effects and may rely on the complementary inhibition of β1i, β5c and β5i. These data further increase our understanding of immunoproteasome inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Duidui Hong
- Jiangsu Shengdia Industrial Co. Ltd., NO. 161 Shaoxing Road, Xiacheng District, Hangzhou, 310004, PR China
| | - Mengmeng Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
13
|
Kollár L, Gobec M, Szilágyi B, Proj M, Knez D, Ábrányi-Balogh P, Petri L, Imre T, Bajusz D, Ferenczy GG, Gobec S, Keserű GM, Sosič I. Discovery of selective fragment-sized immunoproteasome inhibitors. Eur J Med Chem 2021; 219:113455. [PMID: 33894528 DOI: 10.1016/j.ejmech.2021.113455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (β5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the β5i subunit was shown and selectivity against the β5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the β5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Bence Szilágyi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Dwivedi V, Yaniv K, Sharon M. Beyond cells: The extracellular circulating 20S proteasomes. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166041. [PMID: 33338594 DOI: 10.1016/j.bbadis.2020.166041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence arising from numerous clinical studies indicate that assembled and functional 20S proteasome complexes circulate freely in plasma. Elevated levels of this core proteolytic complex have been found in the plasma of patients suffering from blood, skin and solid cancers, autoimmune disorders, trauma and sepsis. Moreover, in various diseases, there is a positive correlation between circulating 20S proteasome (c20S) levels and treatment efficacy and survival rates, suggesting the involvement of this under-studied c20S complex in pathophysiology. However, many aspects of this system remain enigmatic, as we still do not know the origin, biological role or mechanisms of extracellular transport and regulation of c20S proteasomes. In this review, we provide an overview of the current understanding of the c20S proteasome system and discuss the remaining gaps in knowledge.
Collapse
Affiliation(s)
- Vandita Dwivedi
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Karina Yaniv
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
15
|
Moallemian R, Rehman AU, Zhao N, Wang H, Chen H, Lin G, Ma X, Yu J. Immunoproteasome inhibitor DPLG3 attenuates experimental colitis by restraining NF-κB activation. Biochem Pharmacol 2020; 177:113964. [PMID: 32278007 DOI: 10.1016/j.bcp.2020.113964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease is a chronic and pathologic autoimmune condition. And immunoproteasome is becoming an attractive therapeutic target for autoimmune inflammatory diseases. In this study, we evaluated the therapeutic effects of a specific small molecule inhibitor of the chymotryptic-like β5i subunits of the immunoproteasome, DPLG3, in a preclinical murine colitis model and explored the underlying molecular mechanism for the immune suppression. DPLG3 showed significant effects in attenuating the disease progression in experimental colitis, reducing the body and spleen weight losses, and colon length shortening compared to vehicle-treated controls and to the well studied immunoproteasome inhibitor ONX-0914. Mechanistically, DPLG3 decreased inflammatory cytokines and the influx of effector T cells and macrophages in colon tissues while increasing the number of regulatory T cells. Molecular docking analysis of the protein-ligand interaction profile revealed that the β5i-DPLG3 complex was more stable and efficient in the binding sites compared to those formed with ONX-0914 and LU-005i. Furthermore, DPLG3 reduced the protein levels of the canonical NF-κB p50 and p65, as well as the nuclear p65. Thus, DPLG3 constitutes a potentially efficacious clinical agent for autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Rezvan Moallemian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Na Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jing Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
16
|
Toste Rêgo A, da Fonseca PCA. Characterization of Fully Recombinant Human 20S and 20S-PA200 Proteasome Complexes. Mol Cell 2019; 76:138-147.e5. [PMID: 31473102 PMCID: PMC6863390 DOI: 10.1016/j.molcel.2019.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Proteasomes are essential in all eukaryotic cells. However, their function and regulation remain considerably elusive, particularly those of less abundant variants. We demonstrate the human 20S proteasome recombinant assembly and confirmed the recombinant complex integrity biochemically and with a 2.6 Å resolution cryo-EM map. To assess its competence to form higher-order assemblies, we prepared and analyzed recombinant human 20S-PA200, a poorly characterized nuclear complex. Its 3.0 Å resolution cryo-EM structure reveals the PA200 unique architecture; the details of its intricate interactions with the proteasome, resulting in unparalleled proteasome α ring rearrangements; and the molecular basis for PA200 allosteric modulation of the proteasome active sites. Non-protein cryo-EM densities could be assigned to PA200-bound inositol phosphates, and we speculate regarding their functional role. Here we open extensive opportunities to study the fundamental properties of the diverse and distinct eukaryotic proteasome variants and to improve proteasome targeting under different therapeutic conditions. Recombinant human 20S proteasomes and 20S-PA200 complexes are characterized Cryo-EM reveals intricate 20S-PA200 interactions and PA200-bound cofactors PA200 binding is allosterically communicated to the proteolytic active sites Basis to fully characterize the function and regulation of proteasome variants
Collapse
Affiliation(s)
- Ana Toste Rêgo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Paula C A da Fonseca
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
17
|
Ladi E, Everett C, Stivala CE, Daniels BE, Durk MR, Harris SF, Huestis MP, Purkey HE, Staben ST, Augustin M, Blaesse M, Steinbacher S, Eidenschenk C, Pappu R, Siu M. Design and Evaluation of Highly Selective Human Immunoproteasome Inhibitors Reveal a Compensatory Process That Preserves Immune Cell Viability. J Med Chem 2019; 62:7032-7041. [PMID: 31283222 DOI: 10.1021/acs.jmedchem.9b00509] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pan-proteasome inhibitor bortezomib demonstrated clinical efficacy in off-label trials of Systemic Lupus Erythematosus. One potential mechanism of this clinical benefit is from the depletion of pathogenic immune cells (plasmablasts and plasmacytoid dendritic cells). However, bortezomib is cytotoxic against nonimmune cells, which limits its use for autoimmune diseases. An attractive alternative is to selectively inhibit the immune cell-specific immunoproteasome to deplete pathogenic immune cells and spare nonhematopoietic cells. Here, we disclose the development of highly subunit-selective immunoproteasome inhibitors using insights obtained from the first bona fide human immunoproteasome cocrystal structures. Evaluation of these inhibitors revealed that immunoproteasome-specific inhibition does not lead to immune cell death as anticipated and that targeting viability requires inhibition of both immuno- and constitutive proteasomes. CRISPR/Cas9-mediated knockout experiments confirmed upregulation of the constitutive proteasome upon disruption of the immunoproteasome, protecting cells from death. Thus, immunoproteasome inhibition alone is not a suitable approach to deplete immune cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin Augustin
- Proteros Biostructures GmbH , Bunsenstrasse 7a , Planegg-Martinsried 82152 , Germany
| | - Michael Blaesse
- Proteros Biostructures GmbH , Bunsenstrasse 7a , Planegg-Martinsried 82152 , Germany
| | - Stefan Steinbacher
- Proteros Biostructures GmbH , Bunsenstrasse 7a , Planegg-Martinsried 82152 , Germany
| | | | | | | |
Collapse
|
18
|
Discovery of Immunoproteasome Inhibitors Using Large-Scale Covalent Virtual Screening. Molecules 2019; 24:molecules24142590. [PMID: 31315311 PMCID: PMC6680723 DOI: 10.3390/molecules24142590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Large-scale virtual screening of boronic acid derivatives was performed to identify nonpeptidic covalent inhibitors of the β5i subunit of the immunoproteasome. A hierarchical virtual screening cascade including noncovalent and covalent docking steps was applied to a virtual library of over 104,000 compounds. Then, 32 virtual hits were selected, out of which five were experimentally confirmed. Biophysical and biochemical tests showed micromolar binding affinity and time-dependent inhibitory potency for two compounds. These results validate the computational protocol that allows the screening of large compound collections. One of the lead-like boronic acid derivatives identified as a covalent immunoproteasome inhibitor is a suitable starting point for chemical optimization.
Collapse
|
19
|
Povedano JM, Liou J, Wei D, Srivatsav A, Kim J, Xie Y, Nijhawan D, McFadden DG. Engineering Forward Genetics into Cultured Cancer Cells for Chemical Target Identification. Cell Chem Biol 2019; 26:1315-1321.e3. [PMID: 31303577 DOI: 10.1016/j.chembiol.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/01/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Target identification for biologically active small molecules remains a major barrier for drug discovery. Cancer cells exhibiting defective DNA mismatch repair (dMMR) have been used as a forward genetics system to uncover compound targets. However, this approach has been limited by the dearth of cancer cell lines that harbor naturally arising dMMR. Here, we establish a platform for forward genetic screening using CRISPR/Cas9 to engineer dMMR into mammalian cells. We demonstrate the utility of this approach to identify mechanisms of drug action in mouse and human cancer cell lines using in vitro selections against three cellular toxins. In each screen, compound-resistant alleles emerged in drug-resistant clones, supporting the notion that engineered dMMR enables forward genetic screening in mammalian cells.
Collapse
Affiliation(s)
- Juan Manuel Povedano
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joel Liou
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Wei
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwin Srivatsav
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Xie
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Nijhawan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Allardyce DJ, Bell CM, Loizidou EZ. Argyrin B, a non-competitive inhibitor of the human immunoproteasome exhibiting preference for β1i. Chem Biol Drug Des 2019; 94:1556-1567. [PMID: 31074944 DOI: 10.1111/cbdd.13539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022]
Abstract
Inhibitors of the proteasome have found broad therapeutic applications; however, they show severe toxicity due to the abundance of proteasomes in healthy cells. In contrast, inhibitors of the immunoproteasome, which is upregulated during disease states, are less toxic and have increased therapeutic potential including against autoimmune disorders. In this project, we report argyrin B, a natural product cyclic peptide to be a reversible, non-competitive inhibitor of the immunoproteasome. Argyrin B showed selective inhibition of the β5i and β1i sites of the immunoproteasome over the β5c and β1c sites of the constitutive proteasome with nearly 20-fold selective inhibition of β1i over the homologous β1c. Molecular modelling attributes the β1i over β1c selectivity to the small hydrophobic S1 pocket of β1i and β5i over β5c to site-specific amino acid variations that enable additional bonding interactions and stabilization of the binding conformation. These findings facilitate the design of immunoproteasome selective and reversible inhibitors that may have a greater therapeutic potential and lower toxicity.
Collapse
Affiliation(s)
- Duncan J Allardyce
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Celia M Bell
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Eriketi Z Loizidou
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| |
Collapse
|
21
|
Ettari R, Cerchia C, Maiorana S, Guccione M, Novellino E, Bitto A, Grasso S, Lavecchia A, Zappalà M. Development of Novel Amides as Noncovalent Inhibitors of Immunoproteasomes. ChemMedChem 2019; 14:842-852. [PMID: 30829448 DOI: 10.1002/cmdc.201900028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/04/2019] [Indexed: 01/02/2023]
Abstract
The development of immunoproteasome-selective inhibitors is a promising strategy for treating hematologic malignancies, autoimmune and inflammatory diseases. In this context, we report the design, synthesis, and biological evaluation of a new series of amide derivatives as immunoproteasome inhibitors. Notably, the designed compounds act as noncovalent inhibitors, which might be a promising therapeutic option because of the lack of drawbacks and side effects associated with irreversible inhibition. Among the synthesized compounds, we identified a panel of active inhibitors with Ki values in the low micromolar or sub-micromolar ranges toward the β5i and/or β1i subunits of immunoproteasomes. One of the active compounds was shown to be the most potent and selective inhibitor with a Ki value of 21 nm against the single β1i subunit. Docking studies allowed us to determine the mode of binding of the molecules in the catalytic site of immunoproteasome subunits.
Collapse
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Carmen Cerchia
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Santina Maiorana
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Manuela Guccione
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Ettore Novellino
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Silvana Grasso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| | - Antonio Lavecchia
- Department of Pharmacy, Drug Discovery Laboratory, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168, Messina, Italy
| |
Collapse
|
22
|
Xin BT, Huber EM, de Bruin G, Heinemeyer W, Maurits E, Espinal C, Du Y, Janssens M, Weyburne ES, Kisselev AF, Florea BI, Driessen C, van der Marel GA, Groll M, Overkleeft HS. Structure-Based Design of Inhibitors Selective for Human Proteasome β2c or β2i Subunits. J Med Chem 2019; 62:1626-1642. [PMID: 30657666 PMCID: PMC6378654 DOI: 10.1021/acs.jmedchem.8b01884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Subunit-selective
proteasome inhibitors are valuable tools to assess
the biological and medicinal relevance of individual proteasome active
sites. Whereas the inhibitors for the β1c, β1i, β5c,
and β5i subunits exploit the differences in the substrate-binding
channels identified by X-ray crystallography, compounds selectively
targeting β2c or β2i could not yet be rationally designed
because of the high structural similarity of these two subunits. Here,
we report the development, chemical synthesis, and biological screening
of a compound library that led to the identification of the β2c-
and β2i-selective compounds LU-002c (4; IC50 β2c: 8 nM, IC50 β2i/β2c: 40-fold)
and LU-002i (5; IC50 β2i: 220 nM, IC50 β2c/β2i: 45-fold), respectively. Co-crystal
structures with β2 humanized yeast proteasomes visualize protein–ligand
interactions crucial for subunit specificity. Altogether, organic
syntheses, activity-based protein profiling, yeast mutagenesis, and
structural biology allowed us to decipher significant differences
of β2 substrate-binding channels and to complete the set of
subunit-selective proteasome inhibitors.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Gerjan de Bruin
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Wolfgang Heinemeyer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Elmer Maurits
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Christofer Espinal
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Yimeng Du
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Marissa Janssens
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Emily S Weyburne
- Department of Molecular and Systems Biology and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , 1 Medical Centre Drive HB7936 , Lebanon , New Hampshire 03756 , United States
| | - Alexei F Kisselev
- Department of Molecular and Systems Biology and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , 1 Medical Centre Drive HB7936 , Lebanon , New Hampshire 03756 , United States
| | - Bogdan I Florea
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Christoph Driessen
- Department of Hematology and Oncology , Kantonsspital St. Gallen , 9007 St. Gallen , Switzerland
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Herman S Overkleeft
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| |
Collapse
|
23
|
Johnson HWB, Lowe E, Anderl JL, Fan A, Muchamuel T, Bowers S, Moebius DC, Kirk C, McMinn DL. Required Immunoproteasome Subunit Inhibition Profile for Anti-Inflammatory Efficacy and Clinical Candidate KZR-616 ((2 S,3 R)- N-(( S)-3-(Cyclopent-1-en-1-yl)-1-(( R)-2-methyloxiran-2-yl)-1-oxopropan-2-yl)-3-hydroxy-3-(4-methoxyphenyl)-2-(( S)-2-(2-morpholinoacetamido)propanamido)propenamide). J Med Chem 2018; 61:11127-11143. [PMID: 30380863 DOI: 10.1021/acs.jmedchem.8b01201] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Selective immunoproteasome inhibition is a promising approach for treating autoimmune disorders, but optimal proteolytic active site subunit inhibition profiles remain unknown. We reveal here our design of peptide epoxyketone-based selective low molecular mass polypeptide-7 (LMP7) and multicatalytic endopeptidase complex subunit-1 (MECL-1) subunit inhibitors. Utilizing these and our previously disclosed low molecular mass polypeptide-2 (LMP2) inhibitor, we demonstrate a requirement of dual LMP7/LMP2 or LMP7/MECL-1 subunit inhibition profiles for potent cytokine expression inhibition and in vivo efficacy in an inflammatory disease model. These and additional findings toward optimized solubility led the design and selection of KZR-616 disclosed here and presently in clinical trials for treatment of rheumatic disease.
Collapse
Affiliation(s)
- Henry W B Johnson
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Eric Lowe
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Janet L Anderl
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Andrea Fan
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Tony Muchamuel
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Simeon Bowers
- Onyx Pharmaceuticals, an Amgen Subsidiary , South San Francisco , California 94080 , United States
| | - David C Moebius
- Onyx Pharmaceuticals, an Amgen Subsidiary , South San Francisco , California 94080 , United States
| | - Christopher Kirk
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Dustin L McMinn
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| |
Collapse
|
24
|
Basler M, Maurits E, de Bruin G, Koerner J, Overkleeft HS, Groettrup M. Amelioration of autoimmunity with an inhibitor selectively targeting all active centres of the immunoproteasome. Br J Pharmacol 2017; 175:38-52. [PMID: 29034459 DOI: 10.1111/bph.14069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Multicatalytic endopeptidase complex-like-1 (β2i), low molecular mass polypeptide (LMP) 2 (β1i) and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome, a special type of proteasome mainly expressed in haematopoietic cells. Targeting LMP7 has been shown to be therapeutically effective in preclinical models of autoimmune diseases. In this study, we investigated the selectivity and biological activity of LU-005i, a recently described inhibitor of the immunoproteasome. EXPERIMENTAL APPROACH The specificity of LU-005i and other immunoproteasome-selective inhibitors was characterized using fluorogenic peptide substrates. The effect of proteasome inhibition on cytokine release was investigated in endotoxin-stimulated mouse splenocytes or human peripheral blood mononuclear cells (PBMCs). The effect of proteasome inhibition on inflammatory bowel disease in the dextran sulfate sodium (DSS)-induced colitis model was assessed by measuring weight loss and colon length. KEY RESULTS LU-005i is the first human and mouse immunoproteasome-selective inhibitor that targets all three proteolytically active immunoproteasome subunits. LU-005i inhibited cytokine secretion from endotoxin-stimulated mouse splenocytes or human PBMCs. Furthermore, differentiation of naïve T helper cells to T helper 17 cells was impaired in the presence of LU-005i. Additionally, LU-005i ameliorated DSS-induced colitis. CONCLUSION AND IMPLICATIONS This study with a novel pan-immunoproteasome inhibitor substantiates that the immunoproteasome is a promising drug target for the treatment of inflammatory diseases and that exclusive inhibition of LMP7 is not necessary for therapeutic effectiveness. Our results will promote the design of new generations of immunoproteasome inhibitors with optimal therapeutic efficacy for clinical use in the treatment of autoimmunity and cancer.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, 8280, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, Konstanz, 78457, Germany
| | - Elmer Maurits
- Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Gerjan de Bruin
- Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Julia Koerner
- Department of Biology, Division of Immunology, University of Konstanz, Konstanz, 78457, Germany
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Marcus Groettrup
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, 8280, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, Konstanz, 78457, Germany
| |
Collapse
|
25
|
Morris EP, da Fonseca PCA. High-resolution cryo-EM proteasome structures in drug development. Acta Crystallogr D Struct Biol 2017; 73:522-533. [PMID: 28580914 PMCID: PMC5458494 DOI: 10.1107/s2059798317007021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein-ligand interactions using the human 20S proteasome, a well established target for cancer therapy that is also being investigated as a target for an increasing range of other medical conditions. The map of a ligand-bound human 20S proteasome served as a proof of principle that cryo-EM is emerging as a realistic approach for more general structural studies of protein-ligand interactions, with the potential benefits of extending such studies to complexes that are unfavourable to other methods and allowing structure determination under conditions that are closer to physiological, preserving ligand specificity towards closely related binding sites. Subsequently, the cryo-EM structure of the Plasmodium falciparum 20S proteasome, with a new prototype specific inhibitor bound, revealed the molecular basis for the ligand specificity towards the parasite complex, which provides a framework to guide the development of highly needed new-generation antimalarials. Here, the cryo-EM analysis of the ligand-bound human and P. falciparum 20S proteasomes is reviewed, and a complete description of the methods used for structure determination is provided, including the strategy to overcome the bias orientation of the human 20S proteasome on electron-microscope grids and details of the icr3d software used for three-dimensional reconstruction.
Collapse
Affiliation(s)
- Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, England
| | | |
Collapse
|
26
|
Cui H, Baur R, Le Chapelain C, Dubiella C, Heinemeyer W, Huber EM, Groll M. Structural Elucidation of a Nonpeptidic Inhibitor Specific for the Human Immunoproteasome. Chembiochem 2017; 18:523-526. [PMID: 28098422 DOI: 10.1002/cbic.201700021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 12/30/2022]
Abstract
Selective inhibition of the immunoproteasome is a promising approach towards the development of immunomodulatory drugs. Recently, a class of substituted thiazole compounds that combine a nonpeptidic scaffold with the absence of an electrophile was reported in a patent. Here, we investigated the mode of action of the lead compound by using a sophisticated chimeric yeast model of the human immunoproteasome for structural studies. The inhibitor adopts a unique orientation perpendicular to the β5i substrate-binding channel. Distinct interactions between the inhibitor and the subpockets of the human immunoproteasome account for its isotype selectivity.
Collapse
Affiliation(s)
- Haissi Cui
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Regina Baur
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Camille Le Chapelain
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Christian Dubiella
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Wolfgang Heinemeyer
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Eva M Huber
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
27
|
Hsu HC, Singh PK, Fan H, Wang R, Sukenick G, Nathan C, Lin G, Li H. Structural Basis for the Species-Selective Binding of N,C-Capped Dipeptides to the Mycobacterium tuberculosis Proteasome. Biochemistry 2016; 56:324-333. [PMID: 27976853 DOI: 10.1021/acs.biochem.6b01107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Mycobacterium tuberculosis (Mtb) 20S proteasome is vital for the pathogen to survive under nitrosative stress in vitro and to persist in mice. To qualify for drug development, inhibitors targeting Mtb 20S must spare both the human constitutive proteasome (c-20S) and immunoproteasome (i-20S). We recently reported members of a family of noncovalently binding dipeptide proteasome inhibitors that are highly potent and selective for Mtb 20S over human c-20S and i-20S. To understand the structural basis of their potency and selectivity, we have studied the structure-activity relationship of six derivatives and solved their cocrystal structures with Mtb 20S. The dipeptide inhibitors form an antiparallel β-strand with the active site β-strands. Selectivity is conferred by several features of Mtb 20S relative to its mouse counterparts, including a larger S1 pocket, additional hydrogen bonds in the S3 pocket, and hydrophobic interactions in the S4 pocket. Serine-20 and glutamine-22 of Mtb 20S interact with the dipeptides and confer Mtb-specific inhibition over c-20S and i-20S. The Mtb 20S and mammalian i-20S have a serine-27 that interacts strongly with the dipeptides, potentially explaining the higher inhibitory activity of the dipeptides toward i-20S over c-20S. This detailed structural knowledge will aid in optimizing the dipeptides as anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| | | | | | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | | | | | - Huilin Li
- Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| |
Collapse
|
28
|
Huber EM, Heinemeyer W, de Bruin G, Overkleeft HS, Groll M. A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit β5i. EMBO J 2016; 35:2602-2613. [PMID: 27789522 DOI: 10.15252/embj.201695222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/01/2023] Open
Abstract
Inhibition of the immunoproteasome subunit β5i alleviates autoimmune diseases in preclinical studies and represents a promising new anti-inflammatory therapy. However, the lack of structural data on the human immunoproteasome still hampers drug design. Here, we systematically determined the potency of seven α' β' epoxyketone inhibitors with varying N-caps and P3-stereochemistry for mouse/human β5c/β5i and found pronounced differences in their subunit and species selectivity. Using X-ray crystallography, the compounds were analyzed for their modes of binding to chimeric yeast proteasomes that incorporate key parts of human β5c, human β5i or mouse β5i and the neighboring β6 subunit. The structural data reveal exceptional conformations for the most selective human β5i inhibitors and highlight subtle structural differences as the major reason for the observed species selectivity. Altogether, the presented results validate the humanized yeast proteasome as a powerful tool for structure-based development of β5i inhibitors with potential clinical applications.
Collapse
Affiliation(s)
- Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie Technische Universität München, Garching, Germany
| | - Wolfgang Heinemeyer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie Technische Universität München, Garching, Germany
| | - Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Center, CC Leiden, the Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Center, CC Leiden, the Netherlands
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie Technische Universität München, Garching, Germany
| |
Collapse
|