1
|
Wang S, Yang B, Mu H, Dong W, Yang B, Wang X, Yu W, Dong Z, Wang J. PTX3 promotes cementum formation and cementoblast differentiation via HA/ITGB1/FAK/YAP1 signaling pathway. Bone 2024; 187:117199. [PMID: 38992453 DOI: 10.1016/j.bone.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
2
|
Vivi E, Di Benedetto B. Brain stars take the lead during critical periods of early postnatal brain development: relevance of astrocytes in health and mental disorders. Mol Psychiatry 2024; 29:2821-2833. [PMID: 38553540 PMCID: PMC11420093 DOI: 10.1038/s41380-024-02534-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 09/25/2024]
Abstract
In the brain, astrocytes regulate shape and functions of the synaptic and vascular compartments through a variety of released factors and membrane-bound proteins. An imbalanced astrocyte activity can therefore have drastic negative impacts on brain development, leading to the onset of severe pathologies. Clinical and pre-clinical studies show alterations in astrocyte cell number, morphology, molecular makeup and astrocyte-dependent processes in different affected brain regions in neurodevelopmental (ND) and neuropsychiatric (NP) disorders. Astrocytes proliferate, differentiate and mature during the critical period of early postnatal brain development, a time window of elevated glia-dependent regulation of a proper balance between synapse formation/elimination, which is pivotal in refining synaptic connectivity. Therefore, any intrinsic and/or extrinsic factors altering these processes during the critical period may result in an aberrant synaptic remodeling and onset of mental disorders. The peculiar bridging position of astrocytes between synaptic and vascular compartments further allows them to "compute" the brain state and consequently secrete factors in the bloodstream, which may serve as diagnostic biomarkers of distinct healthy or disease conditions. Here, we collect recent advancements regarding astrogenesis and astrocyte-mediated regulation of neuronal network remodeling during early postnatal critical periods of brain development, focusing on synapse elimination. We then propose alternative hypotheses for an involvement of aberrancies in these processes in the onset of ND and NP disorders. In light of the well-known differential prevalence of certain brain disorders between males and females, we also discuss putative sex-dependent influences on these neurodevelopmental events. From a translational perspective, understanding age- and sex-dependent astrocyte-specific molecular and functional changes may help to identify biomarkers of distinct cellular (dys)functions in health and disease, favouring the development of diagnostic tools or the selection of tailored treatment options for male/female patients.
Collapse
Affiliation(s)
- Eugenia Vivi
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Barbara Di Benedetto
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Gonzalez CU, Jayaraman V. Structural dynamics in α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor gating. Curr Opin Struct Biol 2024; 87:102833. [PMID: 38733862 PMCID: PMC11283939 DOI: 10.1016/j.sbi.2024.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
The ionotropic glutamate receptors (iGluRs) are comprised of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), N-methyl-d-aspartate receptor, kainate, and delta subtypes and are pivotal in neuronal plasticity. Recent structural studies on AMPA receptors reveal intricate conformational changes during activation and desensitization elucidating the steps from agonist binding to channel opening and desensitization. Additionally, interactions with auxiliary subunits, including transmembrane AMPA-receptor regulatory proteins, germ-cell-specific gene 1-like protein, and cornichon homologs, intricately modulate AMPA receptors. We discuss the recent high-resolution structures of these complexes that unveil stoichiometry, subunit positioning, and differences in specific side-chain interactions that influence these functional modulations.
Collapse
Affiliation(s)
- Cuauhtemoc U Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. https://twitter.com/Cuau_Ulises
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Chung WS, Baldwin KT, Allen NJ. Astrocyte Regulation of Synapse Formation, Maturation, and Elimination. Cold Spring Harb Perspect Biol 2024; 16:a041352. [PMID: 38346858 PMCID: PMC11293538 DOI: 10.1101/cshperspect.a041352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Astrocytes play an integral role in the development, maturation, and refinement of neuronal circuits. Astrocytes secrete proteins and lipids that instruct the formation of new synapses and induce the maturation of existing synapses. Through contact-mediated signaling, astrocytes can regulate the formation and state of synapses within their domain. Through phagocytosis, astrocytes participate in the elimination of excess synaptic connections. In this work, we will review key findings on the molecular mechanisms of astrocyte-synapse interaction with a focus on astrocyte-secreted factors, contact-mediated mechanisms, and synapse elimination. We will discuss this in the context of typical brain development and maintenance, as well as consider the consequences of dysfunction in these pathways in neurological disorders, highlighting a role for astrocytes in health and disease.
Collapse
Affiliation(s)
- Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Korea
| | - Katherine T Baldwin
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
5
|
Li Y, Luo Y, Zhu P, Liang X, Li J, Dou X, Liu L, Qin L, Zhou M, Deng Y, Jiang L, Wang S, Yang W, Tang J, Tang Y. Running exercise improves astrocyte loss, morphological complexity and astrocyte-contacted synapses in the hippocampus of CUS-induced depression model mice. Pharmacol Biochem Behav 2024; 239:173750. [PMID: 38494007 DOI: 10.1016/j.pbb.2024.173750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antidepressant effects of running exercise have been widely reported, further research is still needed to determine the structural bases for these effects. Astrocyte processes physically contact many synapses and directly regulate the numbers of synapses, but it remains unclear whether running exercise can modulate astrocyte morphological complexity and astrocyte-contacted synapses in the hippocampus of the mice with depressive-like behavior. Male C57BL/6 J mice underwent four weeks of running exercise after four weeks of chronic unpredictable stress (CUS). The sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess anhedonia in mice. Western blotting was used to measure the expression of astrocyte- and synapse-related proteins. Immunofluorescence and 3D reconstruction were used to quantify the density and morphology of astrocytes, and astrocyte-contacted synapses in each hippocampal subregion. Four weeks of running exercise alleviated depressive-like symptoms in mice. The expression of astrocyte- and synapse-related proteins in the hippocampus; astrocyte process lengths, process numbers, and dendritic arborization; and the number of astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions were significantly decreased in the mice with depressive-like behavior, and running exercise successfully reserved these changes. Running exercise improved the decreases in astrocyte morphological complexity and astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions of the mice with depressive-like behavior, suggesting that the physical interactions between astrocytes and synapses can be increased by running exercise, which might be an important structural basis for the antidepressant effects of running exercise.
Collapse
Affiliation(s)
- Yue Li
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Peilin Zhu
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Li
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoyun Dou
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lu Qin
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Mei Zhou
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuhui Deng
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenyu Yang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
6
|
Chalmers N, Masouti E, Beckervordersandforth R. Astrocytes in the adult dentate gyrus-balance between adult and developmental tasks. Mol Psychiatry 2024; 29:982-991. [PMID: 38177351 PMCID: PMC11176073 DOI: 10.1038/s41380-023-02386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes, a major glial cell type in the brain, are indispensable for the integration, maintenance and survival of neurons during development and adulthood. Both life phases make specific demands on the molecular and physiological properties of astrocytes, and most research projects traditionally focus on either developmental or adult astrocyte functions. In most brain regions, the generation of brain cells and the establishment of neural circuits ends with postnatal development. However, few neurogenic niches exist in the adult brain in which new neurons and glial cells are produced lifelong, and the integration of new cells into functional circuits represent a very special form of plasticity. Consequently, in the neurogenic niche, the astrocytes must be equipped to execute both mature and developmental tasks in order to integrate newborn neurons into the circuit and yet maintain overall homeostasis without affecting the preexisting neurons. In this review, we focus on astrocytes of the hippocampal dentate gyrus (DG), and discuss specific features of the astrocytic compartment that may allow the execution of both tasks. Firstly, astrocytes of the adult DG are molecularly, morphologically and functionally diverse, and the distinct astrocytes subtypes are characterized by their localization to DG layers. This spatial separation may lead to a functional specification of astrocytes subtypes according to the neuronal structures they are embedded in, hence a division of labor. Secondly, the astrocytic compartment is not static, but steadily increasing in numbers due to lifelong astrogenesis. Interestingly, astrogenesis can adapt to environmental and behavioral stimuli, revealing an unexpected astrocyte dynamic that allows the niche to adopt to changing demands. The diversity and dynamic of astrocytes in the adult DG implicate a vital contribution to hippocampal plasticity and represent an interesting model to uncover mechanisms how astrocytes simultaneously fulfill developmental and adult tasks.
Collapse
Affiliation(s)
- Nicholas Chalmers
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Evangelia Masouti
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
7
|
Lazzaroni F, Meessen JMTA, Sun Y, Lanfranconi S, Scola E, D'Alessandris QG, Tassi L, Carriero MR, Castori M, Marino S, Blanda A, Nicolis EB, Novelli D, Calabrese R, Agnelli NM, Bottazzi B, Leone R, Mazzola S, Besana S, Catozzi C, Nezi L, Lampugnani MG, Malinverno M, Grdseloff N, Rödel CJ, Rezai Jahromi B, Bolli N, Passamonti F, Magnusson PU, Abdelilah-Seyfried S, Dejana E, Latini R. Circulating biomarkers in familial cerebral cavernous malformation. EBioMedicine 2024; 99:104914. [PMID: 38113759 PMCID: PMC10767159 DOI: 10.1016/j.ebiom.2023.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression. METHODS Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n = 17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches. FINDINGS Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM. INTERPRETATION Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease. FUNDING Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro (AIRC), ERC, Leducq Transatlantic Network of Excellence, Swedish Research Council.
Collapse
Affiliation(s)
- Francesca Lazzaroni
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Jennifer M T A Meessen
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Silvia Lanfranconi
- Department of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Scola
- Department of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Quintino Giorgio D'Alessandris
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Laura Tassi
- Claudio Munari Epilepsy Surgery Centre, ASST Niguarda Hospital, Milan, Italy
| | - Maria Rita Carriero
- Cerebrovascular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Adriana Blanda
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Enrico B Nicolis
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Deborah Novelli
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Roberta Calabrese
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Nicolò M Agnelli
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | | | | | - Selene Mazzola
- Laboratory Medicine, Desio Hospital, Università Milano Bicocca, Milan, Italy
| | - Silvia Besana
- Laboratory Medicine, Desio Hospital, Università Milano Bicocca, Milan, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Maria G Lampugnani
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Matteo Malinverno
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Nastasja Grdseloff
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Claudia J Rödel
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | | | - Niccolò Bolli
- Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Francesco Passamonti
- Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Salim Abdelilah-Seyfried
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Elisabetta Dejana
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Roberto Latini
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
8
|
Rupareliya VP, Singh AA, Butt AM, A H, Kumar H. The "molecular soldiers" of the CNS: Astrocytes, a comprehensive review on their roles and molecular signatures. Eur J Pharmacol 2023; 959:176048. [PMID: 37758010 DOI: 10.1016/j.ejphar.2023.176048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
For a long time, neurons held the position of central players in the nervous system. Since there are far more astrocytes than neurons in the brain, it makes us wonder if these cells just take up space and support the neurons or if they are actively participating in central nervous system (CNS) homeostasis. Now, astrocytes' contribution to CNS physiology is appreciated as they are known to regulate ion and neurotransmitter levels, synapse formation and elimination, blood-brain barrier integrity, immune function, cerebral blood flow, and many more. In many neurological and psychiatric disorders, astrocyte functions are altered. Advancements in microscopic and transcriptomic tools revealed populations of astrocytes with varied morphology, electrophysiological properties, and transcriptomic profiles. Neuron-circuit-specific functions and neuron-specific interactions of astroglial subpopulations are found, which suggests that diversity is essential in carrying out diverse region-specific CNS functions. Investigations on heterogeneous astrocyte populations are revealing new astrocyte functions and their role in pathological conditions, opening a new therapeutic avenue for targeting neurological conditions. The true extent of astrocytic heterogeneity and its functional implications are yet to be fully explored. This review summarizes essential astrocytic functions and their relevance in pathological conditions and discusses astrocytic diversity in relation to morphology, function, and gene expression throughout the CNS.
Collapse
Affiliation(s)
- Vimal P Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hariharan A
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
9
|
Massimino AM, Colella FE, Bottazzi B, Inforzato A. Structural insights into the biological functions of the long pentraxin PTX3. Front Immunol 2023; 14:1274634. [PMID: 37885881 PMCID: PMC10598717 DOI: 10.3389/fimmu.2023.1274634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Soluble pattern recognition molecules (PRMs) are a heterogenous group of proteins that recognize pathogen- and danger-associated molecular patterns (PAMPs and DAMPs, respectively), and cooperate with cell-borne receptors in the orchestration of innate and adaptive immune responses to pathogenic insults and tissue damage. Amongst soluble PRMs, pentraxins are a family of highly conserved proteins with distinctive structural features. Originally identified in the early 1990s as an early inflammatory gene, PTX3 is the prototype of long pentraxins. Unlike the short pentraxin C reactive protein (CRP), whose expression is mostly confined to the liver, PTX3 is made by several immune and non-immune cells at sites of infection and inflammation, where it intercepts fundamental aspects of infection immunity, inflammation, and tissue remodeling. Of note, PTX3 cross talks to components of the complement system to control cancer-related inflammation and disposal of pathogens. Also, it is an essential component of inflammatory extracellular matrices (ECMs) through crosslinking of hyaluronic acid and turn-over of provisional fibrin networks that assemble at sites of tissue injury. This functional diversity is mediated by unique structural characteristics whose fine details have been unveiled only recently. Here, we revisit the structure/function relationships of this long pentraxin in light of the most recent advances in its structural biology, with a focus on the interplay with complement and the emerging roles as a component of the ECM. Differences to and similarities with the short pentraxins are highlighted and discussed.
Collapse
Affiliation(s)
| | | | - Barbara Bottazzi
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
10
|
He B, Wang Y, Li H, Huang Y. The role of integrin beta in schizophrenia: a preliminary exploration. CNS Spectr 2023; 28:561-570. [PMID: 36274632 DOI: 10.1017/s1092852922001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Integrins are transmembrane heterodimeric (αβ) receptors that transduce mechanical signals between the extracellular milieu and the cell in a bidirectional manner. Extensive research has shown that the integrin beta (β) family is widely expressed in the brain and that they control various aspects of brain development and function. Schizophrenia is a relatively common neurological disorder of unknown etiology and has been found to be closely related to neurodevelopment and neurochemicals in neuropathological studies of schizophrenia. Here, we review literature from recent years that shows that schizophrenia involves multiple signaling pathways related to neuronal migration, axon guidance, cell adhesion, and actin cytoskeleton dynamics, and that dysregulation of these processes affects the normal function of neurons and synapses. In fact, alterations in integrin β structure, expression and signaling for neural circuits, cortex, and synapses are likely to be associated with schizophrenia. We explored several aspects of the possible association between integrin β and schizophrenia in an attempt to demonstrate the role of integrin β in schizophrenia, which may help to provide new insights into the study of the pathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Binshan He
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhan Wang
- Department of Blood Transfusion, Ya'an People's Hospital, Ya'an, China
| | - Huang Li
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuanshuai Huang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Jin Y, Tang Z, Shang S, Chen Y, Han G, Song M, Zhou J, Zhang H, Ding Y. A Nanodisc-Paved Biobridge Facilitates Stem Cell Membrane Fusogenicity for Intracerebral Shuttling and Bystander Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302367. [PMID: 37543432 DOI: 10.1002/adma.202302367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/21/2023] [Indexed: 08/07/2023]
Abstract
Mesenchymal stem cell (MSC) therapies experience steadfast clinical advances but are still hindered by inefficient site-specific migration. An adaptable MSC membrane fusogenicity technology is conceptualized for lipid raft-mediated targeting ligand embedding by using toolkits of discoidal high-density lipoprotein (HDL)-containing biomimicking 4F peptides. According to the pathological clues of brain diseases, the vascular cell adhesion molecule 1 specialized VBP peptide is fused with 4F to assemble 4F-VBP (HDL), which acts as a biobridge and transfers VBP onto the living cell membrane via lipid rafts for surface engineering of MSCs in suspension. When compared with the membrane-modifying strategies of PEGylated phospholipids, 4F-VBP (HDL) provides a 3.86 higher linkage efficiency to obtain MSCs4F-VBP(HDL) , which can recognize and adhere to the inflammatory endothelium for efficient blood-brain barrier crossing and brain accumulation. In APPswe/PSEN1dE9 mice with Alzheimer's disease (AD), the transcriptomic analysis reveals that systemic administration of MSCs4F-VBP(HDL) can activate pathways associated with neuronal activity and diminish neuroinflammation for rewiring AD brains. This customizable HDL-mediated membrane fusogenicity platform primes MSC inflammatory brain delivery, which can be expanded to other disease treatments by simply fusing 4F with relevant ligands for living cell engineering.
Collapse
Affiliation(s)
- Yi Jin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Shibeilei Shang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Guochen Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingjie Song
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| |
Collapse
|
12
|
Luo P, Zhang H, Liang Y, Li X, Wen Z, Xia C, Lan X, Yang Y, Xiong Y, Huang J, Ling X, Zhou S, Miao J, Shen W, Hou FF, Liu Y, Zhou L, Liang M. Pentraxin 3 plays a key role in tubular cell senescence and renal fibrosis through inducing β-catenin signaling. Biochim Biophys Acta Mol Basis Dis 2023:166807. [PMID: 37453582 DOI: 10.1016/j.bbadis.2023.166807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Renal fibrosis is the common pathological feature of various chronic kidney diseases (CKD). Tubular cell senescence plays a key role in the progression of renal fibrosis. However, the underlying mechanisms are still in mystery. In this study, we identified, Pentraxin 3 (PTX3), belonging to the Pentraxin family, is a new fibrogenic factor. PTX3 was increased in various CKD models. PTX3 was primarily localized in tubular epithelial cells and upregulated, accompanied by mitochondrial dysfunction and cellular senescence. Overexpression of PTX3 aggravated mitochondrial damage and accelerated cell senescence in tubular cells, leading to more severe fibrogenesis in kidneys. However, knockout of PTX3 significantly preserved mitochondrial homeostasis, and blocked cellular senescence in primary cultured tubular cells. Furthermore, KYA1797K, a destabilizer of β-catenin, greatly inhibited PTX3-induced mitochondrial homeostasis, tubular cell senescence, and renal fibrosis. Overexpression of PTX3 triggered nuclear translocation of β-catenin, an activating form of β-catenin. PTX3-induced mitochondrial dysfunction and tubular cell senescence were also significantly inhibited by knockdown of p16INK4A, a senescence-related protein. In a clinical cohort, we found PTX3 was increased in urine and serum in clinical patients with CKD. Urinary PTX3 negatively correlated with the decline of eGFR. PTX3 also increased gradually following the severity of diseases, triggering the fibrogenesis. Taken together, our results provide strong evidences that PTX3 is a new fibrogenic factor in the development of renal fibrosis through β-catenin-induced mitochondrial dysfunction and cell senescence. This study further suggests PTX3 is a new diagnostic factor to renal fibrosis and provides a new therapeutic target against renal fibrosis.
Collapse
Affiliation(s)
- Pei Luo
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Haixia Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Ye Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xiaolong Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Zhen Wen
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Chaoying Xia
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xiaolei Lan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yaya Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yabing Xiong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Jiewu Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xian Ling
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Shan Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Jinhua Miao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Weiwei Shen
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| | - Min Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
13
|
Khaspekov LG, Frumkina LE. Molecular Mechanisms of Astrocyte Involvement in Synaptogenesis and Brain Synaptic Plasticity. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:502-514. [PMID: 37080936 DOI: 10.1134/s0006297923040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Astrocytes perform a wide range of important functions in the brain. As structural and functional components of synapses, astrocytes secrete various factors (proteins, lipids, small molecules, etc.) that bind to neuronal receptor and contribute to synaptogenesis and regulation of synaptic contacts. Astrocytic factors play a key role in the formation of neural networks undergoing short- and long-term synaptic morphological and functional rearrangements essential in the memory formation and behavior. The review summarizes the data on the molecular mechanisms mediating the involvement of astrocyte-secreted factors in synaptogenesis in the brain and provides up-to-date information on the role of astrocytes and astrocytic synaptogenic factors in the long-term plastic rearrangements of synaptic contacts.
Collapse
|
14
|
Farizatto KLG, Baldwin KT. Astrocyte-synapse interactions during brain development. Curr Opin Neurobiol 2023; 80:102704. [PMID: 36913751 DOI: 10.1016/j.conb.2023.102704] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/13/2023]
Abstract
Bidirectional communication between astrocytes and neurons is essential for proper brain development. Astrocytes, a major glial cell type, are morphologically complex cells that directly interact with neuronal synapses to regulate synapse formation, maturation, and function. Astrocyte-secreted factors bind neuronal receptors to induce synaptogenesis with regional and circuit-level precision. Cell adhesion molecules mediate the direct contact between astrocytes and neurons, which is required for both synaptogenesis and astrocyte morphogenesis. Neuron-derived signals also shape astrocyte development, function, and molecular identity. This review highlights recent findings on the topic of astrocyte-synapse interactions, and discusses the importance of these interactions for synapse and astrocyte development.
Collapse
Affiliation(s)
- Karen L G Farizatto
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katherine T Baldwin
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Extracellular matrix and synapse formation. Biosci Rep 2023; 43:232259. [PMID: 36503961 PMCID: PMC9829651 DOI: 10.1042/bsr20212411] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is a complex molecular network distributed throughout the extracellular space of different tissues as well as the neuronal system. Previous studies have identified various ECM components that play important roles in neuronal maturation and signal transduction. ECM components are reported to be involved in neurogenesis, neuronal migration, and axonal growth by interacting or binding to specific receptors. In addition, the ECM is found to regulate synapse formation, the stability of the synaptic structure, and synaptic plasticity. Here, we mainly reviewed the effects of various ECM components on synapse formation and briefly described the related diseases caused by the abnormality of several ECM components.
Collapse
|
16
|
Molecular insight into pentraxin-3: update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
|
17
|
Upadhya R, Madhu LN, Rao S, Shetty AK. Proficiency of Extracellular Vesicles From hiPSC-Derived Neural Stem Cells in Modulating Proinflammatory Human Microglia: Role of Pentraxin-3 and miRNA-21-5p. Front Mol Neurosci 2022; 15:845542. [PMID: 35656007 PMCID: PMC9152457 DOI: 10.3389/fnmol.2022.845542] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) shed by human-induced pluripotent stem cell (hiPSC)-derived neural stem cells (hNSC-EVs) have shown potent antiinflammatory properties in a mouse macrophage assay and a mouse model of acute neuroinflammation. They can also quickly permeate the entire brain after intranasal administration, making them attractive as an autologous or allogeneic off-the-shelf product for treating neurodegenerative diseases. However, their ability to modulate activated human microglia and specific proteins and miRNAs mediating antiinflammatory effects of hNSC-EVs are unknown. We investigated the proficiency of hNSC-EVs to modulate activated human microglia and probed the role of the protein pentraxin 3 (PTX3) and the miRNA miR-21-5p within hNSC-EVs in mediating the antiinflammatory effects. Mature microglia generated from hiPSCs (iMicroglia) expressed multiple microglia-specific markers. They responded to lipopolysaccharide (LPS) or interferon-gamma challenge by upregulating tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) mRNA expression and protein release. iMicroglia also exhibited proficiency to phagocytose amyloid-beta (Aβ). The addition of hNSC-EVs decreased TNF-α and IL-1β mRNA expression and the release of TNF-α and IL-1β by LPS-stimulated iMicroglia (proinflammatory human Microglia). However, the antiinflammatory activity of hNSC-EVs on LPS-stimulated microglia was considerably diminished when the PTX3 or miR-21-5p concentration was reduced in EVs. The results demonstrate that hNSC-EVs are proficient for modulating the proinflammatory human microglia into non-inflammatory phenotypes, implying their utility to treat neuroinflammation in neurodegenerative diseases. Furthermore, the role of PTX3 and miR-21-5p in the antiinflammatory activity of hNSC-EVs provides a new avenue for improving the antiinflammatory effects of hNSC-EVs through PTX3 and/or miR-21-5p overexpression.
Collapse
|
18
|
Zhu M, Yu H, Sun Y, Yu W. Pentraxin-3 in the Spinal Dorsal Horn Upregulates Nectin-1 Expression in Neuropathic Pain after Spinal Nerve Damage in Male Mice. Brain Sci 2022; 12:brainsci12050648. [PMID: 35625034 PMCID: PMC9139193 DOI: 10.3390/brainsci12050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose: Neuropathic pain often originates from nerve injury or diseases of the somatosensory nervous system. However, its specific pathogenesis remains unclear. The requirement for excitatory synaptic plasticity in pain-related syndromes has been demonstrated. A recent study reported that pentraxin-3 is important in glutamatergic synaptic formation and function. Meanwhile, nectin-1 mediates synaptogenesis in neurological disorders. The present study aimed to evaluate whether pentraxin-3 and nectin-1 modulate spinal nerve damage-related neuropathic pain in male mice. Methods: L4 spinal nerve ligation (SNL) in male mice was performed to induce experimental neuropathic pain. Mechanical allodynia and heat hyperalgesia following SNL were based on paw withdrawal (PW) threshold and PW latency, respectively. Spinal pentraxin-3 levels and nectin-1 expression following SNL were examined. Pentraxin-3 and nectin-1 knockdown models were established by the shRNA method. These models were used with a recombinant pentraxin-3 cell model to investigate the underlying mechanisms of SNL. Results: The SNL operation generated persistent decreases in mechanical PW threshold and thermal PW latency, with subsequent long-lasting elevations in spinal pentraxin-3 and nectin-1 expression levels. Pentraxin-3 knockdown reduced SNL-associated neuropathic pain behaviors as well as nectin-1 amounts in the spinal dorsal horn. Nectin-1 deficiency impaired mechanical allodynia and thermal hyperalgesia following spinal nerve injury. The application of recombinant pentraxin-3 in the spinal cord triggered an acute nociception phenotype and induced spinal overexpression of nectin-1. The intrathecal knockdown of nectin-1 prevented exogenous pentraxin-3-evoked pain hypersensitivity. Conclusions: The findings suggest spinal pentraxin-3 is required for SNL-triggered neuropathic pain via nectin-1 upregulation in male mice.
Collapse
|
19
|
González-Calvo I, Cizeron M, Bessereau JL, Selimi F. Synapse Formation and Function Across Species: Ancient Roles for CCP, CUB, and TSP-1 Structural Domains. Front Neurosci 2022; 16:866444. [PMID: 35546877 PMCID: PMC9083331 DOI: 10.3389/fnins.2022.866444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The appearance of synapses was a crucial step in the creation of the variety of nervous systems that are found in the animal kingdom. With increased complexity of the organisms came a greater number of synaptic proteins. In this review we describe synaptic proteins that contain the structural domains CUB, CCP, or TSP-1. These domains are found in invertebrates and vertebrates, and CUB and CCP domains were initially described in proteins belonging to the complement system of innate immunity. Interestingly, they are found in synapses of the nematode C. elegans, which does not have a complement system, suggesting an ancient function. Comparison of the roles of CUB-, CCP-, and TSP-1 containing synaptic proteins in various species shows that in more complex nervous systems, these structural domains are combined with other domains and that there is partial conservation of their function. These three domains are thus basic building blocks of the synaptic architecture. Further studies of structural domains characteristic of synaptic proteins in invertebrates such as C. elegans and comparison of their role in mammals will help identify other conserved synaptic molecular building blocks. Furthermore, this type of functional comparison across species will also identify structural domains added during evolution in correlation with increased complexity, shedding light on mechanisms underlying cognition and brain diseases.
Collapse
Affiliation(s)
- Inés González-Calvo
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélissa Cizeron
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5284, INSERM U-1314, MeLiS, Institut NeuroMyoGène, Lyon, France
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5284, INSERM U-1314, MeLiS, Institut NeuroMyoGène, Lyon, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
20
|
Dong W, Xu X, Luo Y, Yang C, He Y, Dong X, Wang J. PTX3 promotes osteogenic differentiation by triggering HA/CD44/FAK/AKT positive feedback loop in an inflammatory environment. Bone 2022; 154:116231. [PMID: 34653679 DOI: 10.1016/j.bone.2021.116231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
The treatment of periodontitis-induced alveolar bone defects remains a clinical challenge. The secreted protein pentraxin 3 (PTX3) protects tissue during inflammation and maintains bone homeostasis in physiological conditions. However, the effects of PTX3 on osteoblast differentiation and bone regeneration after periodontitis remain unclear. Here, we found that MC3T3-E1 mouse pre-osteoblast cells secreted increased PTX3 under TNF-α-induced inflammatory conditions in vitro. Gain-of-function and loss-of-function experiments revealed that PTX3 overexpression promoted osteogenic potential in an inflammatory environment and vice versa. The promoting effect was attributed to the regulatory role of PTX3 on the hyaluronan (HA)-dependent pericellular matrix (PCM). PTX3 was found in the HA-dependent PCM of MC3T3-E1 cells, where it promoted HA synthesis and the expression of CD44 (main HA receptor), enhancing the HA-CD44 interaction. The HA-CD44 interaction further activated focal adhesion kinase (FAK)/protein kinase B (AKT) signaling cascade. FAK/AKT activation promoted the expression of HA synthases 1/2/3 (HAS1/2/3) and CD44 in MC3T3-E1 cells under inflammatory condition, forming a positive feedback loop that activated by PTX3. Importantly, when HA was digested or any one of these molecules in the positive feedback loop was blocked, PTX3 partially lost the ability to promote osteogenic differentiation in an inflammatory environment. Ligatures were removed after seven days of periodontitis induction in vivo, to investigate alveolar bone regeneration after periodontitis. Histological and Micro-CT evaluation after seven and 14 days of local PTX3 treatment showed that alveolar bone healing was significantly improved compared to the vehicle control group. These findings suggested that PTX3 can induce osteogenic differentiation in an in vitro inflammatory environment by triggering the HA/CD44/FAK/AKT positive feedback loop, and promote bone regeneration after periodontitis.
Collapse
Affiliation(s)
- Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaofei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
21
|
Shan L, Zhang T, Fan K, Cai W, Liu H. Astrocyte-Neuron Signaling in Synaptogenesis. Front Cell Dev Biol 2021; 9:680301. [PMID: 34277621 PMCID: PMC8284252 DOI: 10.3389/fcell.2021.680301] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Astrocytes are the key component of the central nervous system (CNS), serving as pivotal regulators of neuronal synapse formation and maturation through their ability to dynamically and bidirectionally communicate with synapses throughout life. In the past 20 years, numerous astrocyte-derived molecules promoting synaptogenesis have been discovered. However, our understanding of the cell biological basis underlying intra-neuron processes and astrocyte-mediated synaptogenesis is still in its infancy. Here, we provide a comprehensive overview of the various ways astrocytes talk to neurons, and highlight astrocytes’ heterogeneity that allow them to displays regional-specific capabilities in boosting synaptogenesis. Finally, we conclude with promises and future directions on how organoids generated from human induced pluripotent stem cells (hiPSCs) effectively address the signaling pathways astrocytes employ in synaptic development.
Collapse
Affiliation(s)
- Lili Shan
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Tongran Zhang
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Kevin Fan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
22
|
Koussih L, Atoui S, Tliba O, Gounni AS. New Insights on the Role of pentraxin-3 in Allergic Asthma. FRONTIERS IN ALLERGY 2021; 2:678023. [PMID: 35387000 PMCID: PMC8974764 DOI: 10.3389/falgy.2021.678023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.
Collapse
Affiliation(s)
- Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department des Sciences Experimentales, Universite de Saint-Boniface, Winnipeg, MB, Canada
| | - Samira Atoui
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Abdelilah S. Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Abdelilah S. Gounni
| |
Collapse
|
23
|
Chiareli RA, Carvalho GA, Marques BL, Mota LS, Oliveira-Lima OC, Gomes RM, Birbrair A, Gomez RS, Simão F, Klempin F, Leist M, Pinto MCX. The Role of Astrocytes in the Neurorepair Process. Front Cell Dev Biol 2021; 9:665795. [PMID: 34113618 PMCID: PMC8186445 DOI: 10.3389/fcell.2021.665795] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are highly specialized glial cells responsible for trophic and metabolic support of neurons. They are associated to ionic homeostasis, the regulation of cerebral blood flow and metabolism, the modulation of synaptic activity by capturing and recycle of neurotransmitters and maintenance of the blood-brain barrier. During injuries and infections, astrocytes act in cerebral defense through heterogeneous and progressive changes in their gene expression, morphology, proliferative capacity, and function, which is known as reactive astrocytes. Thus, reactive astrocytes release several signaling molecules that modulates and contributes to the defense against injuries and infection in the central nervous system. Therefore, deciphering the complex signaling pathways of reactive astrocytes after brain damage can contribute to the neuroinflammation control and reveal new molecular targets to stimulate neurorepair process. In this review, we present the current knowledge about the role of astrocytes in brain damage and repair, highlighting the cellular and molecular bases involved in synaptogenesis and neurogenesis. In addition, we present new approaches to modulate the astrocytic activity and potentiates the neurorepair process after brain damage.
Collapse
Affiliation(s)
| | | | | | - Lennia Soares Mota
- Department of Pharmacology, Federal University of Goias, Goiânia, Brazil
| | | | | | - Alexander Birbrair
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Renato Santiago Gomez
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Simão
- Research Division, Vascular Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | | | - Marcel Leist
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
24
|
Oggioni M, Mercurio D, Minuta D, Fumagalli S, Popiolek-Barczyk K, Sironi M, Ciechanowska A, Ippati S, De Blasio D, Perego C, Mika J, Garlanda C, De Simoni MG. Long pentraxin PTX3 is upregulated systemically and centrally after experimental neurotrauma, but its depletion leaves unaltered sensorimotor deficits or histopathology. Sci Rep 2021; 11:9616. [PMID: 33953334 PMCID: PMC8100171 DOI: 10.1038/s41598-021-89032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Long pentraxin PTX3, a pattern recognition molecule involved in innate immune responses, is upregulated by pro-inflammatory stimuli, contributors to secondary damage in traumatic brain injury (TBI). We analyzed PTX3 involvement in mice subjected to controlled cortical impact, a clinically relevant TBI mouse model. We measured PTX3 mRNA and protein in the brain and its circulating levels at different time point post-injury, and assessed behavioral deficits and brain damage progression in PTX3 KO mice. PTX3 circulating levels significantly increased 1-3 weeks after injury. In the brain, PTX3 mRNA was upregulated in different brain areas starting from 24 h and up to 5 weeks post-injury. PTX3 protein significantly increased in the brain cortex up to 3 weeks post-injury. Immunohistochemical analysis showed that, 48 h after TBI, PTX3 was localized in proximity of neutrophils, likely on neutrophils extracellular traps (NETs), while 1- and 2- weeks post-injury PTX3 co-localized with fibrin deposits. Genetic depletion of PTX3 did not affect sensorimotor deficits up to 5 weeks post-injury. At this time-point lesion volume and neuronal count, axonal damage, collagen deposition, astrogliosis, microglia activation and phagocytosis were not different in KO compared to WT mice. Members of the long pentraxin family, neuronal pentraxin 1 (nPTX1) and pentraxin 4 (PTX4) were also over-expressed in the traumatized brain, but not neuronal pentraxin 2 (nPTX2) or short pentraxins C-reactive protein (CRP) and serum amyloid P-component (SAP). The long-lasting pattern of activation of PTX3 in brain and blood supports its specific involvement in TBI. The lack of a clear-cut phenotype in PTX3 KO mice may depend on the different roles of this protein, possibly involved in inflammation early after injury and in repair processes later on, suggesting distinct functions in acute phases versus sub-acute or chronic phases. Brain long pentraxins, such as PTX4-shown here to be overexpressed in the brain after TBI-may compensate for PTX3 absence.
Collapse
Affiliation(s)
- Marco Oggioni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Domenico Mercurio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Denise Minuta
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, 20132 Milan, Italy
| | - Stefano Fumagalli
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Katarzyna Popiolek-Barczyk
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marina Sironi
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy
| | - Agata Ciechanowska
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Stefania Ippati
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Scientific Institute, San Raffaele Hospital, 20132 Milan, Italy
| | - Daiana De Blasio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Carlo Perego
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Joanna Mika
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy ,grid.452490.eHumanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, Pieve Emanuele – Milan, 20090 Italy
| | - Maria-Grazia De Simoni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
25
|
Yamagata K. Astrocyte-induced synapse formation and ischemic stroke. J Neurosci Res 2021; 99:1401-1413. [PMID: 33604930 DOI: 10.1002/jnr.24807] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Astrocytes are closely associated with the regulation of synapse formation and function. In addition, astrocytes have been shown to block certain brain impairments, including synaptic damage from stroke and other diseases of the central nervous system (CNS). Although astrocytes do not completely prevent synaptic damage, they appear to be protective and to restore synaptic function following damage. The purpose of this study is to discuss the role of astrocytes in synaptogenesis and synaptic damage in ischemic stroke. I detail the mechanism of action of the multiple factors secreted by astrocytes that are involved in synapse formation. In particular, I describe the characteristics and role in synapse formation of each secreted molecule related to synaptic structure and function. Furthermore, I discuss the effect of astrocytes on synaptogenesis and repair in ischemic stroke and in other CNS diseases. Astrocytes release molecules such as thrombospondin, hevin, secreted protein acidic rich in cysteine, etc., due to activation by ischemia to induce synaptic structure and function, an effect associated with protection of the brain from synaptic damage in ischemic stroke. In conclusion, I show that astrocytes may regulate synaptic transmission while having the potential to block and repair synaptic dysfunction in stroke-associated brain damage.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Fujisawa, Japan
| |
Collapse
|
26
|
Abstract
Astrocytes are the most abundant glial cells in the mammalian brain and directly participate in the proper functioning of the nervous system by regulating ion homeostasis, controlling glutamate reuptake, and maintaining the blood-brain barrier. In the last two decades, a growing body of work also identified critical roles for astrocytes in regulating synaptic connectivity. Stemming from the observation that functional and morphological development of astrocytes occur concurrently with synapse formation and maturation, these studies revealed that both developmental processes are directly linked. In fact, astrocytes both physically contact numerous synaptic structures and actively instruct many aspects of synaptic development and function via a plethora of secreted and adhesion-based molecular signals. The complex astrocyte-to-neuron signaling modalities control different stages of synaptic development such as regulating the initial formation of structural synapses as well as their functional maturation. Furthermore, the synapse-modulating functions of astrocytes are evolutionarily conserved and contribute to the development and plasticity of diverse classes of synapses and circuits throughout the central nervous system. Importantly, because impaired synapse formation and function is a hallmark of many neurodevelopmental disorders, deficits in astrocytes are likely to be major contributors to disease pathogenesis. In this chapter, we review our current understanding of the cellular and molecular mechanisms by which astrocytes contribute to synapse development and discuss the bidirectional secretion-based and contact-mediated mechanisms responsible for these essential developmental processes.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Caley J Burrus Lane
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States; Duke Institute for Brain Sciences, Durham, NC, United States; Regeneration Next Initiative, Duke University, Durham, NC, United States.
| |
Collapse
|
27
|
Wahis J, Hennes M, Arckens L, Holt MG. Star power: the emerging role of astrocytes as neuronal partners during cortical plasticity. Curr Opin Neurobiol 2020; 67:174-182. [PMID: 33360483 PMCID: PMC8202513 DOI: 10.1016/j.conb.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Plasticity is a fundamental property of neuronal circuits, allowing them to adapt to alterations in activation. Generally speaking, plasticity has been viewed from a 'neuron-centric' perspective, with changes in circuit function attributed to alterations in neuronal excitability, synaptic strength or neuronal connectivity. However, it is now clear that glial cells, in particular astrocytes, are key regulators of neuronal plasticity. This article reviews recent progress made in understanding astrocyte function and attempts to summarize these functions into a coherent framework that positions astrocytes as central players in the plasticity process.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maroussia Hennes
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium.
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
28
|
Parp3 promotes astrocytic differentiation through a tight regulation of Nox4-induced ROS and mTorc2 activation. Cell Death Dis 2020; 11:954. [PMID: 33159039 PMCID: PMC7648797 DOI: 10.1038/s41419-020-03167-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Parp3 is a member of the Poly(ADP-ribose) polymerase (Parp) family that has been characterized for its functions in strand break repair, chromosomal rearrangements, mitotic segregation and tumor aggressiveness. Yet its physiological implications remain unknown. Here we report a central function of Parp3 in the regulation of redox homeostasis in continuous neurogenesis in mice. We show that the absence of Parp3 provokes Nox4-induced oxidative stress and defective mTorc2 activation leading to inefficient differentiation of post-natal neural stem/progenitor cells to astrocytes. The accumulation of ROS contributes to the decreased activity of mTorc2 as a result of an oxidation-induced and Fbxw7-mediated ubiquitination and degradation of Rictor. In vivo, mTorc2 signaling is compromised in the striatum of naïve post-natal Parp3-deficient mice and 6 h after acute hypoxia-ischemia. These findings reveal a physiological function of Parp3 in the tight regulation of striatal oxidative stress and mTorc2 during astrocytic differentiation and in the acute phase of hypoxia-ischemia.
Collapse
|
29
|
Pan Y, Xie Z, Cen S, Li M, Liu W, Tang S, Ye G, Li J, Zheng G, Li Z, Yu W, Wang P, Wu Y, Shen H. Long noncoding RNA repressor of adipogenesis negatively regulates the adipogenic differentiation of mesenchymal stem cells through the hnRNP A1-PTX3-ERK axis. Clin Transl Med 2020; 10:e227. [PMID: 33252864 PMCID: PMC7648959 DOI: 10.1002/ctm2.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are pluripotent stem cells that can differentiate via osteogenesis and adipogenesis. The mechanism underlying MSC lineage commitment still remains incompletely elucidated. Understanding the regulatory mechanism of MSC differentiation will help researchers induce MSCs toward specific lineages for clinical use. In this research, we intended to figure out the long noncoding RNA (lncRNA) that plays a central role in MSC fate determination and explore its application value in tissue engineering. METHODS The expression pattern of lncRNAs during MSC osteogenesis/adipogenesis was detected by microarray and qRT-PCR. Lentivirus and siRNAs were constructed to regulate the expression of lncRNA repressor of adipogenesis (ROA). MSC osteogenesis/adipogenesis was evaluated by western blot and alizarin red/oil red staining. An adipokine array was used to select the paracrine/autocrine factor PTX3, followed by RNA interference or recombinant human protein stimulation to confirm its function. The activation of signaling pathways was also detected by western blot, and a small molecule inhibitor, SCH772984, was used to inhibit the activation of the ERK pathway. The interaction between ROA and hnRNP A1 was detected by RNA pull-down and RIP assays. Luciferase reporter and chromatin immunoprecipitation assays were used to confirm the binding of hnRNP A1 to the PTX3 promotor. Additionally, an in vivo adipogenesis experiment was conducted to evaluate the regulatory value of ROA in tissue engineering. RESULTS In this study, we demonstrated that MSC adipogenesis is regulated by lncRNA ROA both in vitro and in vivo. Mechanistically, ROA inhibits MSC adipogenesis by downregulating the expression of the key autocrine/paracrine factor PTX3 and the downstream ERK pathway. This downregulation was achieved through transcription inhibition by impeding hnRNP A1 from binding to the promoter of PTX3. CONCLUSIONS ROA negatively regulates MSC adipogenesis through the hnRNP A1-PTX3-ERK axis. ROA may be an effective target for modulating MSCs in tissue engineering.
Collapse
Affiliation(s)
- Yiqian Pan
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shuizhong Cen
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenjie Liu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Su'an Tang
- Clinical Research CenterZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guiwen Ye
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhaofeng Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenhui Yu
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Peng Wang
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yanfeng Wu
- Center for BiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
30
|
Fossati G, Matteoli M, Menna E. Astrocytic Factors Controlling Synaptogenesis: A Team Play. Cells 2020; 9:E2173. [PMID: 32993090 PMCID: PMC7600026 DOI: 10.3390/cells9102173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are essential players in brain circuit development and homeostasis, controlling many aspects of synapse formation, function, plasticity and elimination both during development and adulthood. Accordingly, alterations in astrocyte morphogenesis and physiology may severely affect proper brain development, causing neurological or neuropsychiatric conditions. Recent findings revealed a huge astrocyte heterogeneity among different brain areas, which is likely at the foundation of the different synaptogenic potential of these cells in selected brain regions. This review highlights recent findings on novel mechanisms that regulate astrocyte-mediated synaptogenesis during development, and the control of synapse number in the critical period or upon synaptic plasticity.
Collapse
Affiliation(s)
- Giuliana Fossati
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
| | - Michela Matteoli
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
- CNR, Department of Biomedical Sciences, Institute of Neuroscience—URT Humanitas, via Manzoni 56, 20089 Rozzano, Italy
| | - Elisabetta Menna
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
- CNR, Department of Biomedical Sciences, Institute of Neuroscience—URT Humanitas, via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
31
|
Gollihue J, Norris C. Astrocyte mitochondria: Central players and potential therapeutic targets for neurodegenerative diseases and injury. Ageing Res Rev 2020; 59:101039. [PMID: 32105849 DOI: 10.1016/j.arr.2020.101039] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/23/2020] [Accepted: 02/23/2020] [Indexed: 01/16/2023]
Abstract
Mitochondrial function has long been the focus of many therapeutic strategies for ameliorating age-related neurodegeneration and cognitive decline. Historically, the role of mitochondria in non-neuronal cell types has been overshadowed by neuronal mitochondria, which are responsible for the bulk of oxidative metabolism in the brain. Despite this neuronal bias, mitochondrial function in glial cells, particularly astrocytes, is increasingly recognized to play crucial roles in overall brain metabolism, synaptic transmission, and neuronal protection. Changes in astrocytic mitochondrial function appear to be intimately linked to astrocyte activation/reactivity found in most all age-related neurodegenerative diseases. Here, we address the importance of mitochondrial function to astrocyte signaling and consider how mitochondria could contribute to both the detrimental and protective properties of activated astrocytes. Strategies for protecting astrocytic mitochondrial function, promoting bidirectional transfer of mitochondria between astrocytes and neurons, and transplanting healthy mitochondria to diseased nervous tissue are also discussed.
Collapse
|
32
|
Zhou C, Chen H, Zheng JF, Guo ZD, Huang ZJ, Wu Y, Zhong JJ, Sun XC, Cheng CJ. Pentraxin 3 contributes to neurogenesis after traumatic brain injury in mice. Neural Regen Res 2020; 15:2318-2326. [PMID: 32594056 PMCID: PMC7749468 DOI: 10.4103/1673-5374.285001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that pentraxin 3 is an acute-phase protein that is linked with the immune response to inflammation. It is also a newly discovered marker of anti-inflammatory A2 reactive astrocytes, and potentially has multiple protective effects in stroke; however, its role in the adult brain after traumatic brain injury is unknown. In the present study, a moderate model of traumatic brain injury in mice was established using controlled cortical impact. The models were intraventricularly injected with recombinant pentraxin 3 (the recombinant pentraxin 3 group) or an equal volume of vehicle (the control group). The sham-operated mice underwent craniotomy, but did not undergo the controlled cortical impact. The potential neuroprotective and neuroregenerative roles of pentraxin 3 were investigated on days 14 and 21 after traumatic brain injury. Western blot assay showed that the expression of endogenous pentraxin 3 was increased after traumatic brain injury in mice. Furthermore, the neurological severity test and wire grip test revealed that recombinant pentraxin 3 treatment reduced the neurological severity score and increased the wire grip score, suggesting an improved recovery of sensory-motor functions. The Morris water maze results demonstrated that recombinant pentraxin 3 treatment reduced the latency to the platform, increased the time spent in the correct quadrant, and increased the number of times traveled across the platform, thus suggesting an improved recovery of cognitive function. In addition, to investigate the effects of pentraxin 3 on astrocytes, specific markers of A2 astrocytes were detected in primary astrocyte cultures in vitro using western blot assay. The results demonstrated that pentraxin 3 administration activates A2 astrocytes. To explore the protective mechanisms of pentraxin 3, immunofluorescence staining was used. Intraventricular injection of recombinant pentraxin 3 increased neuronal maintenance in the peri-injured cortex and ipsilateral hippocampus, increased the number of doublecortin-positive neural progenitor cells in the subventricular and subgranular zones, and increased the number of bromodeoxyuridine (proliferation) and neuronal nuclear antigen (mature neuron) double-labeled cells in the hippocampus and peri-injured cortex. Pentraxin 3 administration also increased the number of neurospheres and the number of bromodeoxyuridine and doublecortin double-labeled cells in neurospheres, and enhanced the proliferation of neural progenitor cells in primary neural progenitor cell cultures in vitro. In conclusion, recombinant pentraxin 3 administration activated A2 astrocytes, and consequently improved the recovery of neural function by increasing neuronal survival and enhancing neurogenesis. All experiments were approved by the Animal Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China on March 1, 2016.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Feng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zong-Duo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Jian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep 2019; 9:13939. [PMID: 31558805 PMCID: PMC6763627 DOI: 10.1038/s41598-019-50404-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
The synaptic transmission in the mammalian brain is not limited to the interplay between the pre- and the postsynapse of neurons, but involves also astrocytes as well as extracellular matrix (ECM) molecules. Glycoproteins, proteoglycans and hyaluronic acid of the ECM pervade the pericellular environment and condense to special superstructures termed perineuronal nets (PNN) that surround a subpopulation of CNS neurons. The present study focuses on the analysis of PNNs in a quadruple knockout mouse deficient for the ECM molecules tenascin-C (TnC), tenascin-R (TnR), neurocan and brevican. Here, we analysed the proportion of excitatory and inhibitory synapses and performed electrophysiological recordings of the spontaneous neuronal network activity of hippocampal neurons in vitro. While we found an increase in the number of excitatory synaptic molecules in the quadruple knockout cultures, the number of inhibitory synaptic molecules was significantly reduced. This observation was complemented with an enhancement of the neuronal network activity level. The in vivo analysis of PNNs in the hippocampus of the quadruple knockout mouse revealed a reduction of PNN size and complexity in the CA2 region. In addition, a microarray analysis of the postnatal day (P) 21 hippocampus was performed unravelling an altered gene expression in the quadruple knockout hippocampus.
Collapse
|
34
|
Morimoto K, Nakajima K. Role of the Immune System in the Development of the Central Nervous System. Front Neurosci 2019; 13:916. [PMID: 31551681 PMCID: PMC6735264 DOI: 10.3389/fnins.2019.00916] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
The central nervous system (CNS) and the immune system are both intricate and highly organized systems that regulate the entire body, with both sharing certain common features in developmental mechanisms and operational modes. It is known that innate immunity-related molecules, such as cytokines, toll-like receptors, the complement family, and acquired immunity-related molecules, such as the major histocompatibility complex and antibody receptors, are also expressed in the brain and play important roles in brain development. Moreover, although the brain has previously been regarded as an immune-privileged site, it is known to contain lymphatic vessels. Not only microglia but also lymphocytes regulate cognition and play a vital role in the formation of neuronal circuits. This review provides an overview of the function of immune cells and immune molecules in the CNS, with particular emphasis on their effect on neural developmental processes.
Collapse
Affiliation(s)
- Keiko Morimoto
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Doni A, Stravalaci M, Inforzato A, Magrini E, Mantovani A, Garlanda C, Bottazzi B. The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer. Front Immunol 2019; 10:712. [PMID: 31019517 PMCID: PMC6459138 DOI: 10.3389/fimmu.2019.00712] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
The innate immune system comprises a cellular and a humoral arm. Humoral pattern recognition molecules include complement components, collectins, ficolins, and pentraxins. These molecules are involved in innate immune responses by recognizing microbial moieties and damaged tissues, activating complement, exerting opsonic activity and facilitating phagocytosis, and regulating inflammation. The long pentraxin PTX3 is a prototypic humoral pattern recognition molecule that, in addition to providing defense against infectious agents, plays several functions in tissue repair and regulation of cancer-related inflammation. Characterization of the PTX3 molecular structure and biochemical properties, and insights into its interactome and multiple roles in tissue damage and remodeling support the view that microbial and matrix recognition are evolutionarily conserved functions of humoral innate immunity molecules.
Collapse
Affiliation(s)
- Andrea Doni
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy
| | - Matteo Stravalaci
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Inforzato
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Magrini
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | |
Collapse
|
36
|
Lee E, Chung WS. Glial Control of Synapse Number in Healthy and Diseased Brain. Front Cell Neurosci 2019; 13:42. [PMID: 30814931 PMCID: PMC6381066 DOI: 10.3389/fncel.2019.00042] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Glial cells are emerging as crucial players that mediate development and homeostasis of the central nervous system (CNS). In particular, glial cells are closely associated with synapses, and control synapse formation, function, plasticity, and elimination during the stages of development and adulthood. Importantly, it is now increasingly evident that abnormal glial function can be an active inducer of the initiation and progression of various neurodegenerative diseases. Here, we discuss recent developments on the physiological roles of glial cells in the brain, and propose that synapse loss, which is a common characteristic of several neurodegenerative diseases, can be initiated by mis-regulation of normal glial function.
Collapse
Affiliation(s)
- Eunbeol Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|