1
|
Gao Y, Tan YS, Lin J, Chew LY, Aung HY, Palliyana B, Gujar MR, Lin KY, Kondo S, Wang H. SUMOylation of Warts kinase promotes neural stem cell reactivation. Nat Commun 2024; 15:8557. [PMID: 39419973 PMCID: PMC11487185 DOI: 10.1038/s41467-024-52569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
A delicate balance between neural stem cell (NSC) quiescence and proliferation is important for adult neurogenesis and homeostasis. Small ubiquitin-related modifier (SUMO)-dependent post-translational modifications cause rapid and reversible changes in protein functions. However, the role of the SUMO pathway during NSC reactivation and brain development is not established. Here, we show that the key components of the SUMO pathway play an important role in NSC reactivation and brain development in Drosophila. Depletion of SUMO/Smt3 or SUMO conjugating enzyme Ubc9 results in notable defects in NSC reactivation and brain development, while their overexpression leads to premature NSC reactivation. Smt3 protein levels increase with NSC reactivation, which is promoted by the Ser/Thr kinase Akt. Warts/Lats, the core protein kinase of the Hippo pathway, can undergo SUMO- and Ubc9-dependent SUMOylation at Lys766. This modification attenuates Wts phosphorylation by Hippo, leading to the inhibition of the Hippo pathway, and consequently, initiation of NSC reactivation. Moreover, inhibiting Hippo pathway effectively restores the NSC reactivation defects induced by SUMO pathway inhibition. Overall, our study uncovered an important role for the SUMO-Hippo pathway during Drosophila NSC reactivation and brain development.
Collapse
Affiliation(s)
- Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Htet Yamin Aung
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Brinda Palliyana
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Mahekta R Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. SCIENCE ADVANCES 2024; 10:eadl4694. [PMID: 39047090 PMCID: PMC11268418 DOI: 10.1126/sciadv.adl4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mahekta R. Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiawen Huang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Low Siok Lan Christine
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
3
|
Marshall H, de la Filia AG, Cavalieri R, Mallon EB, Clark JM, Ross L. Lack of paternal silencing and ecotype-specific expression in head and body lice hybrids. Evol Lett 2024; 8:455-465. [PMID: 38818422 PMCID: PMC11134467 DOI: 10.1093/evlett/qrae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 06/01/2024] Open
Abstract
Paternal genome elimination (PGE) is a non-Mendelian inheritance system, described in numerous arthropod species, in which males develop from fertilized eggs, but their paternally inherited chromosomes are eliminated before or during spermatogenesis. Therefore, PGE males only transmit their maternally inherited set of chromosomes to their offspring. In addition to the elimination of paternal chromosomes, diverse PGE species have also repeatedly evolved the transcriptional silencing of the paternal genome, making males effectively haploid. However, it is unclear if this paternal chromosome silencing is mechanistically linked to the chromosome elimination or has evolved at a later stage, and if so, what drives the haploidization of males under PGE. In order to understand these questions, here we study the human louse, Pediculus humanus, which represents an ideal model system, as it appears to be the only instance of PGE where males eliminate, but not silence their paternal chromosomes, although the latter remains to be shown conclusively. In this study, we analyzed parent-of-origin allele-specific expression patterns in male offspring of crosses between head and body lice ecotypes. We show that hybrid adult males of P. humanus display biparental gene expression, which constitutes the first case of a species with PGE in which genetic activity of paternal chromosomes in the soma is not affected by embryonic silencing or (partial or complete) elimination. We did however also identify a small number of maternally biased genes (potentially imprinted genes), which may be involved in the elimination of paternal chromosomes during spermatogenesis. Finally, we have identified genes that show ecotype-specific expression bias. Given the low genetic diversity between ecotypes, this is suggestive for a role of epigenetic processes in ecotype differences.
Collapse
Affiliation(s)
- Hollie Marshall
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Cavalieri
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Eamonn B Mallon
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - John M Clark
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584337. [PMID: 38903085 PMCID: PMC11188063 DOI: 10.1101/2024.03.11.584337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
|
5
|
Gujar MR, Gao Y, Teng X, Deng Q, Lin KY, Tan YS, Toyama Y, Wang H. Golgi-dependent reactivation and regeneration of Drosophila quiescent neural stem cells. Dev Cell 2023; 58:1933-1949.e5. [PMID: 37567172 DOI: 10.1016/j.devcel.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/26/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. In Drosophila, quiescent neural stem cells (qNSCs) extend a primary protrusion, a hallmark of qNSCs. Here, we have found that qNSC protrusions can be regenerated upon injury. This regeneration process relies on the Golgi apparatus that acts as the major acentrosomal microtubule-organizing center in qNSCs. A Golgi-resident GTPase Arf1 and its guanine nucleotide exchange factor Sec71 promote NSC reactivation and regeneration via the regulation of microtubule growth. Arf1 physically associates with its new effector mini spindles (Msps)/XMAP215, a microtubule polymerase. Finally, Arf1 functions upstream of Msps to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings have established Drosophila qNSCs as a regeneration model and identified Arf1/Sec71-Msps pathway in the regulation of microtubule growth and NSC reactivation.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Qiannan Deng
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kun-Yang Lin
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
6
|
Gujar MR, Gao Y, Teng X, Ding WY, Lin J, Tan YS, Chew LY, Toyama Y, Wang H. Patronin/CAMSAP promotes reactivation and regeneration of Drosophila quiescent neural stem cells. EMBO Rep 2023; 24:e56624. [PMID: 37440685 PMCID: PMC10481672 DOI: 10.15252/embr.202256624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (qNSCs) extend a primary protrusion that is enriched in acentrosomal microtubules and can be regenerated upon injury. Arf1 promotes microtubule growth, reactivation (exit from quiescence), and regeneration of qNSC protrusions upon injury. However, how Arf1 is regulated in qNSCs remains elusive. Here, we show that the microtubule minus-end binding protein Patronin/CAMSAP promotes acentrosomal microtubule growth and quiescent NSC reactivation. Patronin is important for the localization of Arf1 at Golgi and physically associates with Arf1, preferentially with its GDP-bound form. Patronin is also required for the regeneration of qNSC protrusion, likely via the regulation of microtubule growth. Finally, Patronin functions upstream of Arf1 and its effector Msps/XMAP215 to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings reveal a novel link between Patronin/CAMSAP and Arf1 in the regulation of microtubule growth and NSC reactivation. A similar mechanism might apply to various microtubule-dependent systems in mammals.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Xiang Teng
- Mechanobiology InstituteSingaporeSingapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Present address:
Temasek LifeSciences LaboratorySingaporeSingapore
| | - Yusuke Toyama
- Mechanobiology InstituteSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering ProgrammeNational University of SingaporeSingaporeSingapore
| |
Collapse
|
7
|
Palacios Martínez S, Greaney J, Zenker J. Beyond the centrosome: The mystery of microtubule organising centres across mammalian preimplantation embryos. Curr Opin Cell Biol 2022; 77:102114. [PMID: 35841745 DOI: 10.1016/j.ceb.2022.102114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022]
Abstract
Mammalian preimplantation embryogenesis depends on the spatio-temporal dynamics of the microtubule cytoskeleton to enable exceptionally fast changes in cell number, function, architecture, and fate. Microtubule organising centres (MTOCs), which coordinate the remodelling of microtubules, are therefore of fundamental significance during the first days of a new life. Despite its indispensable role during early mammalian embryogenesis, the origin of microtubule growth remains poorly understood. In this review, we summarise the most recent discoveries on microtubule organisation and function during early human embryogenesis and compare these to innovative studies conducted in alternative mammalian models. We emphasise the differences and analogies of centriole inheritance and their role during the first cleavage. Furthermore, we highlight the significance of non-centrosomal MTOCs for embryo viability and discuss the potential of novel in vitro models and light-inducible approaches towards unravelling microtubule formation in research and assisted reproductive technologies.
Collapse
Affiliation(s)
| | - Jessica Greaney
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
8
|
Nguyen PK, Cheng LY. Non-autonomous regulation of neurogenesis by extrinsic cues: a Drosophila perspective. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac004. [PMID: 38596708 PMCID: PMC10913833 DOI: 10.1093/oons/kvac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 04/11/2024]
Abstract
The formation of a functional circuitry in the central nervous system (CNS) requires the correct number and subtypes of neural cells. In the developing brain, neural stem cells (NSCs) self-renew while giving rise to progenitors that in turn generate differentiated progeny. As such, the size and the diversity of cells that make up the functional CNS depend on the proliferative properties of NSCs. In the fruit fly Drosophila, where the process of neurogenesis has been extensively investigated, extrinsic factors such as the microenvironment of NSCs, nutrients, oxygen levels and systemic signals have been identified as regulators of NSC proliferation. Here, we review decades of work that explores how extrinsic signals non-autonomously regulate key NSC characteristics such as quiescence, proliferation and termination in the fly.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Gujar MR, Wang H. A fly's eye view of quiescent neural stem cells. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac001. [PMID: 38596705 PMCID: PMC10913722 DOI: 10.1093/oons/kvac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 04/11/2024]
Abstract
The balance between proliferation and quiescence of stem cells is crucial in maintaining tissue homeostasis. Neural stem cells (NSCs) in the brain have the ability to be reactivated from a reversible quiescent state to generate new neurons. However, how NSCs transit between quiescence and reactivation remains largely elusive. Drosophila larval brain NSCs, also known as neuroblasts, have emerged as an excellent in vivo model to study molecular mechanisms underlying NSC quiescence and reactivation. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs in Drosophila. We review the most recent advances on epigenetic regulations and microtubule cytoskeleton in Drosophila quiescent NSCs and their cross-talk with signaling pathways that are required in regulating NSC reactivation.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore
| |
Collapse
|