1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Varela-Martínez E, Luigi-Sierra MG, Guan D, López-Béjar M, Casas E, Olvera-Maneu S, Gardela J, Palomo MJ, Osuagwuh UI, Ohaneje UL, Mármol-Sánchez E, Amills M. The landscape of long noncoding RNA expression in the goat brain. J Dairy Sci 2024; 107:4075-4091. [PMID: 38278299 DOI: 10.3168/jds.2023-23966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
The brain regulates multiple metabolic processes, such as food intake, energy expenditure, insulin secretion, hepatic glucose production, and glucose and fatty acid metabolism in adipose tissue, which are fundamental for the maintenance of energy and glucose homeostasis during lactation and pregnancy. In addition, brain expression has a fundamental impact on the development of maternal behavior. Although brain functions are partly regulated by long noncoding RNAs (lncRNAs), their expression profiles have not been characterized in depth in any ruminant species. We have sequenced the transcriptome of 12 brain tissues from 3 goats that were 1 mo pregnant and 4 nonpregnant goats to investigate their lncRNA expression patterns. Between 4,363 (adenohypophysis) and 4,604 (olfactory bulb) lncRNAs were expressed in brain tissues, leading us to establish a set of 794 already annotated lncRNAs and 5,098 novel lncRNA candidates. The detected lncRNAs shared features with those of other mammals, and tissue-specific lncRNAs were enriched in brain development-related terms. Differential expression analyses between goats that were 1 mo pregnant and nonpregnant goats showed that the lncRNA expression profiles of certain brain regions experience substantial changes associated with early pregnancy (238 lncRNAs are differentially expressed in the olfactory bulb), but others do not. Enrichment analysis showed that differentially expressed lncRNAs from the olfactory bulb are co-expressed with genes previously linked to behavioral changes related to pregnancy. These findings provide a first characterization of the landscape of lncRNA expression in the goat brain and provides valuable clues to understand the molecular events triggered by early pregnancy in the central nervous system.
Collapse
Affiliation(s)
- Endika Varela-Martínez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B. Sarriena, Leioa 48940, Spain; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Encarna Casas
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria Jesús Palomo
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Uchebuchi Ike Osuagwuh
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Uchechi Linda Ohaneje
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Department de Ciència Animal I dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
3
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
4
|
Andrianova L, Yanakieva S, Margetts-Smith G, Kohli S, Brady ES, Aggleton JP, Craig MT. No evidence from complementary data sources of a direct glutamatergic projection from the mouse anterior cingulate area to the hippocampal formation. eLife 2023; 12:e77364. [PMID: 37545394 PMCID: PMC10425170 DOI: 10.7554/elife.77364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/03/2023] [Indexed: 08/08/2023] Open
Abstract
The connectivity and interplay between the prefrontal cortex and hippocampus underpin various key cognitive processes, with changes in these interactions being implicated in both neurodevelopmental and neurodegenerative conditions. Understanding the precise cellular connections through which this circuit is organised is, therefore, vital for understanding these same processes. Overturning earlier findings, a recent study described a novel excitatory projection from anterior cingulate area to dorsal hippocampus. We sought to validate this unexpected finding using multiple, complementary methods: anterograde and retrograde anatomical tracing, using anterograde and retrograde adeno-associated viral vectors, monosynaptic rabies tracing, and the Fast Blue classical tracer. Additionally, an extensive data search of the Allen Projection Brain Atlas database was conducted to find the stated projection within any of the deposited anatomical studies as an independent verification of our own results. However, we failed to find any evidence of a direct, monosynaptic glutamatergic projection from mouse anterior cingulate cortex to the hippocampus proper.
Collapse
Affiliation(s)
- Lilya Andrianova
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
- School of Psychology & Neuroscience, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Steliana Yanakieva
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Gabriella Margetts-Smith
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
| | - Shivali Kohli
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
| | - Erica S Brady
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
| | - John P Aggleton
- School of Psychology, Cardiff UniversityCardiffUnited Kingdom
| | - Michael T Craig
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
- School of Psychology & Neuroscience, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
5
|
Velicky P, Miguel E, Michalska JM, Lyudchik J, Wei D, Lin Z, Watson JF, Troidl J, Beyer J, Ben-Simon Y, Sommer C, Jahr W, Cenameri A, Broichhagen J, Grant SGN, Jonas P, Novarino G, Pfister H, Bickel B, Danzl JG. Dense 4D nanoscale reconstruction of living brain tissue. Nat Methods 2023; 20:1256-1265. [PMID: 37429995 PMCID: PMC10406607 DOI: 10.1038/s41592-023-01936-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure-function relationships of the brain's complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue.
Collapse
Affiliation(s)
- Philipp Velicky
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Eder Miguel
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia M Michalska
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Lyudchik
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Donglai Wei
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Computer Science, Boston College, Boston, MA, USA
| | - Zudi Lin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jake F Watson
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jakob Troidl
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Johanna Beyer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Yoav Ben-Simon
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Christoph Sommer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Wiebke Jahr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- In-Vision Technologies, Guntramsdorf, Austria
| | - Alban Cenameri
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Hanspeter Pfister
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Bernd Bickel
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
6
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|