1
|
Remigante A, Spinelli S, Gambardella L, Bozzuto G, Vona R, Caruso D, Villari V, Cappello T, Maisano M, Dossena S, Marino A, Morabito R, Straface E. Internalization of nano- and micro-plastics in human erythrocytes leads to oxidative stress and estrogen receptor-mediated cellular responses. Free Radic Biol Med 2024; 223:1-17. [PMID: 39038767 DOI: 10.1016/j.freeradbiomed.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Plastic material versatility has resulted in a substantial increase in its use in several sectors of our everyday lives. Consequently, concern regarding human exposure to nano-plastics (NPs) and micro-plastics (MPs) has recently increased. It has been shown that plastic particles entering the bloodstream may adhere to the erythrocyte surface and exert adverse effects following erythrocyte aggregation and adhesion to blood vessels. Here, we explored the effects of polystyrene nano-plastics (PS-NPs) and micro-plastics (PS-MPs) on human erythrocytes. Cellular morphology, binding/internalization of PS-NPs and PS-MPs, oxidative stress parameters, as well as the distribution and anion exchange capability of band 3 (anion exchanger 1; SLC4A1) have been analyzed in human erythrocytes exposed to 1 μg/mL PS-NPs or PS-MPs for 3 and 24 h, respectively. The data obtained showed significant modifications of the cellular shape after exposure to PS-NPs or PS-MPs. In particular, a significantly increased number of acanthocytes, echinocytes and leptocytes were detected. However, the percentage of eryptotic cells (<1 %) was comparable to physiological conditions. Analytical cytology and confocal microscopy showed that PS-NPs and PS-MPs bound to the erythrocyte plasma membrane, co-localized with estrogen receptors (Erα/ERβ), and were internalized. An increased trafficking from the cytosol to the erythrocyte plasma membrane and abnormal distribution of ERs were also observed, consistent with ERα-mediated binding and internalization of PS-NPs. An increased phosphorylation of ERK1/2 and AKT kinases indicated that an activation of the ER-modulated non-genomic pathway occurred following exposure to PS-NPs and PS-MPs. Interestingly, PS-NPs or PS-MPs caused a significant production of reactive oxygen species, resulting in an increased lipid peroxidation and protein sulfhydryl group oxidation. Oxidative stress was also associated with an altered band 3 ion transport activity and increased oxidized haemoglobin, which led to abnormal clustering of band 3 on the plasma membrane. Taken together, these findings identify cellular events following the internalization of PS-NPs or PS-MPs in human erythrocytes and contribute to elucidating potential oxidative stress-related harmful effects, which may affect erythrocyte and systemic homeostasis.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy.
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, 98166, Italy
| | - Valentina Villari
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Messina, 98158, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| |
Collapse
|
2
|
Remigante A, Spinelli S, Gambardella L, Straface E, Cafeo G, Russo M, Caruso D, Dugo P, Dossena S, Marino A, Morabito R. Anion exchanger1 (AE1/SLC4A1) function is impaired in red blood cells from prediabetic subjects: Potential benefits of finger lime (Citrus australasica, Faustrime cultivar) juice extract. Cell Biochem Funct 2024; 42:e4105. [PMID: 39096031 DOI: 10.1002/cbf.4105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Prediabetes is a risk state that defines a high chance of developing diabetes and cardiovascular disease. Oxidative stress mediated by hyperglycemia-induced production of reactive species could play a crucial role in this context. In the present study, we investigated whether the anion exchange capability mediated by AE1 (SLC4A1), which is sensitive to oxidative stress, was altered in human red blood cells (RBCs) obtained from prediabetic volunteers. In addition, we assessed the precise composition of bioactive compounds and the potential benefits of finger lime juice extract (Citrus australasica, Faustrime cultivar) in counteracting oxidative stress-related functional alterations. Human RBCs from normal and prediabetic volunteers were incubated with 50 µg/mL juice extract for 2 h at 25°C. Juice extract restored alterations of the anion exchange capability mediated by AE1 and prevented the structural rearrangements of AE1 and α/β-spectrin in prediabetic RBCs. AE1 functional and structural alterations were not associated with an increase in lipid peroxidation or protein oxidation at the level of the plasma membrane. An increased production of intracellular ROS, which provoked the oxidation of hemoglobin to methemoglobin, both reverted by juice extract, was instead observed. Importantly, juice extract also induced a reduction in glycated hemoglobin levels in prediabetic RBCs. Finally, juice extract blunted the overactivation of the endogenous antioxidant enzymes catalase and superoxide dismutase and prevented glutathione depletion in prediabetic RBCs. These findings contribute to clarifying cellular and molecular mechanisms related to oxidative stress and glycation events that may influence RBC and systemic homeostasis in prediabetes, identify AE1 as a sensitive biomarker of RBC structural and function alterations in prediabetes and propose finger lime juice extract as a natural antioxidant for the treatment and/or prevention of the complications associated with the prediabetic condition.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Cafeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Seinkmane E, Edmondson A, Peak-Chew SY, Zeng A, Rzechorzek NM, James NR, West J, Munns J, Wong DC, Beale AD, O'Neill JS. Circadian regulation of macromolecular complex turnover and proteome renewal. EMBO J 2024; 43:2813-2833. [PMID: 38778155 PMCID: PMC11217436 DOI: 10.1038/s44318-024-00121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Although costly to maintain, protein homeostasis is indispensable for normal cellular function and long-term health. In mammalian cells and tissues, daily variation in global protein synthesis has been observed, but its utility and consequences for proteome integrity are not fully understood. Using several different pulse-labelling strategies, here we gain direct insight into the relationship between protein synthesis and abundance proteome-wide. We show that protein degradation varies in-phase with protein synthesis, facilitating rhythms in turnover rather than abundance. This results in daily consolidation of proteome renewal whilst minimising changes in composition. Coupled rhythms in synthesis and turnover are especially salient to the assembly of macromolecular protein complexes, particularly the ribosome, the most abundant species of complex in the cell. Daily turnover and proteasomal degradation rhythms render cells and mice more sensitive to proteotoxic stress at specific times of day, potentially contributing to daily rhythms in the efficacy of proteasomal inhibitors against cancer. Our findings suggest that circadian rhythms function to minimise the bioenergetic cost of protein homeostasis through temporal consolidation of protein turnover.
Collapse
Affiliation(s)
- Estere Seinkmane
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anna Edmondson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aiwei Zeng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nina M Rzechorzek
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nathan R James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - James West
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jack Munns
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Cs Wong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Andrew D Beale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
4
|
Borrmann H, Rijo-Ferreira F. Crosstalk between circadian clocks and pathogen niche. PLoS Pathog 2024; 20:e1012157. [PMID: 38723104 PMCID: PMC11081299 DOI: 10.1371/journal.ppat.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.
Collapse
Affiliation(s)
- Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Hastings MH. Biological clocks: Hungry on time. Curr Biol 2023; 33:R1229-R1231. [PMID: 38052171 DOI: 10.1016/j.cub.2023.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Remembering when it was last able to eat helps an animal optimise its foraging strategy for future meals. But where is that time memory located? A new study now shows that it is embedded in an enigmatic, light-entrainable circadian (daily) clock.
Collapse
|