1
|
Qin B, Lu G, Chen X, Zheng C, Lin H, Liu Q, Shang J, Feng G. H2B oncohistones cause homologous recombination defect and genomic instability through reducing H2B monoubiquitination in Schizosaccharomyces pombe. J Biol Chem 2024; 300:107345. [PMID: 38718864 PMCID: PMC11167522 DOI: 10.1016/j.jbc.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Canonical oncohistones are histone H3 mutations in the N-terminal tail associated with tumors and affect gene expression by altering H3 post-translational modifications (PTMs) and the epigenetic landscape. Noncanonical oncohistone mutations occur in both tails and globular domains of all four core histones and alter gene expression by perturbing chromatin remodeling. However, the effects and mechanisms of noncanonical oncohistones remain largely unknown. Here we characterized 16 noncanonical H2B oncohistones in the fission yeast Schizosaccharomyces pombe. We found that seven of them exhibited temperature sensitivities and 11 exhibited genotoxic sensitivities. A detailed study of two of these onco-mutants H2BG52D and H2BP102L revealed that they were defective in homologous recombination (HR) repair with compromised histone eviction and Rad51 recruitment. Interestingly, their genotoxic sensitivities and HR defects were rescued by the inactivation of the H2BK119 deubiquitination function of Ubp8 in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. The levels of H2BK119 monoubiquitination (H2Bub) in the H2BG52D and H2BP102L mutants are reduced in global genome and at local DNA break sites presumably due to enhanced recruitment of Ubp8 onto nucleosomes and are recovered upon loss of H2B deubiquitination function of the SAGA complex. Moreover, H2BG52D and H2BP102L heterozygotes exhibit genotoxic sensitivities and reduced H2Bub in cis. We therefore conclude that H2BG52D and H2BP102L oncohistones affect HR repair and genome stability via the reduction of H2Bub and propose that other noncanonical oncohistones may also affect histone PTMs to cause diseases.
Collapse
Affiliation(s)
- Bingxin Qin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guangchun Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuejin Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chenhua Zheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huanteng Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qi Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
3
|
Liu R, Chen X, Zhao F, Jiang Y, Lu Z, Ji H, Feng Y, Li J, Zhang H, Zheng J, Zhang J, Zhao Y. The COMPASS Complex Regulates Fungal Development and Virulence through Histone Crosstalk in the Fungal Pathogen Cryptococcus neoformans. J Fungi (Basel) 2023; 9:672. [PMID: 37367608 DOI: 10.3390/jof9060672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
The Complex of Proteins Associated with Set1 (COMPASS) methylates lysine K4 on histone H3 (H3K4) and is conserved from yeast to humans. Its subunits and regulatory roles in the meningitis-causing fungal pathogen Cryptococcus neoformans remain unknown. Here we identified the core subunits of the COMPASS complex in C. neoformans and C. deneoformans and confirmed their conserved roles in H3K4 methylation. Through AlphaFold modeling, we found that Set1, Bre2, Swd1, and Swd3 form the catalytic core of the COMPASS complex and regulate the cryptococcal yeast-to-hypha transition, thermal tolerance, and virulence. The COMPASS complex-mediated histone H3K4 methylation requires H2B mono-ubiquitination by Rad6/Bre1 and the Paf1 complex in order to activate the expression of genes specific for the yeast-to-hypha transition in C. deneoformans. Taken together, our findings demonstrate that putative COMPASS subunits function as a unified complex, contributing to cryptococcal development and virulence.
Collapse
Affiliation(s)
- Ruoyan Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoyu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixuan Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenguo Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Heng Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
4
|
Zhu Z, Qi J, Liu Y, Sui Z. The H3K79 methylase DOT1, unreported in photosynthetic plants, exists in Alexandrium pacificum and participates in its growth regulation. MARINE POLLUTION BULLETIN 2023; 190:114867. [PMID: 37011538 DOI: 10.1016/j.marpolbul.2023.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Alexandrium pacificum is one of the typical toxic dinoflagellate species leading to harmful algal blooms (HABs). Histone modifications play key roles in many cellular events, but little is known about the mechanism of regulating A. pacificum growth. In this study, a total of 30 proteins containing the DOT1 domain were identified and analyzed. Some ApDOT1 gene expression levels were significantly influenced by light intensity and nitrogen by expression analysis and RT-qPCR validation. The enrichment of H3K79 methylation also showed a similar trend. In addition, ApDOT1.9 protein was proved to have the function of catalyzing the methylation of H3K79 by homology analysis and in vitro methylation. The results suggested that ApDOT1 proteins and H3K79 methylation were involved in responding to harmful algal blooms-inducing conditions (high light intensity, and high nitrogen), which provided basic information for further exploration of the regulatory mechanism of histone methylation in A. pacificum rapid growth.
Collapse
Affiliation(s)
- Zhimei Zhu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Juan Qi
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Integrative Proteome Analysis Revels 3-Hydroxybutyrate Exerts Neuroprotective Effect by Influencing Chromatin Bivalency. Int J Mol Sci 2023; 24:ijms24010868. [PMID: 36614311 PMCID: PMC9821512 DOI: 10.3390/ijms24010868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
3-hydroxybutyrate (3OHB) has been proved to act as a neuroprotective molecule in multiple neurodegenerative diseases. Here, we employed a quantitative proteomics approach to assess the changes of the global protein expression pattern of neural cells upon 3OHB administration. In combination with a disease-related, protein-protein interaction network we pinpointed a hub marker, histone lysine 27 trimethylation, which is one of the key epigenetic markers in multiple neurodegenerative diseases. Integrative analysis of transcriptomic and epigenomic datasets highlighted the involvement of bivalent transcription factors in 3OHB-mediated disease protection and its alteration of neuronal development processes. Transcriptomic profiling revealed that 3OHB impaired the fate decision process of neural precursor cells by repressing differentiation and promoting proliferation. Our study provides a new mechanism of 3OHB's neuroprotective effect, in which chromatin bivalency is sensitive to 3OHB alteration and drives its neuroprotective function both in neurodegenerative diseases and in neural development processes.
Collapse
|
6
|
Asimaki E, Petriukov K, Renz C, Meister C, Ulrich HD. Fast friends - Ubiquitin-like modifiers as engineered fusion partners. Semin Cell Dev Biol 2022; 132:132-145. [PMID: 34840080 PMCID: PMC9703124 DOI: 10.1016/j.semcdb.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Ubiquitin and its relatives are major players in many biological pathways, and a variety of experimental tools based on biological chemistry or protein engineering is available for their manipulation. One popular approach is the use of linear fusions between the modifier and a protein of interest. Such artificial constructs can facilitate the understanding of the role of ubiquitin in biological processes and can be exploited to control protein stability, interactions and degradation. Here we summarize the basic design considerations and discuss the advantages as well as limitations associated with their use. Finally, we will refer to several published case studies highlighting the principles of how they provide insight into pathways ranging from membrane protein trafficking to the control of epigenetic modifications.
Collapse
|
7
|
Aslam MA, Alemdehy MF, Kwesi-Maliepaard EM, Muhaimin FI, Caganova M, Pardieck IN, van den Brand T, van Welsem T, de Rink I, Song JY, de Wit E, Arens R, Jacobs H, van Leeuwen F. Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation. EMBO Rep 2021; 22:e51184. [PMID: 33410591 PMCID: PMC7857439 DOI: 10.15252/embr.202051184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B‐cell fate remain unclear. Here, we identified a role for the histone H3K79 methyltransferase DOT1L in controlling B‐cell differentiation. Mouse B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells in which Dot1L was deleted showed aberrant differentiation and prematurely acquired plasma cell characteristics. Similar results were obtained when DOT1L was chemically inhibited in mature B cells in vitro. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro‐proliferative, pro‐GC program. In addition, DOT1L indirectly supports the repression of an anti‐proliferative plasma cell differentiation program by maintaining the repression of Polycomb Repressor Complex 2 (PRC2) targets. Our findings show that DOT1L is a key modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B‐cell naivety and GC B‐cell differentiation.
Collapse
Affiliation(s)
- Muhammad Assad Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Mir Farshid Alemdehy
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Iris N Pardieck
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris de Rink
- Genome Core Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ramon Arens
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Tan W, Deans AJ. The ubiquitination machinery of the Fanconi Anemia DNA repair pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 163:5-13. [PMID: 33058944 DOI: 10.1016/j.pbiomolbio.2020.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The Fanconi Anemia (FA) pathway maintains genome stability by preventing DNA damage from occurring when replication is blocked. Central to the FA pathway is the monoubiquitination of FANCI-FANCD2 mediated by a ubiquitin RING-E3 ligase complex called the FA core complex. Genetic mutation in any component of the FA core complex results in defective FANCI-FANCD2 monoubiquitination and phenotypes of DNA damage sensitivity, birth defects, early-onset bone marrow failure and cancer. Here, we discuss the mechanisms of the FA core complex and FANCI-FANCD2 monoubiquitination at sites of blocked replication and review our current understanding of the biological functions of these proteins in replication fork protection.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia; Department of Medicine, St. Vincent's Health, The University of Melbourne, Australia. https://twitter.com/GenomeStability
| |
Collapse
|
9
|
van Kruijsbergen I, Mulder MPC, Uckelmann M, van Welsem T, de Widt J, Spanjaard A, Jacobs H, El Oualid F, Ovaa H, van Leeuwen F. Strategy for Development of Site-Specific Ubiquitin Antibodies. Front Chem 2020; 8:111. [PMID: 32154221 PMCID: PMC7047734 DOI: 10.3389/fchem.2020.00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Protein ubiquitination is a key post-translational modification regulating a wide range of biological processes. Ubiquitination involves the covalent attachment of the small protein ubiquitin to a lysine of a protein substrate. In addition to its well-established role in protein degradation, protein ubiquitination plays a role in protein-protein interactions, DNA repair, transcriptional regulation, and other cellular functions. Understanding the mechanisms and functional relevance of ubiquitin as a signaling system requires the generation of antibodies or alternative reagents that specifically detect ubiquitin in a site-specific manner. However, in contrast to other post-translational modifications such as acetylation, phosphorylation, and methylation, the instability and size of ubiquitin-76 amino acids-complicate the preparation of suitable antigens and the generation antibodies detecting such site-specific modifications. As a result, the field of ubiquitin research has limited access to specific antibodies. This severely hampers progress in understanding the regulation and function of site-specific ubiquitination in many areas of biology, specifically in epigenetics and cancer. Therefore, there is a high demand for antibodies recognizing site-specific ubiquitin modifications. Here we describe a strategy for the development of site-specific ubiquitin antibodies. Based on a recently developed antibody against site-specific ubiquitination of histone H2B, we provide detailed protocols for chemical synthesis methods for antigen preparation and discuss considerations for screening and quality control experiments.
Collapse
Affiliation(s)
- Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Monique P C Mulder
- Leiden Institute for Chemical Immunology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Uckelmann
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - John de Widt
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Aldo Spanjaard
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Huib Ovaa
- Leiden Institute for Chemical Immunology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Bilokapic S, Halic M. Nucleosome and ubiquitin position Set2 to methylate H3K36. Nat Commun 2019; 10:3795. [PMID: 31439846 PMCID: PMC6706414 DOI: 10.1038/s41467-019-11726-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Histone H3 lysine 36 methylation (H3K36me) is a conserved histone modification deposited by the Set2 methyltransferases. Recent findings show that over-expression or mutation of Set2 enzymes promotes cancer progression, however, mechanisms of H3K36me are poorly understood. Set2 enzymes show spurious activity on histones and histone tails, and it is unknown how they obtain specificity to methylate H3K36 on the nucleosome. In this study, we present 3.8 Å cryo-EM structure of Set2 bound to the mimic of H2B ubiquitinated nucleosome. Our structure shows that Set2 makes extensive interactions with the H3 αN, the H3 tail, the H2A C-terminal tail and stabilizes DNA in the unwrapped conformation, which positions Set2 to specifically methylate H3K36. Moreover, we show that ubiquitin contributes to Set2 positioning on the nucleosome and stimulates the methyltransferase activity. Notably, our structure uncovers interfaces that can be targeted by small molecules for development of future cancer therapies.
Collapse
Affiliation(s)
- Silvija Bilokapic
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
11
|
Vlaming H, McLean CM, Korthout T, Alemdehy MF, Hendriks S, Lancini C, Palit S, Klarenbeek S, Kwesi‐Maliepaard EM, Molenaar TM, Hoekman L, Schmidlin TT, Altelaar AFM, van Welsem T, Dannenberg J, Jacobs H, van Leeuwen F. Conserved crosstalk between histone deacetylation and H3K79 methylation generates DOT1L-dose dependency in HDAC1-deficient thymic lymphoma. EMBO J 2019; 38:e101564. [PMID: 31304633 PMCID: PMC6627229 DOI: 10.15252/embj.2019101564] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
DOT1L methylates histone H3K79 and is aberrantly regulated in MLL-rearranged leukemia. Inhibitors have been developed to target DOT1L activity in leukemia, but cellular mechanisms that regulate DOT1L are still poorly understood. We have identified the histone deacetylase Rpd3 as a negative regulator of budding yeast Dot1. At its target genes, the transcriptional repressor Rpd3 restricts H3K79 methylation, explaining the absence of H3K79me3 at a subset of genes in the yeast genome. Similar to the crosstalk in yeast, inactivation of the murine Rpd3 homolog HDAC1 in thymocytes led to an increase in H3K79 methylation. Thymic lymphomas that arise upon genetic deletion of Hdac1 retained the increased H3K79 methylation and were sensitive to reduced DOT1L dosage. Furthermore, cell lines derived from Hdac1Δ/Δ thymic lymphomas were sensitive to a DOT1L inhibitor, which induced apoptosis. In summary, we identified an evolutionarily conserved crosstalk between HDAC1 and DOT1L with impact in murine thymic lymphoma development.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
- Present address:
Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMAUSA
| | - Chelsea M McLean
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tessy Korthout
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mir Farshid Alemdehy
- Division of Tumor Biology & ImmunologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sjoerd Hendriks
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Cesare Lancini
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sander Palit
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | | | - Thom M Molenaar
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Liesbeth Hoekman
- Experimental Animal PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Thierry T Schmidlin
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht Institute for Pharmaceutical SciencesUtrecht University and Netherlands Proteomics CentreUtrechtThe Netherlands
| | - AF Maarten Altelaar
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht Institute for Pharmaceutical SciencesUtrecht University and Netherlands Proteomics CentreUtrechtThe Netherlands
- Proteomics FacilityNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tibor van Welsem
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jan‐Hermen Dannenberg
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
- Present address:
Genmab B.V.Antibody SciencesUtrechtThe Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & ImmunologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Fred van Leeuwen
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
12
|
van Welsem T, Korthout T, Ekkebus R, Morais D, Molenaar TM, van Harten K, Poramba-Liyanage DW, Sun SM, Lenstra TL, Srivas R, Ideker T, Holstege FCP, van Attikum H, El Oualid F, Ovaa H, Stulemeijer IJE, Vlaming H, van Leeuwen F. Dot1 promotes H2B ubiquitination by a methyltransferase-independent mechanism. Nucleic Acids Res 2019; 46:11251-11261. [PMID: 30203048 PMCID: PMC6265471 DOI: 10.1093/nar/gky801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022] Open
Abstract
The histone methyltransferase Dot1 is conserved from yeast to human and methylates lysine 79 of histone H3 (H3K79) on the core of the nucleosome. H3K79 methylation by Dot1 affects gene expression and the response to DNA damage, and is enhanced by monoubiquitination of the C-terminus of histone H2B (H2Bub1). To gain more insight into the functions of Dot1, we generated genetic interaction maps of increased-dosage alleles of DOT1. We identified a functional relationship between increased Dot1 dosage and loss of the DUB module of the SAGA co-activator complex, which deubiquitinates H2Bub1 and thereby negatively regulates H3K79 methylation. Increased Dot1 dosage was found to promote H2Bub1 in a dose-dependent manner and this was exacerbated by the loss of SAGA-DUB activity, which also caused a negative genetic interaction. The stimulatory effect on H2B ubiquitination was mediated by the N-terminus of Dot1, independent of methyltransferase activity. Our findings show that Dot1 and H2Bub1 are subject to bi-directional crosstalk and that Dot1 possesses chromatin regulatory functions that are independent of its methyltransferase activity.
Collapse
Affiliation(s)
- Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Reggy Ekkebus
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Dominique Morais
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Thom M Molenaar
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Kirsten van Harten
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Su Ming Sun
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Tineke L Lenstra
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Rohith Srivas
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | | | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Iris J E Stulemeijer
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
13
|
Structural Basis of Dot1L Stimulation by Histone H2B Lysine 120 Ubiquitination. Mol Cell 2019; 74:1010-1019.e6. [PMID: 30981630 DOI: 10.1016/j.molcel.2019.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022]
Abstract
The essential histone H3 lysine 79 methyltransferase Dot1L regulates transcription and genomic stability and is deregulated in leukemia. The activity of Dot1L is stimulated by mono-ubiquitination of histone H2B on lysine 120 (H2BK120Ub); however, the detailed mechanism is not understood. We report cryo-EM structures of human Dot1L bound to (1) H2BK120Ub and (2) unmodified nucleosome substrates at 3.5 Å and 4.9 Å, respectively. Comparison of both structures, complemented with biochemical experiments, provides critical insights into the mechanism of Dot1L stimulation by H2BK120Ub. Both structures show Dot1L binding to the same extended surface of the histone octamer. In yeast, this surface is used by silencing proteins involved in heterochromatin formation, explaining the mechanism of their competition with Dot1. These results provide a strong foundation for understanding conserved crosstalk between histone modifications found at actively transcribed genes and offer a general model of how ubiquitin might regulate the activity of chromatin enzymes.
Collapse
|
14
|
Architecture and subunit arrangement of the complete Saccharomyces cerevisiae COMPASS complex. Sci Rep 2018; 8:17405. [PMID: 30479350 PMCID: PMC6258710 DOI: 10.1038/s41598-018-35609-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Methylation of histone H3 lysine 4 (H3K4) is catalyzed by the multi-component COMPASS or COMPASS-like complex, which is highly conserved from yeast to human, and plays essential roles in gene expression and transcription, cell cycle progression, and DNA repair. Here we present a cryo-EM map of the complete S. cerevisiae COMPASS complex. Through tag or Fab labeling strategy combined with cryo-EM 3D reconstruction and cross-linking and mass spectrometry (XL-MS) analysis, we uncovered new information on the subunit arrangement: Cps50, Cps35, and Cps30 were determined to group together to form the face region in the head of the complex, and Cps40 and the N-terminal portion of Set1 reside on the top of the head. Our map reveals the location of the active center and a canyon in the back of the head. Together, our study provides the first snapshot of the complete architecture of yeast COMPASS and a picture of its subunit interaction network, which could facilitate our understanding of the COMPASS machinery and its functionality.
Collapse
|
15
|
Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. eLife 2018; 7:35720. [PMID: 30079888 PMCID: PMC6118821 DOI: 10.7554/elife.35720] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022] Open
Abstract
ATP-dependent chromatin remodelling proteins represent a diverse family of proteins that share ATPase domains that are adapted to regulate protein-DNA interactions. Here, we present structures of the Saccharomyces cerevisiae Chd1 protein engaged with nucleosomes in the presence of the transition state mimic ADP-beryllium fluoride. The path of DNA strands through the ATPase domains indicates the presence of contacts conserved with single strand translocases and additional contacts with both strands that are unique to Snf2 related proteins. The structure provides connectivity between rearrangement of ATPase lobes to a closed, nucleotide bound state and the sensing of linker DNA. Two turns of linker DNA are prised off the surface of the histone octamer as a result of Chd1 binding, and both the histone H3 tail and ubiquitin conjugated to lysine 120 are re-orientated towards the unravelled DNA. This indicates how changes to nucleosome structure can alter the way in which histone epitopes are presented.
Collapse
Affiliation(s)
| | - Amanda L Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hassane El-Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - David G Norman
- Nucleic Acids Structure Research Group, University of Dundee, Dundee, United Kingdom
| | - Helder Ferreira
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
16
|
Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018; 293:10438-10446. [PMID: 29743234 DOI: 10.1074/jbc.aw118.003235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for post-translationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, whereas the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins.
Collapse
Affiliation(s)
- Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
17
|
Zukowski A, Johnson AM. The interplay of histone H2B ubiquitination with budding and fission yeast heterochromatin. Curr Genet 2018; 64:799-806. [PMID: 29464330 DOI: 10.1007/s00294-018-0812-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Mono-ubiquitinated histone H2B (H2B-Ub) is important for chromatin regulation of transcription, chromatin assembly, and also influences heterochromatin. In this review, we discuss the effects of H2B-Ub from nucleosome to higher-order chromatin structure. We then assess what is currently known of the role of H2B-Ub in heterochromatic silencing in budding and fission yeasts (S. cerevisiae and S. pombe), which have distinct silencing mechanisms. In budding yeast, the SIR complex initiates heterochromatin assembly with the aid of a H2B-Ub deubiquitinase, Ubp10. In fission yeast, the RNAi-dependent pathway initiates heterochromatin in the context of low H2B-Ub. We examine how the different silencing machineries overcome the challenge of H2B-Ub chromatin and highlight the importance of using these microorganisms to further our understanding of H2B-Ub in heterochromatic silencing pathways.
Collapse
Affiliation(s)
- Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Abstract
Osteoarthritis is the most prevalent and crippling joint disease, and lacks curative treatment, as the underlying molecular basis is unclear. Here, we show that DOT1L, an enzyme involved in histone methylation, is a master protector of cartilage health. Loss of DOT1L disrupts the molecular signature of healthy chondrocytes in vitro and causes osteoarthritis in mice. Mechanistically, the protective function of DOT1L is attributable to inhibition of Wnt signalling, a pathway that when hyper-activated can lead to joint disease. Unexpectedly, DOT1L suppresses Wnt signalling by inhibiting the activity of sirtuin-1 (SIRT1), an important regulator of gene transcription. Inhibition of SIRT1 protects against osteoarthritis triggered by loss of DOT1L activity. Modulating the DOT1L network might therefore be a therapeutic approach to protect the cartilage against osteoarthritis.
Collapse
|
19
|
Abstract
DNA double strand breaks need to be repaired in an organized fashion to preserve genomic integrity. In the organization of faithful repair, histone ubiquitination plays a crucial role. Recent findings suggest an integrated model for DNA repair regulation through site-specific histone ubiquitination and crosstalk to other posttranslational modifications. Here we discuss how site-specific histone ubiquitination is achieved on a molecular level and how different multi-protein complexes work together to integrate different histone ubiquitination states. We propose a model where site-specific H2A ubiquitination organizes the spatio-temporal recruitment of DNA repair factors which will ultimately contribute to DNA repair pathway choice between homologous recombination and non-homologous end joining.
Collapse
Affiliation(s)
- Michael Uckelmann
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Vlaming H, Molenaar TM, van Welsem T, Poramba-Liyanage DW, Smith DE, Velds A, Hoekman L, Korthout T, Hendriks S, Altelaar AFM, van Leeuwen F. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1. eLife 2016; 5. [PMID: 27922451 PMCID: PMC5179194 DOI: 10.7554/elife.18919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features. DOI:http://dx.doi.org/10.7554/eLife.18919.001 To fit into the nucleus of eukaryotic cells (which include plant, animal and yeast cells), DNA wraps around histone proteins to form a structure called chromatin. Histones can be modified by a variety of chemical tags, which affect how easily nearby DNA can be accessed by other molecules in the cell. These modifications therefore help to control the activity of the genes encoded in the DNA and other key processes such as DNA repair. If histone modifications are not regulated correctly, diseases such as cancer may result. Enzymes generally perform the actual modification, but there is another layer of regulation that controls the activity of these enzymes that not much is known about. The activity of an enzyme that performs a histone modification known as H3K79 methylation (which involves a methyl chemical group being added to a particular region of a particular histone protein) has been linked to some forms of leukemia. Collections of mutant yeast cells can be used to identify the factors that regulate histone modifications in both yeast and human cells. However, current methods that screen for these regulators are time consuming. To make the search for histone modification regulators more efficient, Vlaming et al. developed a new screening procedure called Epi-ID that can measure the amount of a specific histone modification in thousands of budding yeast mutants at the same time. In Epi-ID, each mutant yeast cell has a unique DNA sequence, or “barcode”. The mutant cells are mixed together and the barcodes that are modified by a particular histone modification – such as H3K79 methylation – are isolated and then counted using a DNA sequencing technique. A high barcode count of a certain mutant indicates that more of the histone modification occurs in that mutant. Using Epi-ID to survey H3K79 methylation enabled Vlaming et al. to successfully identify all previously known H3K79 methylation regulators, as well several new ones. These new regulators included enzymes that deposit histones on DNA, that carry out DNA repair, and that modify or de-modify histone proteins. To move forward with the newly identified regulators, it will be important to analyze how they control H3K79 methylation in yeast cells and to determine whether the regulators also control H3K79 methylation in human cells. Finally, Epi-ID can be used to identify regulators of other types of histone modifications. A better understanding of chromatin regulation – and H3K79 methylation regulation in particular – can increase our understanding of diseases in which chromatin is deregulated, and may yield new strategies for the treatment of such diseases. DOI:http://dx.doi.org/10.7554/eLife.18919.002
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thom M Molenaar
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Desiree E Smith
- Department of Clinical Chemistry, Metabolic Laboratory, VU University Medical Center, Amsterdam, Netherlands
| | - Arno Velds
- Central Genomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sjoerd Hendriks
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - A F Maarten Altelaar
- Mass Spectrometry/Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
21
|
Zhou L, Holt MT, Ohashi N, Zhao A, Müller MM, Wang B, Muir TW. Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation. Nat Commun 2016; 7:10589. [PMID: 26830124 PMCID: PMC4740876 DOI: 10.1038/ncomms10589] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
Ubiquitylation of histone H2B at lysine 120 (H2B-Ub), a post-translational modification first discovered in 1980, plays a critical role in diverse nuclear processes including the regulation of transcription and DNA damage repair. Herein, we use a suite of protein chemistry methods to explore how H2B-Ub stimulates hDot1L-mediated methylation of histone H3 on lysine 79 (H3K79me). By using semisynthetic 'designer' chromatin containing H2B-Ub bearing a site-specifically installed photocrosslinker, here we report an interaction between a functional hotspot on ubiquitin and the N-terminus of histone H2A. Our biochemical studies indicate that this interaction is required for stimulation of hDot1L activity and leads to a repositioning of hDot1L on the nucleosomal surface, which likely places the active site of the enzyme proximal to H3K79. Collectively, our data converge on a possible mechanism for hDot1L stimulation in which H2B-Ub physically 'corrals' the enzyme into a productive binding orientation.
Collapse
Affiliation(s)
- Linjiao Zhou
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Matthew T Holt
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, 10065 New York, USA
| | - Nami Ohashi
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Aishan Zhao
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Manuel M Müller
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Boyuan Wang
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA.,Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, 10065 New York, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| |
Collapse
|
22
|
Vlaming H, van Leeuwen F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma 2016; 125:593-605. [PMID: 26728620 DOI: 10.1007/s00412-015-0570-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022]
Abstract
Histone modifications regulate key processes of eukaryotic genomes. Misregulation of the enzymes that place these modifications can lead to disease. An example of this is DOT1L, the enzyme that can mono-, di-, and trimethylate the nucleosome core on lysine 79 of histone H3 (H3K79). DOT1L plays a role in development and its misregulation has been implicated in several cancers, most notably leukemias caused by a rearrangement of the MLL gene. A DOT1L inhibitor is in clinical trials for these leukemias and shows promising results, yet we are only beginning to understand DOT1L's function and regulation in the cell. Here, we review what happens upstream and downstream of H3K79 methylation. H3K79 methylation levels are highest in transcribed genes, where H2B ubiquitination can promote DOT1L activity. In addition, DOT1L can be targeted to transcribed regions of the genome by several of its interaction partners. Although methylation levels strongly correlate with transcription, the mechanistic link between the two is unclear and probably context-dependent. Methylation of H3K79 may act through recruiting or repelling effector proteins, but we do not yet know which effectors mediate DOT1L's functions. Understanding DOT1L biology better will help us to understand the effects of DOT1L inhibitors and may allow the development of alternative strategies to target the DOT1L pathway.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
23
|
Abstract
DNA in human cells is constantly assaulted by endogenous and exogenous DNA damaging agents. It is vital for the cell to respond rapidly and precisely to DNA damage to maintain genome integrity and reduce the risk of mutagenesis. Sophisticated reactions occur in chromatin surrounding the damaged site leading to the activation of DNA damage response (DDR), including transcription reprogramming, cell cycle checkpoint, and DNA repair. Histone proteins around the DNA damage play essential roles in DDR, through extensive post-translational modifications (PTMs) by a variety of modifying enzymes. One PTM on histones, mono-ubiquitylation, has emerged as a key player in cellular response to DNA damage. In this review, we will (1) briefly summarize the history of histone H2A and H2B ubiquitylation (H2Aub and H2Bub, respectively), (2) discuss their roles in transcription, and (3) their functions in DDR.
Collapse
|
24
|
Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc Natl Acad Sci U S A 2015; 112:10365-70. [PMID: 26240340 DOI: 10.1073/pnas.1504483112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitylation of histone H2B at lysine 120 (H2B-Ub) plays a critical role in transcriptional elongation, chromatin conformation, as well as the regulation of specific histone H3 methylations. Herein, we report a strategy for the site-specific chemical attachment of ubiquitin to preassembled nucleosomes. This allowed expedited structure-activity studies into how H2B-Ub regulates H3K79 methylation by the methyltransferase human Dot1. Through an alanine scan of the ubiquitin surface, we identified a functional hotspot on ubiquitin that is required for the stimulation of human Dot1 in vitro. Importantly, this result was validated in chromatin from isolated nuclei by using a synthetic biology strategy that allowed selective incorporation of the hotspot-deficient ubiquitin mutant into H2B. The ubiquitin hotspot additionally impacted the regulation of ySet1-mediated H3K4 methylation but was not required for H2B-Ub-induced impairment of chromatin fiber compaction. These data demonstrate the utility of applying chemical ligation technologies to preassembled chromatin and delineate the multifunctionality of ubiquitin as a histone posttranslational modification.
Collapse
|
25
|
Kadakol A, Malek V, Goru SK, Pandey A, Gaikwad AB. Esculetin reverses histone H2A/H2B ubiquitination, H3 dimethylation, acetylation and phosphorylation in preventing type 2 diabetic cardiomyopathy. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
26
|
Jung I, Park J, Choi C, Kim D. Identification of novel trans-crosstalk between histone modifications via genome-wide analysis of maximal deletion effect. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Stulemeijer IJE, De Vos D, van Harten K, Joshi OK, Blomberg O, van Welsem T, Terweij M, Vlaming H, de Graaf EL, Altelaar AFM, Bakker BM, van Leeuwen F. Dot1 histone methyltransferases share a distributive mechanism but have highly diverged catalytic properties. Sci Rep 2015; 5:9824. [PMID: 25965993 PMCID: PMC4650758 DOI: 10.1038/srep09824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 11/17/2022] Open
Abstract
The conserved histone methyltransferase Dot1 establishes an H3K79 methylation pattern
consisting of mono-, di- and trimethylation states on histone H3 via a distributive
mechanism. This mechanism has been shown to be important for the regulation of the
different H3K79 methylation states in yeast. Dot1 enzymes in yeast, Trypanosoma
brucei (TbDot1A and TbDot1B, which methylate H3K76) and human (hDot1L)
generate very divergent methylation patterns. To understand how these
species-specific methylation patterns are generated, the methylation output of the
Dot1 enzymes was compared by expressing them in yeast at various expression levels.
Computational simulations based on these data showed that the Dot1 enzymes have
highly distinct catalytic properties, but share a distributive mechanism. The
mechanism of methylation and the distinct rate constants have implications for the
regulation of H3K79/K76 methylation. A mathematical model of H3K76 methylation
during the trypanosome cell cycle suggests that temporally-regulated consecutive
action of TbDot1A and TbDot1B is required for the observed regulation of H3K76
methylation states.
Collapse
Affiliation(s)
- Iris J E Stulemeijer
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Dirk De Vos
- Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Kirsten van Harten
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Onkar K Joshi
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Olga Blomberg
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Marit Terweij
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Erik L de Graaf
- Biomolecular Mass Spectrometry and Proteomics Group, The Netherlands Proteomics Centre, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics Group, The Netherlands Proteomics Centre, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, Systems Biology Centre for Energy Metabolism and Ageing, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
28
|
Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat Chem 2015; 7:394-402. [PMID: 25901817 PMCID: PMC4617616 DOI: 10.1038/nchem.2224] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/27/2015] [Indexed: 12/12/2022]
Abstract
Post-translational modification of the histone proteins in chromatin plays a central role in epigenetic control of DNA-templated processes in eukaryotic cells. Developing methods that enable the structure of histones to be manipulated is therefore essential to understand the biochemical mechanisms underlying genomic regulation. Here we present a synthetic biology method to engineer histones bearing site-specific modifications on cellular chromatin using protein trans-splicing. We genetically fused the N-terminal fragment of ultrafast split-intein to the C-terminus of histone H2B, which upon reaction with a complementary synthetic C-intein, generated labeled histone. Using this approach, we incorporated various non-native chemical modifications to chromatin in vivo with temporal control. Furthermore, the time and concentration dependence of protein trans-splicing performed in nucleo enabled us to examine differences in the accessibility of the euchromatin and heterochromatin regions of the epigenome. Finally, we used protein trans-splicing to semi-synthesize a native histone modification, H2BK120 ubiquitination, in isolated nuclei, and show that this can trigger downstream epigenetic cross-talk of H3K79 methylation.
Collapse
|