1
|
Zhang Z, Gao Z, Fang H, Zhao Y, Xing R. Therapeutic importance and diagnostic function of circRNAs in urological cancers: from metastasis to drug resistance. Cancer Metastasis Rev 2024; 43:867-888. [PMID: 38252399 DOI: 10.1007/s10555-023-10152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Circular RNAs (circRNAs) are a member of non-coding RNAs with no ability in encoding proteins and their aberrant dysregulation is observed in cancers. Their closed-loop structure has increased their stability, and they are reliable biomarkers for cancer diagnosis. Urological cancers have been responsible for high mortality and morbidity worldwide, and developing new strategies in their treatment, especially based on gene therapy, is of importance since these malignant diseases do not respond to conventional therapies. In the current review, three important aims are followed. At the first step, the role of circRNAs in increasing or decreasing the progression of urological cancers is discussed, and the double-edged sword function of them is also highlighted. At the second step, the interaction of circRNAs with molecular targets responsible for urological cancer progression is discussed, and their impact on molecular processes such as apoptosis, autophagy, EMT, and MMPs is highlighted. Finally, the use of circRNAs as biomarkers in the diagnosis and prognosis of urological cancer patients is discussed to translate current findings in the clinic for better treatment of patients. Furthermore, since circRNAs can be transferred to tumor via exosomes and the interactions in tumor microenvironment provided by exosomes such as between macrophages and cancer cells is of importance in cancer progression, a separate section has been devoted to the role of exosomal circRNAs in urological tumors.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China.
| | - Zhixu Gao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Huimin Fang
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Rong Xing
- Chengde Medical College, Chengde, 067000, Hebei, China
| |
Collapse
|
2
|
Bergez-Hernández F, Irigoyen-Arredondo M, Martínez-Camberos A. A systematic review of mechanisms of PTEN gene down-regulation mediated by miRNA in prostate cancer. Heliyon 2024; 10:e34950. [PMID: 39144981 PMCID: PMC11320309 DOI: 10.1016/j.heliyon.2024.e34950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The Phosphatase and Tensin Homolog gene (PTEN) is pivotal in regulating diverse cellular processes, including growth, differentiation, proliferation, and cell survival, mainly by modulating the PI3K/AKT/mTOR pathway. Alterations in the expression of the PTEN gene have been associated with epigenetic mechanisms, particularly the regulation by small non-coding RNAs, such as miRNAs. Modifications in the expression levels of miRNAs that control PTEN have been shown to lead to its underexpression. This underexpression, in turn, impacts the PI3K/AKT/mTOR pathway, thereby influencing crucial mechanisms like proliferation and apoptosis, playing an important role in the initiation and progression of prostate cancer (PCa). Thus, we aimed to systematically reviewed available information concerning the regulation of PTEN mediated by miRNA in PCa. Methods Electronic databases were searched to identify studies assessing PTEN regulation via PCa miRNAs, the search included combination of the words microRNAs, PTEN and prostatic neoplasms. The quality assessment of the articles included was carried out using an adapted version of SYRCLE and CASP tool. Results We included 39 articles that measured the relative gene expression of miRNAs in PCa and their relationship with PTEN regulation. A total of 42 miRNAs were reported involved in the development and progression of PCa via PTEN dysregulation (34 miRNAs up-regulated and eight miRNAs down-regulated). Sixteen miRNAs were shown as the principal regulators for genetic interactions leading to carcinogenesis, being the miR-21 the most reported in PCa associated with PTEN down-regulation. We showed the silencing of PTEN could be promoted by a loop between miR-200b and DNMT1 or by direct targeting of PTEN by microRNAs, leading to the constitutive activation of PI3K/AKT/mTOR and interactions with intermediary genes support apoptosis inhibition, proliferation, invasion, and metastasis in PCa. Conclusion According to our review, dysregulation of PTEN mediated mainly by miR-21, -20a, -20b, -93, -106a, and -106b up-regulation has a central role in PCa development and could be potential biomarkers for diagnosis, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
| | | | - Alejandra Martínez-Camberos
- Laboratorio de Biomedicina y Biología Molecular. Lic. en Ciencias Biomédicas, Universidad Autónoma de Occidente. Av del Mar 1200, Tellerías, 82100, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
3
|
Sáez-Martínez P, Porcel-Pastrana F, Montero-Hidalgo AJ, Lozano de la Haba S, Sanchez-Sanchez R, González-Serrano T, Gómez-Gómez E, Martínez-Fuentes AJ, Jiménez-Vacas JM, Gahete MD, Luque RM. Dysregulation of RNA-Exosome machinery is directly linked to major cancer hallmarks in prostate cancer: Oncogenic role of PABPN1. Cancer Lett 2024; 584:216604. [PMID: 38244911 DOI: 10.1016/j.canlet.2023.216604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
Novel biomarkers and therapeutic strategies for prostate-cancer (PCa) are required to overcome its lethal progression. The dysregulation/implication of the RNA-Exosome-complex (REC; cellular machinery controlling the 3'-5'processing/degradation of most RNAs) in different cancer-types, including PCa, is poorly known. Herein, different cellular/molecular/preclinical approaches with human PCa-samples (tissues and/or plasma of 7 independent cohorts), and in-vitro/in-vivo PCa-models were used to comprehensively characterize the REC-profile and explore its role in PCa. Moreover, isoginkgetin (REC-inhibitor) effects were evaluated on PCa-cells. We demonstrated a specific dysregulation of the REC-components in PCa-tissues, identifying the Poly(A)-Binding-Protein-Nuclear 1 (PABPN1) factor as a critical regulator of major cancer hallmarks. PABPN1 is consistently overexpressed in different human PCa-cohorts and associated with poor-progression, invasion and metastasis. PABPN1 silencing decreased relevant cancer hallmarks in multiple PCa-models (proliferation/migration/tumourspheres/colonies, etc.) through the modulation of key cancer-related lncRNAs (PCA3/FALEC/DLEU2) and mRNAs (CDK2/CDK6/CDKN1A). Plasma PABPN1 levels were altered in patients with metastatic and tumour-relapse. Finally, pharmacological inhibition of REC-activity drastically inhibited PCa-cell aggressiveness. Altogether, the REC is drastically dysregulated in PCa, wherein this novel molecular event/mechanism, especially PABPN1 alteration, may be potentially exploited as a novel prognostic and therapeutic tool for PCa.
Collapse
Affiliation(s)
- Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Samanta Lozano de la Haba
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rafael Sanchez-Sanchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | | | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
4
|
MicroRNAs as Guardians of the Prostate: Those Who Stand before Cancer. What Do We Really Know about the Role of microRNAs in Prostate Biology? Int J Mol Sci 2020; 21:ijms21134796. [PMID: 32645914 PMCID: PMC7370012 DOI: 10.3390/ijms21134796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related deaths of men in the Western world. Despite recent advancement in genomics, transcriptomics and proteomics to understand prostate cancer biology and disease progression, castration resistant metastatic prostate cancer remains a major clinical challenge and often becomes incurable. MicroRNAs (miRNAs), about 22-nucleotide-long non-coding RNAs, are a group of regulatory molecules that mainly work through post-transcriptional gene silencing via translational repression. Expression analysis studies have revealed that miRNAs are aberrantly expressed in cancers and have been recognized as regulators of prostate cancer progression. In this critical review, we provide an analysis of reported miRNA functions and conflicting studies as they relate to expression levels of specific miRNAs and prostate cancer progression; oncogenic and/or tumor suppressor roles; androgen receptor signaling; epithelial plasticity; and the current status of diagnostic and therapeutic applications. This review focuses on select miRNAs, highly expressed in normal and cancer tissue, to emphasize the current obstacles faced in utilizing miRNA data for significant impacts on prostate cancer therapeutics.
Collapse
|
5
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
6
|
Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development 2017; 144:3731-3743. [PMID: 28935707 DOI: 10.1242/dev.151654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
The vertebrate-specific ESCC microRNA family arises from two genetic loci in mammals: miR-290/miR-371 and miR-302. The miR-302 locus is found broadly among vertebrates, whereas the miR-290/miR-371 locus is unique to eutheria, suggesting a role in placental development. Here, we evaluate that role. A knock-in reporter for the mouse miR-290 cluster is expressed throughout the embryo until gastrulation, when it becomes specifically expressed in extraembryonic tissues and the germline. In the placenta, expression is limited to the trophoblast lineage, where it remains highly expressed until birth. Deletion of the miR-290 cluster gene (Mirc5) results in reduced trophoblast progenitor cell proliferation and a reduced DNA content in endoreduplicating trophoblast giant cells. The resulting placenta is reduced in size. In addition, the vascular labyrinth is disorganized, with thickening of the maternal-fetal blood barrier and an associated reduction in diffusion. Multiple mRNA targets of the miR-290 cluster microRNAs are upregulated. These data uncover a crucial function for the miR-290 cluster in the regulation of a network of genes required for placental development, suggesting a central role for these microRNAs in the evolution of placental mammals.
Collapse
Affiliation(s)
- Alireza Paikari
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Cassandra D Belair
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Daniel Saw
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA .,Department of Urology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Kumar B, Lupold SE. MicroRNA expression and function in prostate cancer: a review of current knowledge and opportunities for discovery. Asian J Androl 2017; 18:559-67. [PMID: 27056344 PMCID: PMC4955179 DOI: 10.4103/1008-682x.177839] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are well-conserved noncoding RNAs that broadly regulate gene expression through posttranscriptional silencing of coding genes. Dysregulated miRNA expression in prostate and other cancers implicates their role in cancer biology. Moreover, functional studies provide support for the contribution of miRNAs to several key pathways in cancer initiation and progression. Comparative analyses of miRNA gene expression between malignant and nonmalignant prostate tissues, healthy controls and prostate cancer (PCa) patients, as well as less aggressive versus more aggressive disease indicate that miRNAs may be future diagnostic or prognostic biomarkers in tumor tissue, blood, or urine. Further, miRNAs may be future therapeutics or therapeutic targets. In this review, we examine the miRNAs most commonly observed to be de-regulated in PCa gene expression analyses and review the potential contribution of these miRNAs to important pathways in PCa initiation and progression.
Collapse
Affiliation(s)
- Binod Kumar
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Zhu C, Chen C, Chen R, Deng R, Zhao X, Zhang H, Duo J, Chen Q, Jin H, Wang Y, Huang J, Xu M, Yu J. K259-SUMOylation of DGCR8 promoted by p14ARF exerts a tumor-suppressive function. J Mol Cell Biol 2016; 8:456-458. [PMID: 27436753 DOI: 10.1093/jmcb/mjw030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Changhong Zhu
- Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai201999, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Cheng Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Jinzhuo Duo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Qin Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Hui Jin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Ming Xu
- Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai201999, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China
| | - Jianxiu Yu
- Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai201999, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai200025, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|
9
|
MicroRNAs as Biomarkers for Diagnosis, Prognosis and Theranostics in Prostate Cancer. Int J Mol Sci 2016; 17:421. [PMID: 27011184 PMCID: PMC4813272 DOI: 10.3390/ijms17030421] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) includes several phenotypes, from indolent to highly aggressive cancer. Actual diagnostic and prognostic tools have several limitations, and there is a need for new biomarkers to stratify patients and assign them optimal therapies by taking into account potential genetic and epigenetic differences. MicroRNAs (miRNAs) are small sequences of non-coding RNA regulating specific genes involved in the onset and development of PC. Stable miRNAs have been found in biofluids, such as serum and plasma; thus, the measurement of PC-associated miRNAs is emerging as a non-invasive tool for PC detection and monitoring. In this study, we conduct an in-depth literature review focusing on miRNAs that may contribute to the diagnosis and prognosis of PC. The role of miRNAs as a potential theranostic tool in PC is discussed. Using a meta-analysis approach, we found a group of 29 miRNAs with diagnostic properties and a group of seven miRNAs with prognostic properties, which were found already expressed in both biofluids and PC tissues. We tested the two miRNA groups on The Cancer Genome Atlas dataset of PC tissue samples with a machine-learning approach. Our results suggest that these 29 miRNAs should be considered as potential panel of biomarkers for the diagnosis of PC, both as in vivo non-invasive test and ex vivo confirmation test.
Collapse
|