1
|
Wan Y, Guo S, Zhen W, Xu L, Chen X, Liu F, Shen Y, Liu S, Hu L, Wang X, Ye F, Wang Q, Wen H, Yang F. Structural basis of adenine nucleotides regulation and neurodegenerative pathology in ClC-3 exchanger. Nat Commun 2024; 15:6654. [PMID: 39107281 PMCID: PMC11303396 DOI: 10.1038/s41467-024-50975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The ClC-3 chloride/proton exchanger is both physiologically and pathologically critical, as it is potentiated by ATP to detect metabolic energy level and point mutations in ClC-3 lead to severe neurodegenerative diseases in human. However, why this exchanger is differentially modulated by ATP, ADP or AMP and how mutations caused gain-of-function remains largely unknow. Here we determine the high-resolution structures of dimeric wildtype ClC-3 in the apo state and in complex with ATP, ADP and AMP, and the disease-causing I607T mutant in the apo and ATP-bounded state by cryo-electron microscopy. In combination with patch-clamp recordings and molecular dynamic simulations, we reveal how the adenine nucleotides binds to ClC-3 and changes in ion occupancy between apo and ATP-bounded state. We further observe I607T mutation induced conformational changes and augments in current. Therefore, our study not only lays the structural basis of adenine nucleotides regulation in ClC-3, but also clearly indicates the target region for drug discovery against ClC-3 mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yangzhuoqun Wan
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Shuangshuang Guo
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Wenxuan Zhen
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Lizhen Xu
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Xiaoying Chen
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Fangyue Liu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuangshuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | | | | | | | - Han Wen
- DP Technology, Beijing, China.
- Institute for Advanced Algorithms Research, Shanghai, China.
- State Key Laboratory of Medical Proteomics, Shanghai, China.
- AI for Science Institute, Beijing, China.
- National Key Laboratory of Lead Druggability Research, Beijing, China.
| | - Fan Yang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Xu M, Neelands T, Powers AS, Liu Y, Miller SD, Pintilie GD, Bois JD, Dror RO, Chiu W, Maduke M. CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-and-chain gating mechanism. eLife 2024; 12:RP90648. [PMID: 38345841 PMCID: PMC10942593 DOI: 10.7554/elife.90648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct conformations involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway. This peptide is highly conserved among species variants of CLC-2 but is not present in other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Torben Neelands
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Alexander S Powers
- Department of Chemistry, Stanford UniversityStanfordUnited States
- Department of Computer Science, Stanford UniversityStanfordUnited States
- Department of Structural Biology, Stanford UniversityStanfordUnited States
- Institute for Computational and Mathematical Engineering, Stanford UniversityStanfordUnited States
| | - Yan Liu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford UniversityStanfordUnited States
| | - Steven D Miller
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Grigore D Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - J Du Bois
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Department of Computer Science, Stanford UniversityStanfordUnited States
- Department of Structural Biology, Stanford UniversityStanfordUnited States
- Institute for Computational and Mathematical Engineering, Stanford UniversityStanfordUnited States
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford UniversityStanfordUnited States
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| |
Collapse
|
3
|
Xu M, Neelands T, Powers AS, Liu Y, Miller SD, Pintilie G, Bois JD, Dror RO, Chiu W, Maduke M. CryoEM structures of the human CLC-2 voltage gated chloride channel reveal a ball and chain gating mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553136. [PMID: 37645939 PMCID: PMC10462068 DOI: 10.1101/2023.08.13.553136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different mammalian tissues and cell types. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating mechanisms among closely related CLC homologs has been a long-standing mystery, in part because few CLC channel structures are available, and those that exist exhibit high conformational similarity. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the potent and selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct apo conformations of CLC-2 involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway from the intracellular side. This peptide is highly conserved among species variants of CLC-2 but is not present in any other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we show that loss of this short sequence increases the magnitude and decreases the rectification of CLC-2 currents expressed in mammalian cells. Furthermore, we show that with repetitive hyperpolarization WT CLC-2 currents increase in resemblance to the hairpin-deleted CLC-2 currents. These functional results combined with our structural data support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Torben Neelands
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Alexander S. Powers
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305
| | - Yan Liu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park 94025
| | - Steven D. Miller
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Grigore Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford University, Stanford, 94305
| | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Ron O. Dror
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park 94025
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford University, Stanford, 94305
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
4
|
Zhang B, Zhang S, Polovitskaya MM, Yi J, Ye B, Li R, Huang X, Yin J, Neuens S, Balfroid T, Soblet J, Vens D, Aeby A, Li X, Cai J, Song Y, Li Y, Tartaglia M, Li Y, Jentsch TJ, Yang M, Liu Z. Molecular basis of ClC-6 function and its impairment in human disease. SCIENCE ADVANCES 2023; 9:eadg4479. [PMID: 37831762 PMCID: PMC10575590 DOI: 10.1126/sciadv.adg4479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
ClC-6 is a late endosomal voltage-gated chloride-proton exchanger that is predominantly expressed in the nervous system. Mutated forms of ClC-6 are associated with severe neurological disease. However, the mechanistic role of ClC-6 in normal and pathological states remains largely unknown. Here, we present cryo-EM structures of ClC-6 that guided subsequent functional studies. Previously unrecognized ATP binding to cytosolic ClC-6 domains enhanced ion transport activity. Guided by a disease-causing mutation (p.Y553C), we identified an interaction network formed by Y553/F317/T520 as potential hotspot for disease-causing mutations. This was validated by the identification of a patient with a de novo pathogenic variant p.T520A. Extending these findings, we found contacts between intramembrane helices and connecting loops that modulate the voltage dependence of ClC-6 gating and constitute additional candidate regions for disease-associated gain-of-function mutations. Besides providing insights into the structure, function, and regulation of ClC-6, our work correctly predicts hotspots for CLCN6 mutations in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bing Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Maya M. Polovitskaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | - Jingbo Yi
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Binglu Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Ruochong Li
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Sebastian Neuens
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Balfroid
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Daphné Vens
- Pediatric Intensive Care Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alec Aeby
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xiaoling Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Jinjin Cai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Yingcai Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Yuanxi Li
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, 200237 Shanghai, China
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Yang Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
- Cryo-EM Facility Center, Southern University of Science & Technology, 518055 Shenzhen, Guangdong, China
| | - Zhiqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| |
Collapse
|
5
|
Yang Z, Zhang X, Ye S, Zheng J, Huang X, Yu F, Chen Z, Cai S, Zhang P. Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids. Nat Commun 2023; 14:4879. [PMID: 37573431 PMCID: PMC10423218 DOI: 10.1038/s41467-023-40624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Chloride channels (CLCs) transport anion across membrane to regulate ion homeostasis and acidification of intracellular organelles, and are divided into anion channels and anion/proton antiporters. Arabidopsis thaliana CLCa (AtCLCa) transporter localizes to the tonoplast which imports NO3- and to a less extent Cl- from cytoplasm. The activity of AtCLCa and many other CLCs is regulated by nucleotides and phospholipids, however, the molecular mechanism remains unclear. Here we determine the cryo-EM structures of AtCLCa bound with NO3- and Cl-, respectively. Both structures are captured in ATP and PI(4,5)P2 bound conformation. Structural and electrophysiological analyses reveal a previously unidentified N-terminal β-hairpin that is stabilized by ATP binding to block the anion transport pathway, thereby inhibiting the AtCLCa activity. While AMP loses the inhibition capacity due to lack of the β/γ- phosphates required for β-hairpin stabilization. This well explains how AtCLCa senses the ATP/AMP status to regulate the physiological nitrogen-carbon balance. Our data further show that PI(4,5)P2 or PI(3,5)P2 binds to the AtCLCa dimer interface and occupies the proton-exit pathway, which may help to understand the inhibition of AtCLCa by phospholipids to facilitate guard cell vacuole acidification and stomatal closure. In a word, our work suggests the regulatory mechanism of AtCLCa by nucleotides and phospholipids under certain physiological scenarios and provides new insights for future study of CLCs.
Collapse
Affiliation(s)
- Zhao Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shiwei Ye
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuronscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingtao Zheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaowei Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fang Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenguo Chen
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Shiqing Cai
- Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuronscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
6
|
Subba A, Tomar S, Pareek A, Singla-Pareek SL. The chloride channels: Silently serving the plants. PHYSIOLOGIA PLANTARUM 2021; 171:688-702. [PMID: 33034380 DOI: 10.1111/ppl.13240] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 05/12/2023]
Abstract
Chloride channels (CLCs), member of anion transporting proteins, are present ubiquitously in all life forms. Diverging from its name, the CLC family includes both channel and exchanger (proton-coupled) proteins; nevertheless, they share conserved structural organization. They are engaged in diverse indispensable functions such as acid and fluoride tolerance in prokaryotes to muscle stabilization, transepithelial transport, and neuronal development in mammals. Mutations in genes encoding CLCs lead to several physiological disorders in different organisms, including severe diseases in humans. Even in plants, loss of CLC protein function severely impairs various cellular processes critical for normal growth and development. These proteins sequester Cl- into the vacuole, thus, making them an attractive target for improving salinity tolerance in plants caused by high abundance of salts, primarily NaCl. Besides, some CLCs are involved in NO3 - transport and storage function in plants, thus, influencing their nitrogen use efficiency. However, despite their high significance, not many studies have been carried out in plants. Here, we have attempted to concisely highlight the basic structure of CLC proteins and critical residues essential for their function and classification. We also present the diverse functions of CLCs in plants from their first cloning back in 1996 to the knowledge acquired as of now. We stress the need for carrying out more in-depth studies on CLCs in plants, for they may have future applications towards crop improvement.
Collapse
Affiliation(s)
- Ashish Subba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Surabhi Tomar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
7
|
Bose S, He H, Stauber T. Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. Front Cell Dev Biol 2021; 9:639231. [PMID: 33708769 PMCID: PMC7940362 DOI: 10.3389/fcell.2021.639231] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
The regulation of luminal ion concentrations is critical for the function of, and transport between intracellular organelles. The importance of the acidic pH in the compartments of the endosomal-lysosomal pathway has been well-known for decades. Besides the V-ATPase, which pumps protons into their lumen, a variety of ion transporters and channels is involved in the regulation of the organelles' complex ion homeostasis. Amongst these are the intracellular members of the CLC family, ClC-3 through ClC-7. They localize to distinct but overlapping compartments of the endosomal-lysosomal pathway, partially with tissue-specific expression. Functioning as 2Cl−/H+ exchangers, they can support the vesicular acidification and accumulate luminal Cl−. Mutations in the encoding genes in patients and mouse models underlie severe phenotypes including kidney stones with CLCN5 and osteopetrosis or hypopigmentation with CLCN7. Dysfunction of those intracellular CLCs that are expressed in neurons lead to neuronal defects. Loss of endosomal ClC-3, which heteromerizes with ClC-4, results in neurodegeneration. Mutations in ClC-4 are associated with epileptic encephalopathy and intellectual disability. Mice lacking the late endosomal ClC-6 develop a lysosomal storage disease with reduced pain sensitivity. Human gene variants have been associated with epilepsy, and a gain-of-function mutation causes early-onset neurodegeneration. Dysfunction of the lysosomal ClC-7 leads to a lysosomal storage disease and neurodegeneration in mice and humans. Reduced luminal chloride, as well as altered calcium regulation, has been associated with lysosomal storage diseases in general. This review discusses the properties of endosomal and lysosomal Cl−/H+ exchange by CLCs and how various alterations of ion transport by CLCs impact organellar ion homeostasis and function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Shroddha Bose
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hailan He
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Shipman KE, Weisz OA. Making a Dent in Dent Disease. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa017. [PMID: 33015630 PMCID: PMC7519470 DOI: 10.1093/function/zqaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
Dent disease (DD) is a rare kidney disorder caused by mutations in the Cl-/H+ exchanger ClC-5. Extensive physiologic characterization of the transporter has begun to illuminate its role in endosomal ion homeostasis. Nevertheless, we have yet to understand how loss of ClC-5 function in the kidney proximal tubule impairs membrane traffic of megalin and cubilin receptors to cause the low molecular weight proteinuria characteristic of DD. This review identifies open questions that remain to be answered, evaluates the current literature addressing these questions, and suggests new testable models that may link loss of ClC-5 function to tubular proteinuria in DD.
Collapse
Affiliation(s)
- Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Address correspondence to O.A.W. (e-mail: )
| |
Collapse
|
9
|
Schrecker M, Korobenko J, Hite RK. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. eLife 2020; 9:e59555. [PMID: 32749217 PMCID: PMC7440919 DOI: 10.7554/elife.59555] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
The chloride-proton exchanger CLC-7 plays critical roles in lysosomal homeostasis and bone regeneration and its mutation can lead to osteopetrosis, lysosomal storage disease and neurological disorders. In lysosomes and the ruffled border of osteoclasts, CLC-7 requires a β-subunit, OSTM1, for stability and activity. Here, we present electron cryomicroscopy structures of CLC-7 in occluded states by itself and in complex with OSTM1, determined at resolutions up to 2.8 Å. In the complex, the luminal surface of CLC-7 is entirely covered by a dimer of the heavily glycosylated and disulfide-bonded OSTM1, which serves to protect CLC-7 from the degradative environment of the lysosomal lumen. OSTM1 binding does not induce large-scale rearrangements of CLC-7, but does have minor effects on the conformation of the ion-conduction pathway, potentially contributing to its regulatory role. These studies provide insights into the role of OSTM1 and serve as a foundation for understanding the mechanisms of CLC-7 regulation.
Collapse
Affiliation(s)
- Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Julia Korobenko
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
10
|
Grieschat M, Guzman RE, Langschwager K, Fahlke C, Alekov AK. Metabolic energy sensing by mammalian CLC anion/proton exchangers. EMBO Rep 2020; 21:e47872. [PMID: 32390228 PMCID: PMC7271328 DOI: 10.15252/embr.201947872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
CLC anion/proton exchangers control the pH and [Cl- ] of the endolysosomal system that is essential for cellular nutrient uptake. Here, we use heterologous expression and whole-cell electrophysiology to investigate the regulation of the CLC isoforms ClC-3, ClC-4, and ClC-5 by the adenylic system components ATP, ADP, and AMP. Our results show that cytosolic ATP and ADP but not AMP and Mg2+ -free ADP enhance CLC ion transport. Biophysical analysis reveals that adenine nucleotides alter the ratio between CLC ion transport and CLC gating charge and shift the CLC voltage-dependent activation. The latter effect is suppressed by blocking the intracellular entrance of the proton transport pathway. We suggest, therefore, that adenine nucleotides regulate the internal proton delivery into the CLC transporter machinery and alter the probability of CLC transporters to undergo silent non-transporting cycles. Our findings suggest that the CBS domains in mammalian CLC transporters serve as energy sensors that regulate vesicular Cl- /H+ exchange by detecting changes in the cytosolic ATP/ADP/AMP equilibrium. Such sensing mechanism links the endolysosomal activity to the cellular metabolic state.
Collapse
Affiliation(s)
| | - Raul E Guzman
- Institute of Complex SystemsZelluläre Biophysik (ICS‐4), Forschungszentrum JülichJülichGermany
| | | | - Christoph Fahlke
- Institute of Complex SystemsZelluläre Biophysik (ICS‐4), Forschungszentrum JülichJülichGermany
| | - Alexi K Alekov
- Institute of NeurophysiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|