1
|
Yuan F, Gollapudi S, Day KJ, Ashby G, Sangani A, Malady BT, Wang L, Lafer EM, Huibregtse JM, Stachowiak JC. Ubiquitin-driven protein condensation stabilizes clathrin-mediated endocytosis. PNAS NEXUS 2024; 3:pgae342. [PMID: 39253396 PMCID: PMC11382290 DOI: 10.1093/pnasnexus/pgae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live-cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live-cell settings, dynamic exchange of Eps15 proteins, a measure of protein network stability, was decreased by Eps15-ubiquitin interactions and increased by loss of ubiquitin. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic internalization.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Sangani
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brandon T Malady
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Onwunma J, Binsabaan S, Allen SP, Sankaran B, Wohlever ML. The structural and biophysical basis of substrate binding to the hydrophobic groove in Ubiquilin Sti1 domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602902. [PMID: 39026758 PMCID: PMC11257586 DOI: 10.1101/2024.07.10.602902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ubiquilins are a family of cytosolic proteins that ferry ubiquitinated substrates to the proteasome for degradation. Recent work has demonstrated that Ubiquilins can also act as molecular chaperones, utilizing internal Sti1 domains to directly bind to hydrophobic sequences. Ubiquilins are associated with several neurodegenerative diseases with point mutations in UBQLN2 causing dominant, X-linked Amyotrophic Lateral Sclerosis (ALS). The molecular basis of Ubiquilin chaperone activity and how ALS mutations in the Sti1 domains affect Ubiquilin activity are poorly understood. This study presents the first crystal structure of the Sti1 domain from a fungal Ubiquilin homolog bound to a transmembrane domain (TMD). The structure reveals that two Sti1 domains form a head-to-head dimer, creating a hydrophobic cavity that accommodates two TMDs. Mapping the UBQLN2 sequence onto the structure shows that several ALS mutations are predicted to disrupt the hydrophobic groove. Using a newly developed competitive binding assay, we show that Ubiquilins preferentially bind to hydrophobic substrates with low helical propensity, motifs that are enriched in both substrates and in Ubiquilins. This study provides insights into the molecular and structural basis for Ubiquilin substrate binding, with broad implications for the role of the Sti1 domain in phase separation and ALS.
Collapse
Affiliation(s)
- Joan Onwunma
- Previously at University of Toledo, Department of Chemistry & Biochemistry
| | | | - Shawn P Allen
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| | - Banumathi Sankaran
- Lawrence Berkley National Lab, Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging
| | - Matthew L Wohlever
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| |
Collapse
|
3
|
Yuan F, Gollapudi S, Day K, Ashby G, Sangani A, Malady B, Wang L, Lafer EM, Huibregtse J, Stachowiak J. Ubiquitin-driven protein condensation initiates clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.21.554139. [PMID: 37662320 PMCID: PMC10473642 DOI: 10.1101/2023.08.21.554139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live cell settings, dynamic exchange of Eps15 proteins, a hallmark of liquidlike systems, was modulated by Eps15-Ub interactions. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic recycling.
Collapse
|
4
|
Waite KA, Vontz G, Lee SY, Roelofs J. Proteasome condensate formation is driven by multivalent interactions with shuttle factors and ubiquitin chains. Proc Natl Acad Sci U S A 2024; 121:e2310756121. [PMID: 38408252 PMCID: PMC10927584 DOI: 10.1073/pnas.2310756121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1, show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin-binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome-Rpn1, Rpn10, and Rpn13-and the Ubl domains of Rad23 and Dsk2 are critical under different condensate-inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes.
Collapse
Affiliation(s)
- Kenrick A. Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Gabrielle Vontz
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Stella Y. Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
5
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
6
|
Galagedera SKK, Dao TP, Enos SE, Chaudhuri A, Schmit JD, Castañeda CA. Polyubiquitin ligand-induced phase transitions are optimized by spacing between ubiquitin units. Proc Natl Acad Sci U S A 2023; 120:e2306638120. [PMID: 37824531 PMCID: PMC10589717 DOI: 10.1073/pnas.2306638120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Biomolecular condensates form via multivalent interactions among key macromolecules and are regulated through ligand binding and/or posttranslational modifications. One such modification is ubiquitination, the covalent addition of ubiquitin (Ub) or polyubiquitin chains to target macromolecules. Specific interactions between polyubiquitin chains and partner proteins, including hHR23B, NEMO, and UBQLN2, regulate condensate assembly or disassembly. Here, we used a library of designed polyubiquitin hubs and UBQLN2 as model systems for determining the driving forces of ligand-mediated phase transitions. Perturbations to either the UBQLN2-binding surface of Ub or the spacing between Ub units reduce the ability of hubs to modulate UBQLN2 phase behavior. By developing an analytical model based on polyphasic linkage principles that accurately described the effects of different hubs on UBQLN2 phase separation, we determined that introduction of Ub to UBQLN2 condensates incurs a significant inclusion energetic penalty. This penalty antagonizes the ability of polyUb hubs to scaffold multiple UBQLN2 molecules and cooperatively amplify phase separation. The extent to which polyubiquitin hubs promote UBQLN2 phase separation is encoded in the spacings between Ub units. This spacing is modulated by chains of different linkages and designed chains of different architectures, thus illustrating how the ubiquitin code regulates functionality via the emergent properties of the condensate. The spacing in naturally occurring linear polyubiquitin chains is already optimized to promote phase separation with UBQLN2. We expect our findings to extend to other condensates, emphasizing the importance of ligand properties, including concentration, valency, affinity, and spacing between binding sites in studies and designs of condensates.
Collapse
Affiliation(s)
- Sarasi K. K. Galagedera
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Thuy P. Dao
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Suzanne E. Enos
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Antara Chaudhuri
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS66506
| | - Carlos A. Castañeda
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
- BioInspired Institute, Syracuse University, Syracuse, NY13244
| |
Collapse
|
7
|
Qin C, Wang YL, Zhou JY, Shi J, Zhao WW, Zhu YX, Bai SM, Feng LL, Bie SY, Zeng B, Zheng J, Zeng GD, Feng WX, Wan XB, Fan XJ. RAP80 phase separation at DNA double-strand break promotes BRCA1 recruitment. Nucleic Acids Res 2023; 51:9733-9747. [PMID: 37638744 PMCID: PMC10570032 DOI: 10.1093/nar/gkad686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
RAP80 has been characterized as a component of the BRCA1-A complex and is responsible for the recruitment of BRCA1 to DNA double-strand breaks (DSBs). However, we and others found that the recruitment of RAP80 and BRCA1 were not absolutely temporally synchronized, indicating that other mechanisms, apart from physical interaction, might be implicated. Recently, liquid-liquid phase separation (LLPS) has been characterized as a novel mechanism for the organization of key signaling molecules to drive their particular cellular functions. Here, we characterized that RAP80 LLPS at DSB was required for RAP80-mediated BRCA1 recruitment. Both cellular and in vitro experiments showed that RAP80 phase separated at DSB, which was ascribed to a highly disordered region (IDR) at its N-terminal. Meanwhile, the Lys63-linked poly-ubiquitin chains that quickly formed after DSBs occur, strongly enhanced RAP80 phase separation and were responsible for the induction of RAP80 condensation at the DSB site. Most importantly, abolishing the condensation of RAP80 significantly suppressed the formation of BRCA1 foci, encovering a pivotal role of RAP80 condensates in BRCA1 recruitment and radiosensitivity. Together, our study disclosed a new mechanism underlying RAP80-mediated BRCA1 recruitment, which provided new insight into the role of phase separation in DSB repair.
Collapse
Affiliation(s)
- Caolitao Qin
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jin-Ying Zhou
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ya-Xi Zhu
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Shao-Mei Bai
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Li-Li Feng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510655, P.R. China
| | - Shu-Ying Bie
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Bing Zeng
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Gastroenterology, Hernia and Abdominal Wall Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Guang-Dong Zeng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wei-Xing Feng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
8
|
Mekonnen G, Djaja N, Yuan X, Myong S. Advanced imaging techniques for studying protein phase separation in living cells and at single-molecule level. Curr Opin Chem Biol 2023; 76:102371. [PMID: 37523989 PMCID: PMC10528199 DOI: 10.1016/j.cbpa.2023.102371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 08/02/2023]
Abstract
Protein-protein and protein-RNA interactions are essential for cell function and survival. These interactions facilitate the formation of ribonucleoprotein complexes and biomolecular condensates via phase separation. Such assembly is involved in transcription, splicing, translation and stress response. When dysregulated, proteins and RNA can undergo irreversible aggregation which can be cytotoxic and pathogenic. Despite technical advances in investigating biomolecular condensates, achieving the necessary spatiotemporal resolution to deduce the parameters that govern their assembly and behavior has been challenging. Many laboratories have applied advanced microscopy methods for imaging condensates. For example, single molecule imaging methods have enabled the detection of RNA-protein interaction, protein-protein interaction, protein conformational dynamics, and diffusional motion of molecules that report on the intrinsic molecular interactions underlying liquid-liquid phase separation. This review will outline advances in both microscopy and spectroscopy techniques which allow single molecule detection and imaging, and how these techniques can be used to probe unique aspects of biomolecular condensates.
Collapse
Affiliation(s)
- Gemechu Mekonnen
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Nathalie Djaja
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Xincheng Yuan
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sua Myong
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
10
|
Abstract
Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.
Collapse
Affiliation(s)
- Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
11
|
Waite KA, Vontz G, Lee SY, Roelofs J. Proteasome condensate formation is driven by multivalent interactions with shuttle factors and K48-linked ubiquitin chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546446. [PMID: 37425862 PMCID: PMC10326979 DOI: 10.1101/2023.06.25.546446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on long K48-linked ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1 , show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome (Rpn1, Rpn10, and Rpn13) are critical under different condensate inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes. Significance Stress conditions can cause the relocalization of proteasomes to condensates in yeast as well as mammalian cells. Our work shows that the formation of proteasome condensates in yeast depends on long K48-linked ubiquitin chains, the proteasome binding shuttle factors Rad23 and Dsk2 and proteasome intrinsic ubiquitin receptors. Here, different receptors are critical for different condensate inducers. These results indicate distinct condensates can form with specific functionality. Our identification of key factors involved in the process is crucial for understanding the function of proteasome relocalization to condensates. We propose that cellular accumulation of substrates with long ubiquitin chains results in the formation of condensates comprising those ubiquitinated substrates, proteasomes, and proteasome shuttle factors, where the ubiquitin chains serve as the scaffold for condensate formation.
Collapse
|
12
|
Dolde U, Muzzopappa F, Delesalle C, Neveu J, Erdel F, Vert G. LEAFY homeostasis is regulated via ubiquitin-dependent degradation and sequestration in cytoplasmic condensates. iScience 2023; 26:106880. [PMID: 37260753 PMCID: PMC10227421 DOI: 10.1016/j.isci.2023.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
The transcription factor LEAFY (LFY) plays crucial roles in flower development by activating floral homeotic genes. Activation of LFY targets requires the combined action of LFY and the E3 ubiquitin ligase UFO, although the precise underlying mechanism remains unclear. Here, we show that LFY accumulates in biomolecular condensates within the cytoplasm, while recombinant LFY forms condensates with similar properties in vitro. UFO interacts with LFY within these condensates and marks it for degradation. LFY levels in the nucleus are buffered against changes in total LFY levels induced by proteasome inhibition, UFO overexpression, or mutation of lysine residues in a disordered region of LFY. Perturbation of cytoplasmic LFY condensates by 1,6-hexanediol treatment induces the relocalization of LFY to the nucleus and the subsequent activation of the LFY target AP3 in flowers. Our data suggest that nucleocytoplasmic partitioning, condensation, and ubiquitin-dependent degradation regulate LFY levels in the nucleus to control its activity.
Collapse
Affiliation(s)
- Ulla Dolde
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse/Toulouse-INP, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | - Fernando Muzzopappa
- Center for Integrative Biology (CBI), Molecular, Cellular and Developmental Biology UMR5077 CNRS/University of Toulouse, 169 Avenue Marianne Grunberg-Manago, 31062 Toulouse Cedex, France
| | - Charlotte Delesalle
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse/Toulouse-INP, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | - Julie Neveu
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse/Toulouse-INP, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | - Fabian Erdel
- Center for Integrative Biology (CBI), Molecular, Cellular and Developmental Biology UMR5077 CNRS/University of Toulouse, 169 Avenue Marianne Grunberg-Manago, 31062 Toulouse Cedex, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/University of Toulouse/Toulouse-INP, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| |
Collapse
|
13
|
Hou XN, Tang C. The pros and cons of ubiquitination on the formation of protein condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1084-1098. [PMID: 37294105 PMCID: PMC10423694 DOI: 10.3724/abbs.2023096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Ubiquitination, a post-translational modification that attaches one or more ubiquitin (Ub) molecules to another protein, plays a crucial role in the phase-separation processes. Ubiquitination can modulate the formation of membrane-less organelles in two ways. First, a scaffold protein drives phase separation, and Ub is recruited to the condensates. Second, Ub actively phase-separates through the interactions with other proteins. Thus, the role of ubiquitination and the resulting polyUb chains ranges from bystanders to active participants in phase separation. Moreover, long polyUb chains may be the primary driving force for phase separation. We further discuss that the different roles can be determined by the lengths and linkages of polyUb chains which provide preorganized and multivalent binding platforms for other client proteins. Together, ubiquitination adds a new layer of regulation for the flow of material and information upon cellular compartmentalization of proteins.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Chun Tang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Center for Quantitate BiologyPKU-Tsinghua Center for Life ScienceAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
14
|
Buel GR, Chen X, Myint W, Kayode O, Folimonova V, Cruz A, Skorupka KA, Matsuo H, Walters KJ. E6AP AZUL interaction with UBQLN1/2 in cells, condensates, and an AlphaFold-NMR integrated structure. Structure 2023; 31:395-410.e6. [PMID: 36827983 PMCID: PMC10081965 DOI: 10.1016/j.str.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
The E3 ligase E6AP/UBE3A has a dedicated binding site in the 26S proteasome provided by the RAZUL domain of substrate receptor hRpn10/S5a/PSMD4. Guided by RAZUL sequence similarity, we test and demonstrate here that the E6AP AZUL binds transiently to the UBA of proteasomal shuttle factor UBQLN1/2. Despite a weak binding affinity, E6AP AZUL is recruited to UBQLN2 biomolecular condensates in vitro and E6AP interacts with UBQLN1/2 in cellulo. Steady-state and transfer nuclear Overhauser effect (NOE) experiments indicate direct interaction of AZUL with UBQLN1 UBA. Intermolecular contacts identified by NOE spectroscopy (NOESY) data were combined with AlphaFold2-Multimer predictions to yield an AZUL:UBA model structure. We additionally identify an oligomerization domain directly adjacent to UBQLN1/2 UBA (UBA adjacent [UBAA]) that is α-helical and allosterically reconfigured by AZUL binding to UBA. These data lead to a model of E6AP recruitment to UBQLN1/2 by AZUL:UBA interaction and provide fundamental information on binding requirements for interactions in condensates and cells.
Collapse
Affiliation(s)
- Gwen R Buel
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiang Chen
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Wazo Myint
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Olumide Kayode
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Varvara Folimonova
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Anthony Cruz
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Katarzyna A Skorupka
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
15
|
Zeng X, Pappu RV. Developments in describing equilibrium phase transitions of multivalent associative macromolecules. Curr Opin Struct Biol 2023; 79:102540. [PMID: 36804705 PMCID: PMC10732938 DOI: 10.1016/j.sbi.2023.102540] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
Biomolecular condensates are distinct cellular bodies that form and dissolve reversibly to organize cellular matter and biochemical reactions in space and time. Condensates are thought to form and dissolve under the influence of spontaneous and driven phase transitions of multivalent associative macromolecules. These include phase separation, which is defined by segregation of macromolecules from the solvent or from one another, and percolation or gelation, which is an inclusive networking transition driven by reversible associations among multivalent macromolecules. Considerable progress has been made to model sequence-specific phase transitions, especially for intrinsically disordered proteins. Here, we summarize the state-of-the-art of theories and computations aimed at understanding and modeling sequence-specific, thermodynamically controlled, coupled associative and segregative phase transitions of archetypal multivalent macromolecules.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA. https://twitter.com/@xiangzezeng
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
16
|
Grønbæk-Thygesen M, Kampmeyer C, Hofmann K, Hartmann-Petersen R. The moonlighting of RAD23 in DNA repair and protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194925. [PMID: 36863450 DOI: 10.1016/j.bbagrm.2023.194925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
A moonlighting protein is one, which carries out multiple, often wholly unrelated, functions. The RAD23 protein is a fascinating example of this, where the same polypeptide and the embedded domains function independently in both nucleotide excision repair (NER) and protein degradation via the ubiquitin-proteasome system (UPS). Hence, through direct binding to the central NER component XPC, RAD23 stabilizes XPC and contributes to DNA damage recognition. Conversely, RAD23 also interacts directly with the 26S proteasome and ubiquitylated substrates to mediate proteasomal substrate recognition. In this function, RAD23 activates the proteolytic activity of the proteasome and engages specifically in well-characterized degradation pathways through direct interactions with E3 ubiquitin-protein ligases and other UPS components. Here, we summarize the past 40 years of research into the roles of RAD23 in NER and the UPS.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| | - Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Germany
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
McGoldrick P, Lau A, You Z, Durcan TM, Robertson J. Loss of C9orf72 perturbs the Ran-GTPase gradient and nucleocytoplasmic transport, generating compositionally diverse Importin β-1 granules. Cell Rep 2023; 42:112134. [PMID: 36821445 DOI: 10.1016/j.celrep.2023.112134] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
A hexanucleotide (GGGGCC)n repeat expansion in C9orf72 causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), eliciting toxic effects through generation of RNA foci, dipeptide repeat proteins, and/or loss of C9orf72 protein. Defects in nucleocytoplasmic transport (NCT) have been implicated as a pathogenic mechanism underlying repeat expansion toxicity. Here, we show that loss of C9orf72 disrupts the Ran-GTPase gradient and NCT in vitro and in vivo. NCT disruption in vivo is enhanced by the presence of compositionally different types of cytoplasmic Importin β-1 granule that exhibit neuronal subtype-specific properties. We show that the abundance of Importin β-1 granules is increased in the context of C9orf72 deficiency, disrupting interactions with nuclear pore complex proteins. These granules appear to associate with the nuclear envelope and are co-immunoreactive for G3BP1 and K63-ubiquitin. These findings link loss of C9orf72 protein to gain-of-function mechanisms and defects in NCT.
Collapse
Affiliation(s)
- Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.
| | - Agnes Lau
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
18
|
Connelly EM, Frankel KS, Shaw GS. Parkin and mitochondrial signalling. Cell Signal 2023; 106:110631. [PMID: 36803775 DOI: 10.1016/j.cellsig.2023.110631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Aging, toxic chemicals and changes to the cellular environment are sources of oxidative damage to mitochondria which contribute to neurodegenerative conditions including Parkinson's disease. To counteract this, cells have developed signalling mechanisms to identify and remove select proteins and unhealthy mitochondria to maintain homeostasis. Two important proteins that work in concert to control mitochondrial damage are the protein kinase PINK1 and the E3 ligase parkin. In response to oxidative stress, PINK1 phosphorylates ubiquitin present on proteins at the mitochondrial surface. This signals the translocation of parkin, accelerates further phosphorylation, and stimulates ubiquitination of outer mitochondrial membrane proteins such as Miro1/2 and Mfn1/2. The ubiquitination of these proteins is the key step needed to target them for degradation via the 26S proteasomal machinery or eliminate the entire organelle through mitophagy. This review highlights the signalling mechanisms used by PINK1 and parkin and presents several outstanding questions yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth M Connelly
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Karling S Frankel
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
19
|
Phung TH, Tatman M, Monteiro MJ. UBQLN2 undergoes a reversible temperature-induced conformational switch that regulates binding with HSPA1B: ALS/FTD mutations cripple the switch but do not destroy HSPA1B binding. Biochim Biophys Acta Gen Subj 2023; 1867:130284. [PMID: 36423739 PMCID: PMC9792439 DOI: 10.1016/j.bbagen.2022.130284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/23/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Here we present evidence, based on alterations of its intrinsic tryptophan fluorescence, that UBQLN2 protein undergoes a conformational switch when the temperature is raised from 37 °C to 42 °C. The switch is reset on restoration of the temperature. We speculate that the switch regulates UBQLN2 function in the heat shock response because elevation of the temperature from 37 °C to 42 °C dramatically increased in vitro binding between UBQLN2 and HSPA1B. Furthermore, restoration of the temperature to 37 °C decreased HSPA1B binding. By comparison to wild type (WT) UBQLN2, we found that all five ALS/FTD mutant UBQLN2 proteins we examined had attenuated alterations in tryptophan fluorescence when shifted to 42 °C, suggesting that the conformational switch is crippled in the mutants. Paradoxically, all five mutants bound similar amounts of HSPA1B compared to WT UBQLN2 protein at 42 °C, suggesting that either the conformational switch is not instrumental for HSPA1B binding, or that, although damaged, it is still functional. Comparison of the poly-ubiquitin chain binding revealed that WT UBQLN2 binds more avidly with K63 than with K48 chains. The avidity may explain the involvement of UBQLN2 in autophagy and cell signaling. Consistent with its function in autophagy, we found UBQLN2 binds directly with LC3, the autophagosomal-specific membrane-tethered protein. Finally, we provide evidence that WT UBQLN2 can homodimerize, and heterodimerize with WT UBQLN1. We show that ALS mutant P497S-UBQLN2 protein can oligomerize with either WT UBQLN1 or 2, providing a possible mechanism for how mutant UBQLN2 proteins could bind and inactivate UBQLN proteins, causing loss of function.
Collapse
Affiliation(s)
- Trong H Phung
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Micaela Tatman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mervyn J Monteiro
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Sato Y, Terawaki S, Oikawa D, Shimizu K, Okina Y, Ito H, Tokunaga F. Involvement of heterologous ubiquitination including linear ubiquitination in Alzheimer's disease and amyotrophic lateral sclerosis. Front Mol Biosci 2023; 10:1089213. [PMID: 36726375 PMCID: PMC9884707 DOI: 10.3389/fmolb.2023.1089213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), the progressive accumulation of ubiquitin-positive cytoplasmic inclusions leads to proteinopathy and neurodegeneration. Along with the seven types of Lys-linked ubiquitin chains, the linear ubiquitin chain assembly complex (LUBAC)-mediated Met1-linked linear ubiquitin chain, which activates the canonical NF-κB pathway, is also involved in cytoplasmic inclusions of tau in AD and TAR DNA-binding protein 43 in ALS. Post-translational modifications, including heterologous ubiquitination, affect proteasomal and autophagic degradation, inflammatory responses, and neurodegeneration. Single nucleotide polymorphisms (SNPs) in SHARPIN and RBCK1 (which encodes HOIL-1L), components of LUBAC, were recently identified as genetic risk factors of AD. A structural biological simulation suggested that most of the SHARPIN SNPs that cause an amino acid replacement affect the structure and function of SHARPIN. Thus, the aberrant LUBAC activity is related to AD. Protein ubiquitination and ubiquitin-binding proteins, such as ubiquilin 2 and NEMO, facilitate liquid-liquid phase separation (LLPS), and linear ubiquitination seems to promote efficient LLPS. Therefore, the development of therapeutic approaches that target ubiquitination, such as proteolysis-targeting chimeras (PROTACs) and inhibitors of ubiquitin ligases, including LUBAC, is expected to be an additional effective strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Seigo Terawaki
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan,Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshinori Okina
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan,*Correspondence: Fuminori Tokunaga,
| |
Collapse
|
21
|
Alemasova EE, Lavrik OI. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Int J Mol Sci 2022; 23:14075. [PMID: 36430551 PMCID: PMC9694962 DOI: 10.3390/ijms232214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.
Collapse
Affiliation(s)
- Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
22
|
Different states and the associated fates of biomolecular condensates. Essays Biochem 2022; 66:849-862. [PMID: 36350032 DOI: 10.1042/ebc20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Biomolecular condensates are functional assemblies, which can enrich intrinsically disordered proteins (IDPs) and/or RNAs at concentrations that are orders of magnitude higher than the bulk. In their native functional state, these structures can exist in multiple physical states including liquid-droplet phase, hydrogels, and solid assemblies. On the other hand, an aberrant transition between these physical states can result in loss-of-function or a gain-of-toxic-function. A prime example of such an aberrant transition is droplet aging—a phenomenon where some condensates may progressively transition into less dynamic material states at biologically relevant timescales. In this essay, we review structural and viscoelastic roots of aberrant liquid–solid transitions. Also, we highlight the different checkpoints and experimentally tunable handles, both active (ATP-dependent enzymes, post-translational modifications) and passive (colocalization of RNA molecules), that could alter the material state of assemblies.
Collapse
|