1
|
Chen X, Fansler MM, Janjoš U, Ule J, Mayr C. The FXR1 network acts as a signaling scaffold for actomyosin remodeling. Cell 2024; 187:5048-5063.e25. [PMID: 39106863 PMCID: PMC11380585 DOI: 10.1016/j.cell.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/24/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024]
Abstract
It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Urška Janjoš
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; Biosciences PhD Program, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; UK Dementia Research Institute at King's College London, London SE5 9NU, UK
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
2
|
Chen X, Fansler MM, Janjoš U, Ule J, Mayr C. The FXR1 network acts as signaling scaffold for actomyosin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.05.565677. [PMID: 37961296 PMCID: PMC10635158 DOI: 10.1101/2023.11.05.565677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the FXR1 network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause Fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. These findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as organizer of signaling reactions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M. Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Urška Janjoš
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- Biosciences PhD Program, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- UK Dementia Research Institute at King’s College London, London, SE5 9NU, UK
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
3
|
Vita A, Barlati S, Deste G, Rossi A, Rocca P, Bertolino A, Aguglia E, Altamura CA, Amore M, Bellomo A, Bucci P, Carpiniello B, Cuomo A, Dell’Osso L, Giuliani L, Marchesi C, Martinotti G, Monteleone P, Montemagni C, Nibbio G, Pasquini M, Pompili M, Rampino A, Roncone R, Rossi R, Siracusano A, Tenconi E, Zeppegno P, Galderisi S, Maj M. Autistic symptoms in unaffected first-degree relatives of people with schizophrenia: results from the Italian Network for Research on Psychoses multicenter study. Eur Psychiatry 2023; 66:e85. [PMID: 37869966 PMCID: PMC10755574 DOI: 10.1192/j.eurpsy.2023.2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Autistic symptoms represent a frequent feature in schizophrenia spectrum disorders (SSD). However, the prevalence and the cognitive and functional correlates of autistic symptoms in unaffected first-degree relatives of people with SSD remain to be assessed. METHODS A total of 342 unaffected first-degree relatives related to 247 outpatients with schizophrenia were recruited as part of the multicenter study of the Italian Network for Research on Psychoses (NIRP). Autistic features were measured with the PANSS Autism Severity Scale. Three groups of participants, defined on the presence and severity of autistic symptoms, were compared on a wide array of cognitive and functional measures. RESULTS Of the total sample, 44.9% presented autistic symptoms; 22.8% showed moderate levels of autistic symptoms, which can be observed in the majority of people with SSD. Participants with higher levels of autistic symptoms showed worse performance on Working Memory (p = 0.014) and Social Cognition (p = 0.025) domains and in the Global Cognition composite score (p = 0.008), as well as worse on functional capacity (p = 0.001), global psychosocial functioning (p < 0.001), real-world interpersonal relationships (p < 0.001), participation in community activities (p = 0.017), and work skills (p = 0.006). CONCLUSIONS A high prevalence of autistic symptoms was observed in first-degree relatives of people with SSD. Autistic symptoms severity showed a negative correlation with cognitive performance and functional outcomes also in this population and may represent a diagnostic and treatment target of considerable scientific and clinical interest in both patients and their first-degree relatives.
Collapse
Affiliation(s)
- Antonio Vita
- Psychiatric Unit, School of Medicine, University of Brescia, Brescia, Italy
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Stefano Barlati
- Psychiatric Unit, School of Medicine, University of Brescia, Brescia, Italy
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Giacomo Deste
- Psychiatric Unit, School of Medicine, University of Brescia, Brescia, Italy
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Alessandro Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Alessandro Bertolino
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Eugenio Aguglia
- Department of Clinical and Molecular Biomedicine, Psychiatry Unit, University of Catania, Catania, Italy
| | | | - Mario Amore
- Section of Psychiatry, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonello Bellomo
- Psychiatry Unit, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Paola Bucci
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine and Clinical Department of Mental Health, University of Siena, Siena, Italy
| | - Liliana Dell’Osso
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Carlo Marchesi
- Department of Neuroscience, Psychiatry Unit, University of Parma, Parma, Italy
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, G. d’Annunzio University, Chieti, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Cristiana Montemagni
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Gabriele Nibbio
- Psychiatric Unit, School of Medicine, University of Brescia, Brescia, Italy
| | - Massimo Pasquini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, S. Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Rampino
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Rita Roncone
- Unit of Psychiatry, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rodolfo Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Elena Tenconi
- Psychiatric Clinic, Department of Neurosciences, University of Padua, Padua, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|
4
|
Elhawary NA, AlJahdali IA, Abumansour IS, Azher ZA, Falemban AH, Madani WM, Alosaimi W, Alghamdi G, Sindi IA. Phenotypic variability to medication management: an update on fragile X syndrome. Hum Genomics 2023; 17:60. [PMID: 37420260 PMCID: PMC10329374 DOI: 10.1186/s40246-023-00507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.
Collapse
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Imad A. AlJahdali
- Department of Community Medicine, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Iman S. Abumansour
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Zohor A. Azher
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Alaa H. Falemban
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Mecca, 24382 Saudi Arabia
| | - Wefaq M. Madani
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Wafaa Alosaimi
- Department of Hematology, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Ghydda Alghamdi
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Preparatory Year Program, Batterjee Medical College, Jeddah, 21442 Saudi Arabia
| |
Collapse
|
5
|
Nibbio G, Barlati S, Calzavara-Pinton I, Necchini N, Invernizzi E, Dell'Ovo D, Lisoni J, Deste G, Vita A. Assessment and correlates of autistic symptoms in Schizophrenia Spectrum Disorders measured with the PANSS Autism Severity Score: A systematic review. Front Psychiatry 2022; 13:934005. [PMID: 36111306 PMCID: PMC9468543 DOI: 10.3389/fpsyt.2022.934005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/12/2022] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia Spectrum Disorders (SSD) and Autism Spectrum Disorders (ASD) are considered separate entities, but the two spectra share important similarities, and the study of these areas of overlap represents a field of growing scientific interest. The PANSS Autism Score (PAUSS) was recently developed specifically to assess autistic symptoms in people living with SSD reliably and quickly. The aims of the present systematic review were to provide a comprehensive assessment of the use of the PAUSS scale in available literature and to systematically analyze cognitive, functional and neurobiological correlates of autistic symptoms measured with this instrument in SSD. The systematic literature search included three electronic databases (PubMed, Scopus and PsycINFO) as well as a manual search in Google Scholar and in reference lists of included papers. Screening and extraction were conducted by at least two independent reviewers. Out of 213 identified records, 22 articles referring to 15 original studies were included in the systematic review. Studies were conducted in several different countries by independent groups, showing consistent scientific interest in the use of the scale; most works focused on cognitive and functional correlates of ASD symptoms, but some also considered neurobiological features. Results of included studies showed that autistic symptoms in people with SSD are consistently associated with worse cognitive performance, especially in the social cognition domain, and with worse psychosocial functioning. However, the presence of autistic symptoms appears to also have a protective role, particularly on functioning, in subjects with more severe psychotic symptoms. Further exploring the impact of autistic symptoms could be of significant scientific and clinical interest, allowing the development of tailored interventions to improve treatment for people living with SSDs.
Collapse
Affiliation(s)
- Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | | | - Nicola Necchini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elena Invernizzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Dario Dell'Ovo
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
6
|
Wei ZD, Shetty AK. Can mild cognitive impairment and Alzheimer's disease be diagnosed by monitoring a miRNA triad in the blood? Aging Cell 2022; 21:e13627. [PMID: 35537095 PMCID: PMC9197398 DOI: 10.1111/acel.13627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Objectively diagnosing age‐related cognitive impairment (ACI), mild cognitive impairment (MCI), and early‐stage Alzheimer's disease (AD) is a difficult task, as most cognitive impairment is clinically established via questionnaires, history, and physical examinations. A recent study has suggested that monitoring a miRNA triad, miR‐181a‐5p, miR‐146a‐5p, and miR‐148a‐3p can identify ACI and its progression to MCI and AD (Islam et al., EMBO Mol Med. 13: e14997, 2021). This commentary deliberates findings from this article, such as elevated levels of the miRNA triad in the brain impairing neural plasticity and cognitive function, the efficiency of measuring the miRNA triad in the circulating blood diagnosing MCI and AD, and the promise for improving cognitive function in MCI and AD by inhibiting this miRNA triad. Additional studies required prior to employing this miRNA triad in clinical practice are also discussed.
Collapse
Affiliation(s)
- Zhuang‐Yao D. Wei
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University Health Science Center College of Medicine College Station Texas USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University Health Science Center College of Medicine College Station Texas USA
| |
Collapse
|
7
|
Sotoudeh Anvari M, Vasei H, Najmabadi H, Badv RS, Golipour A, Mohammadi-Yeganeh S, Salehi S, Mohamadi M, Goodarzynejad H, Mowla SJ. Identification of microRNAs associated with human fragile X syndrome using next-generation sequencing. Sci Rep 2022; 12:5011. [PMID: 35322102 PMCID: PMC8943156 DOI: 10.1038/s41598-022-08916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by a mutation in the FMR1 gene which can lead to a loss or shortage of the FMR1 protein. This protein interacts with specific miRNAs and can cause a range of neurological disorders. Therefore, miRNAs could act as a novel class of biomarkers for common CNS diseases. This study aimed to test this theory by exploring the expression profiles of various miRNAs in Iranian using deep sequencing-based technologies and validating the miRNAs affecting the expression of the FMR1 gene. Blood samples were taken from 15 patients with FXS (9 males, 6 females) and 12 controls. 25 miRNAs were differentially expressed in individuals with FXS compared to controls. Levels of 9 miRNAs were found to be significantly changed (3 upregulated and 6 downregulated). In Patients, the levels of hsa-miR-532-5p, hsa-miR-652-3p and hsa-miR-4797-3p were significantly upregulated while levels of hsa-miR-191-5p, hsa-miR-181-5p, hsa-miR-26a-5p, hsa-miR-30e-5p, hsa-miR-186-5p, and hsa-miR-4797-5p exhibited significant downregulation; and these dysregulations were confirmed by RT-qPCR. This study presents among the first evidence of altered miRNA expression in blood samples from patients with FXS, which could be used for diagnostic, prognostic, and treatment purposes. Larger studies are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Maryam Sotoudeh Anvari
- Department of Molecular Pathology, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Vasei
- Department of Mathematical Science, Sharif University of Technology, Tehran, Iran
| | - Hossein Najmabadi
- Department of Genetics, School of Rehabilitation Sciences, Genetic Research Center, The University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Department of Pediatrics, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Golipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Salehi
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Mohamadi
- Department of Pediatrics, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Goodarzynejad
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Islam MR, Kaurani L, Berulava T, Heilbronner U, Budde M, Centeno TP, Elerdashvili V, Zafieriou M, Benito E, Sertel SM, Goldberg M, Senner F, Kalman JL, Burkhardt S, Oepen AS, Sakib MS, Kerimoglu C, Wirths O, Bickeböller H, Bartels C, Brosseron F, Buerger K, Cosma N, Fliessbach K, Heneka MT, Janowitz D, Kilimann I, Kleinedam L, Laske C, Metzger CD, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Wagner M, Wiltfang J, Düzel E, Jessen F, Rizzoli SO, Zimmermann W, Schulze TG, Falkai P, Sananbenesi F, Fischer A. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med 2021; 13:e13659. [PMID: 34633146 PMCID: PMC8573587 DOI: 10.15252/emmm.202013659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.
Collapse
|
9
|
Deste G, Vita A, Nibbio G, Barlati S, Penn DL, Pinkham AE, Harvey PD. Autistic symptoms in people with schizophrenia: Neurocognitive, socio-cognitive, clinical and real-world functional characteristics of individuals without autistic features. Schizophr Res 2021; 236:12-18. [PMID: 34364032 DOI: 10.1016/j.schres.2021.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Autism spectrum disorders (ASD) symptoms are frequent in people living with schizophrenia spectrum disorders (SSD) and have a relevant impact on their daily life. However, current literature is mostly focused on investigating correlates of high levels of ASD symptoms, leaving largely unexplored the clinical, neurocognitive, socio-cognitive and functional characterization of individuals with minimal or absent ASD symptoms, which may represent a peculiar sub-population. METHODS A total of 361 patients (mean age 41.7 years; 117 females) included in the SCOPE study were assessed with clinical, neurocognitive, socio-cognitive, functional capacity, social skills and real-world functioning measures. The severity of ASD symptoms was assessed with the PANSS Autism Severity Scale (PAUSS): individuals with a PAUSS score < 10 were considered without significant ASD symptoms. RESULTS Seventy-two (19.95%) participants had no significant ASD symptoms and presented a less severe clinical status, as well as a better cognitive and socio-cognitive performance and functional profile. Lower non-autistic SSD symptoms severity and better social skills, functional capacity, global cognitive and Theory of Mind/Mental State Attribution (as measured by the Hinting task) performance and real-world social relationships emerged as predictors of non-ASD symptoms status in the logistic regression analyses. CONCLUSION Individuals without ASD symptoms represent a minority of people diagnosed with SSD that appears to be characterized by specific correlates, resulting in a less severe situation and more positive outcomes. As these factors could have a relevant impact on treatment response, assessing the severity of ASD symptoms could be an important step required to define a personalized treatment.
Collapse
Affiliation(s)
- Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - David L Penn
- Department of Psychology, University of North Carolina, Chapel Hill, NC, United States of America; School of Psychology, Australian Catholic University, Melbourne, VIC, Australia.
| | - Amy E Pinkham
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States of America; Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, United States of America.
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America; Research Service, Miami VA Healthcare System, United States of America.
| |
Collapse
|
10
|
Payán-Gómez C, Ramirez-Cheyne J, Saldarriaga W. Variable Expressivity in Fragile X Syndrome: Towards the Identification of Molecular Characteristics That Modify the Phenotype. Appl Clin Genet 2021; 14:305-312. [PMID: 34262328 PMCID: PMC8273740 DOI: 10.2147/tacg.s265835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Fragile X syndrome (FXS), is an X-linked inherited genetic disease. FXS is the leading cause of inherited intellectual disability and autism in the world. Those affected are characterized by intellectual disability, language deficit, typical facies, and macroorchidism. Alterations in the FMR1 gene have been associated with FXS. The majority of people with this condition have an allele with an expansion of more than 200 repeats in a tract of CGGs within the 5' untranslated region, and this expansion is associated with a hypermethylated state of the gene promoter. FXS has incomplete penetrance and variable expressivity. Intellectual disability is present in 100% of males and 60% of females. Autism spectrum disorder symptoms appear in 50% to 60% of males and 20% of females. Other characteristics such as behavioral and physical alterations have significant variations in presentation frequency. The molecular causes of the variable phenotype in FXS patients are becoming clear: these causes are related to the FMR1 gene itself and to secondary, modifying gene effects. In FXS patients, size and methylation mosaicisms are common. Secondary to mosaicism, there is a variation in the quantity of FMR1 mRNA and the protein coded by the gene Fragile Mental Retardation Protein (FMRP). Potential modifier genes have also been proposed, with conflicting results. Characterizing patients according to CGG expansion, methylation status, concentration of mRNA and FMRP, and genotypification for possible modifier genes in a clinical setting offers an opportunity to identify predictors for treatment response evaluation. When intervention strategies become available to modulate the course of the disease they could be crucial for selecting patients and identifying the best therapeutic intervention. The purpose of this review is to present the information available about the molecular causes of the variability of the expression incomplete penetrance and variable expressivity in FXS and their potential clinical applications.
Collapse
Affiliation(s)
- César Payán-Gómez
- Deparment of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Julian Ramirez-Cheyne
- Health Faculty, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle, Cali, Colombia
| | - Wilmar Saldarriaga
- Health Faculty, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle, Cali, Colombia
| |
Collapse
|
11
|
Epple R, Krüger D, Berulava T, Brehm G, Ninov M, Islam R, Köster S, Fischer A. The Coding and Small Non-coding Hippocampal Synaptic RNAome. Mol Neurobiol 2021; 58:2940-2953. [PMID: 33569760 PMCID: PMC8128755 DOI: 10.1007/s12035-021-02296-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Neurons are highly compartmentalized cells that depend on local protein synthesis. Messenger RNAs (mRNAs) have thus been detected in neuronal dendrites, and more recently in the pre- and postsynaptic compartments as well. Other RNA species such as microRNAs have also been described at synapses where they are believed to control mRNA availability for local translation. A combined dataset analyzing the synaptic coding and non-coding RNAome via next-generation sequencing approaches is, however, still lacking. Here, we isolate synaptosomes from the hippocampus of young wild-type mice and provide the coding and non-coding synaptic RNAome. These data are complemented by a novel approach for analyzing the synaptic RNAome from primary hippocampal neurons grown in microfluidic chambers. Our data show that synaptic microRNAs control almost the entire synaptic mRNAome, and we identified several hub microRNAs. By combining the in vivo synaptosomal data with our novel microfluidic chamber system, our findings also support the hypothesis that part of the synaptic microRNAome may be supplied to neurons via astrocytes. Moreover, the microfluidic system is suitable for studying the dynamics of the synaptic RNAome in response to stimulation. In conclusion, our data provide a valuable resource and point to several important targets for further research.
Collapse
Affiliation(s)
- Robert Epple
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Dennis Krüger
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Tea Berulava
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Gerrit Brehm
- Institute for X-Ray Physics, University of Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Momchil Ninov
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Rezaul Islam
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Andre Fischer
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
12
|
Pan H, Steixner-Kumar AA, Seelbach A, Deutsch N, Ronnenberg A, Tapken D, von Ahsen N, Mitjans M, Worthmann H, Trippe R, Klein-Schmidt C, Schopf N, Rentzsch K, Begemann M, Wienands J, Stöcker W, Weissenborn K, Hollmann M, Nave KA, Lühder F, Ehrenreich H. Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: a translational study from chronic life stress to brain injury. Mol Psychiatry 2021; 26:2471-2482. [PMID: 32089545 PMCID: PMC8440197 DOI: 10.1038/s41380-020-0672-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/03/2022]
Abstract
Circulating autoantibodies (AB) of different immunoglobulin classes (IgM, IgA, and IgG), directed against the obligatory N-methyl-D-aspartate-receptor subunit NR1 (NMDAR1-AB), belong to the mammalian autoimmune repertoire, and appear with age-dependently high seroprevalence across health and disease. Upon access to the brain, they can exert NMDAR-antagonistic/ketamine-like actions. Still unanswered key questions, addressed here, are conditions of NMDAR1-AB formation/boosting, intraindividual persistence/course in serum over time, and (patho)physiological significance of NMDAR1-AB in modulating neuropsychiatric phenotypes. We demonstrate in a translational fashion from mouse to human that (1) serum NMDAR1-AB fluctuate upon long-term observation, independent of blood-brain barrier (BBB) perturbation; (2) a standardized small brain lesion in juvenile mice leads to increased NMDAR1-AB seroprevalence (IgM + IgG), together with enhanced Ig-class diversity; (3) CTLA4 (immune-checkpoint) genotypes, previously found associated with autoimmune disease, predispose to serum NMDAR1-AB in humans; (4) finally, pursuing our prior findings of an early increase in NMDAR1-AB seroprevalence in human migrants, which implicated chronic life stress as inducer, we independently replicate these results with prospectively recruited refugee minors. Most importantly, we here provide the first experimental evidence in mice of chronic life stress promoting serum NMDAR1-AB (IgA). Strikingly, stress-induced depressive-like behavior in mice and depression/anxiety in humans are reduced in NMDAR1-AB carriers with compromised BBB where NMDAR1-AB can readily reach the brain. To conclude, NMDAR1-AB may have a role as endogenous NMDAR antagonists, formed or boosted under various circumstances, ranging from genetic predisposition to, e.g., tumors, infection, brain injury, and stress, altogether increasing over lifetime, and exerting a spectrum of possible effects, also including beneficial functions.
Collapse
Affiliation(s)
- Hong Pan
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes A. Steixner-Kumar
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna Seelbach
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nadine Deutsch
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Anja Ronnenberg
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniel Tapken
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Nico von Ahsen
- grid.411984.10000 0001 0482 5331Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Mitjans
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hans Worthmann
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ralf Trippe
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Christina Klein-Schmidt
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Nadine Schopf
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kristin Rentzsch
- Institute for Experimental Immunology, Euroimmun, Lübeck, Germany
| | - Martin Begemann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Department of Psychiatry & Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- grid.7450.60000 0001 2364 4210Institute for Cellular and Molecular Immunology, Georg August University, Göttingen, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, Euroimmun, Lübeck, Germany
| | - Karin Weissenborn
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Michael Hollmann
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Klaus-Armin Nave
- grid.419522.90000 0001 0668 6902Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Fred Lühder
- grid.411984.10000 0001 0482 5331Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
13
|
Vita A, Barlati S, Deste G, Rocca P, Rossi A, Bertolino A, Aguglia E, Amore M, Bellomo A, Biondi M, Carpiniello B, Collantoni E, Cuomo A, D'Ambrosio E, Dell' Osso L, di Giannantonio M, Giordano GM, Marchesi C, Monteleone P, Montemagni C, Oldani L, Pompili M, Roncone R, Rossi R, Siracusano A, Zeppegno P, Nibbio G, Galderisi S, Maj M. The influence of autistic symptoms on social and non-social cognition and on real-life functioning in people with schizophrenia: Evidence from the Italian Network for Research on Psychoses multicenter study. Eur Psychiatry 2020; 63:e98. [PMID: 33168115 PMCID: PMC7737172 DOI: 10.1192/j.eurpsy.2020.99] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Autism spectrum disorders (ASDs) and schizophrenia spectrum disorders (SSDs), although conceptualized as separate entities, may share some clinical and neurobiological features. ASD symptoms may have a relevant role in determining a more severe clinical presentation of schizophrenic disorder but their relationships with cognitive aspects and functional outcomes of the disease remain to be addressed in large samples of individuals. Aims To investigate the clinical, cognitive, and functional correlates of ASD symptoms in a large sample of people diagnosed with schizophrenia. Methods The severity of ASD symptoms was measured with the PANSS Autism Severity Scale (PAUSS) in 921 individuals recruited for the Italian Network for Research on Psychoses multicenter study. Based on the PAUSS scores, three groups of subjects were compared on a wide array of cognitive and functional measures. Results Subjects with more severe ASD symptoms showed a poorer performance in the processing speed (p = 0.010), attention (p = 0.011), verbal memory (p = 0.035), and social cognition (p = 0.001) domains, and an overall lower global cognitive composite score (p = 0.010). Subjects with more severe ASD symptoms also showed poorer functional capacity (p = 0.004), real-world interpersonal relationships (p < 0.001), and participation in community-living activities (p < 0.001). Conclusions These findings strengthen the notion that ASD symptoms may have a relevant impact on different aspects of the disease, crucial to the life of people with schizophrenia. Prominent ASD symptoms may characterize a specific subpopulation of individuals with SSD.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Department of Mental Health and Addiction Services, ASST-Spedali Civili, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Department of Mental Health and Addiction Services, ASST-Spedali Civili, Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST-Spedali Civili, Brescia, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Alessandro Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Bertolino
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Eugenio Aguglia
- Department of Clinical and Molecular Biomedicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonello Bellomo
- Psychiatry Unit, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Biondi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Enrico Collantoni
- Psychiatric Clinic, Department of Neurosciences, University of Padua, Padua, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine and Clinical Department of Mental Health, University of Siena, Siena, Italy
| | - Enrico D'Ambrosio
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Liliana Dell' Osso
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Carlo Marchesi
- Department of Neuroscience, Psychiatry Unit, University of Parma, Parma, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Cristiana Montemagni
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Lucio Oldani
- Department of Psychiatry, University of Milan, Milan, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, S. Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Rita Roncone
- Unit of Psychiatry, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
14
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
15
|
Deste G, Vita A, Penn DL, Pinkham AE, Nibbio G, Harvey PD. Autistic symptoms predict social cognitive performance in patients with schizophrenia. Schizophr Res 2020; 215:113-119. [PMID: 31780344 PMCID: PMC7035981 DOI: 10.1016/j.schres.2019.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/30/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
Schizophrenia spectrum disorders and Autism Spectrum Disorders (ASD) share many similarities. Among those features, social cognitive impairment is recognized as a key characteristic of both ASD and schizophrenia. In this study, the role of ASD symptoms, measured with the PANSS Autism Severity Score (PAUSS), was investigated as a predictor of social cognitive performance in patients with Schizophrenia spectrum disorders. Existent databases from 2 studies (SCOPE Phase 3 and SCOPE Phase 5), in which a total of 361 patients (mean age 41.7 years; 117 females) were assessed with tests of mental state attribution and emotion recognition, were analyzed. Less severe ASD symptoms, as well as younger age, better premorbid IQ, and neurocognition were identified as individual predictors of better social cognitive performance. These results suggest a role of ASD symptoms in affecting social cognitive performance in schizophrenia.
Collapse
Affiliation(s)
| | - Antonio Vita
- Spedali Civili Hospital, Brescia, Italy; University of Brescia, School of Medicine, Italy.
| | - David L. Penn
- Department of Psychology, University of North Carolina,
Chapel Hill, NC, United States of America,School of Psychology, Australian Catholic University,
Melbourne, VIC, Australia
| | - Amy E. Pinkham
- School of Behavioral and Brain Sciences, The University of
Texas at Dallas, Richardson, TX, United States of America,Department of Psychiatry, University of Texas Southwestern
Medical School, Dallas, TX, United States of America
| | | | - Philip D. Harvey
- Department of Psychiatry and Behavioral Sciences,
University of Miami Miller School of Medicine, Miami, FL, United States of
America,Research Service, Miami VA Healthcare System, United
States of America
| |
Collapse
|
16
|
Stackpole EE, Akins MR, Ivshina M, Murthy AC, Fawzi NL, Fallon JR. EGFP insertional mutagenesis reveals multiple FXR2P fibrillar states with differing ribosome association in neurons. Biol Open 2019; 8:8/8/bio046383. [PMID: 31434643 PMCID: PMC6737979 DOI: 10.1242/bio.046383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RNA-binding proteins (RBPs) function in higher-order assemblages such as RNA granules to regulate RNA localization and translation. The Fragile X homolog FXR2P is an RBP essential for formation of neuronal Fragile X granules that associate with axonal mRNA and ribosomes in the intact brain. However, the FXR2P domains important for assemblage formation in a cellular system are unknown. Here we used an EGFP insertional mutagenesis approach to probe for FXR2P intrinsic features that influence its structural states. We tested 18 different in-frame FXR2PEGFP fusions in neurons and found that the majority did not impact assemblage formation. However, EGFP insertion within a 23 amino acid region of the low complexity (LC) domain induced FXR2PEGFP assembly into two distinct fibril states that were observed in isolation or in highly-ordered bundles. FXR2PEGFP fibrils exhibited different developmental timelines, ultrastructures and ribosome associations. Formation of both fibril types was dependent on an intact RNA-binding domain. These results suggest that restricted regions of the LC domain, together with the RNA-binding domain, may be important for FXR2P structural state organization in neurons. Summary: A mutagenesis study reveals that the higher-order structural states of the RBP FXR2P in neurons can be regulated by manipulation of the LC and RNA-binding domains.
Collapse
Affiliation(s)
- Emily E Stackpole
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Maria Ivshina
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|
17
|
Danesi C, Keinänen K, Castrén ML. Dysregulated Ca 2+-Permeable AMPA Receptor Signaling in Neural Progenitors Modeling Fragile X Syndrome. Front Synaptic Neurosci 2019; 11:2. [PMID: 30800064 PMCID: PMC6375879 DOI: 10.3389/fnsyn.2019.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that represents a common cause of intellectual disability and is a variant of autism spectrum disorder (ASD). Studies that have searched for similarities in syndromic and non-syndromic forms of ASD have paid special attention to alterations of maturation and function of glutamatergic synapses. Copy number variations (CNVs) in the loci containing genes encoding alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) subunits are associated with ASD in genetic studies. In FXS, dysregulated AMPAR subunit expression and trafficking affect neural progenitor differentiation and synapse formation and neuronal plasticity in the mature brain. Decreased expression of GluA2, the AMPAR subunit that critically controls Ca2+-permeability, and a concomitant increase in Ca2+-permeable AMPARs (CP-AMPARs) in human and mouse FXS neural progenitors parallels changes in expression of GluA2-targeting microRNAs (miRNAs). Thus, posttranscriptional regulation of GluA2 by miRNAs and subsequent alterations in calcium signaling may contribute to abnormal synaptic function in FXS and, by implication, in some forms of ASD.
Collapse
Affiliation(s)
- Claudia Danesi
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kari Keinänen
- Research Program in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Saré RM, Figueroa C, Lemons A, Loutaev I, Beebe Smith C. Comparative Behavioral Phenotypes of Fmr1 KO, Fxr2 Het, and Fmr1 KO/ Fxr2 Het Mice. Brain Sci 2019; 9:brainsci9010013. [PMID: 30654445 PMCID: PMC6356887 DOI: 10.3390/brainsci9010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene leading to loss of the protein product fragile X mental retardation protein (FMRP). FXS is the most common monogenic cause of intellectual disability. There are two known mammalian paralogs of FMRP, FXR1P, and FXR2P. The functions of FXR1P and FXR2P and their possible roles in producing or modulating the phenotype observed in FXS are yet to be identified. Previous studies have revealed that mice lacking Fxr2 display similar behavioral abnormalities as Fmr1 knockout (KO) mice. In this study, we expand upon the behavioral phenotypes of Fmr1 KO and Fxr2+/− (Het) mice and compare them with Fmr1 KO/Fxr2 Het mice. We find that Fmr1 KO and Fmr1 KO/Fxr2 Het mice are similarly hyperactive compared to WT and Fxr2 Het mice. Fmr1 KO/Fxr2 Het mice have more severe learning and memory impairments than Fmr1 KO mice. Fmr1 KO mice display significantly impaired social behaviors compared to WT mice, which are paradoxically reversed in Fmr1 KO/Fxr2 Het mice. These results highlight the important functional consequences of loss or reduction of FMRP and FXR2P.
Collapse
Affiliation(s)
- Rachel Michelle Saré
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| | - Christopher Figueroa
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| | - Abigail Lemons
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| | - Inna Loutaev
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20814, USA.
| |
Collapse
|
19
|
Deste G, Barlati S, Gregorelli M, Lisoni J, Turrina C, Valsecchi P, Vita A. Looking through autistic features in schizophrenia using the PANSS Autism Severity Score (PAUSS). Psychiatry Res 2018; 270:764-768. [PMID: 30551322 DOI: 10.1016/j.psychres.2018.10.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/15/2018] [Accepted: 10/28/2018] [Indexed: 02/01/2023]
Abstract
Autism spectrum disorder (ASD) and schizophrenia share several features. However, the assessment of ASD in schizophrenia is difficult. Aim of this study is to investigate the possibility to use the PANSS Autism Severity Score (PAUSS) to recognize autistic features in schizophrenia. The PAUSS was administered to 75 patients with schizophrenia, previously assessed with ASD diagnostic scales. PAUSS total scores were higher in patients with ASD, compared to those without ASD. Patients with PAUSS score higher than the cut-off proposed for ASD showed specific neuropsychological and functional characteristics. The PAUSS may be useful to identify patients with schizophrenia autistic features.
Collapse
Affiliation(s)
- Giacomo Deste
- Department of Mental Health and Addiction Services, ASST-Spedali Civili, Brescia, Italy.
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST-Spedali Civili, Brescia, Italy
| | - Michela Gregorelli
- Center Diagnosis Care and Autism Research (CDRA), ULSS 9 Scaligera, Luna Association Onlus, Verona Italy, Brescia, Italy
| | - Jacopo Lisoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Cesare Turrina
- Department of Mental Health and Addiction Services, ASST-Spedali Civili, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Paolo Valsecchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST-Spedali Civili, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Excitation-inhibition dysbalance as predictor of autistic phenotypes. J Psychiatr Res 2018; 104:96-99. [PMID: 30015265 DOI: 10.1016/j.jpsychires.2018.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/20/2022]
Abstract
Autistic traits are normally distributed across health and disease, with autism spectrum disorders (ASD) at the extreme end. As we learned from mutations of synaptic or synapse regulating genes, leading to monogenetic forms of autism, the heterogeneous etiologies of ASD converge at the synapse. They result in a mild synaptic dysfunction as the final common pathway, also addressed as synaptopathy. Based on genetic rodent models and EEG/MEG findings in autists, a neuronal excitation-inhibition dysbalance is considered autism-pathognomonic. We hypothesized that this objectively measurable consequence is not restricted to the diagnosis of ASD but transcends disease borders and is of quantitative rather than qualitative nature. For proof-of-principle, we conducted a transcranial magnetic stimulation (TMS) study, monitoring corticospinal excitability and intracortical inhibition of the motor cortex. Employing the GRAS data collection of N > 1200 deep-phenotyped schizophrenic subjects, we had the chance to select for this study N = 20 perfectly matched men. They differed highly significantly by autistic trait severity, as assessed using PANSS autism severity score (PAUSS), capturing the continuum of autistic behaviors. Applying TMS to these men, we provide first intriguing hints of a positive correlation of autistic phenotype severity with functional cortical correlates, mainly alterations in GABAergic system and ion channels. This 'dose-response relationship' between severity of autistic traits and excitation-inhibition ratio in non-ASD subjects underlines the biological basis of this continuous trait. Based on these data, TMS may evolve as new add-on biomarker of autistic traits across disease groups. Finally, common treatment strategies targeting the excitation-inhibition dysbalance in humans may develop. To ultimately achieve this goal, however, replication studies with larger numbers of individuals would be desirable.
Collapse
|
21
|
Santos-Cortez RLP, Khan V, Khan FS, Mughal ZUN, Chakchouk I, Lee K, Rasheed M, Hamza R, Acharya A, Ullah E, Saqib MAN, Abbe I, Ali G, Hassan MJ, Khan S, Azeem Z, Ullah I, Bamshad MJ, Nickerson DA, Schrauwen I, Ahmad W, Ansar M, Leal SM. Novel candidate genes and variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability. Hum Genet 2018; 137:735-752. [PMID: 30167849 PMCID: PMC6201268 DOI: 10.1007/s00439-018-1928-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/10/2018] [Indexed: 01/30/2023]
Abstract
Identification of Mendelian genes for neurodevelopmental disorders using exome sequencing to study autosomal recessive (AR) consanguineous pedigrees has been highly successful. To identify causal variants for syndromic and non-syndromic intellectual disability (ID), exome sequencing was performed using DNA samples from 22 consanguineous Pakistani families with ARID, of which 21 have additional phenotypes including microcephaly. To aid in variant identification, homozygosity mapping and linkage analysis were performed. DNA samples from affected family member(s) from every pedigree underwent exome sequencing. Identified rare damaging exome variants were tested for co-segregation with ID using Sanger sequencing. For seven ARID families, variants were identified in genes not previously associated with ID, including: EI24, FXR1 and TET3 for which knockout mouse models have brain defects; and CACNG7 and TRAPPC10 where cell studies suggest roles in important neural pathways. For two families, the novel ARID genes CARNMT1 and GARNL3 lie within previously reported ID microdeletion regions. We also observed homozygous variants in two ID candidate genes, GRAMD1B and TBRG1, for which each has been previously reported in a single family. An additional 14 families have homozygous variants in established ID genes, of which 11 variants are novel. All ARID genes have increased expression in specific structures of the developing and adult human brain and 91% of the genes are differentially expressed in utero or during early childhood. The identification of novel ARID candidate genes and variants adds to the knowledge base that is required to further understand human brain function and development.
Collapse
Affiliation(s)
- Regie Lyn P Santos-Cortez
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Valeed Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Falak Sher Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zaib-Un-Nisa Mughal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Imen Chakchouk
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Memoona Rasheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rifat Hamza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Anushree Acharya
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Ehsan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Arif Nadeem Saqib
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Pakistan Health Research Council, Shahrah-e-Jamhuriat, G-5/2, Islamabad, Pakistan
| | - Izoduwa Abbe
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Jawad Hassan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Zahid Azeem
- Department of Biochemistry, Azad Jammu and Kashmir Medical College, Muzaffarabad, Pakistan
| | - Irfan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave. NE, Seattle, WA, 98195, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| | - Isabelle Schrauwen
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Patzlaff NE, Shen M, Zhao X. Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plast 2018; 3:205-223. [PMID: 30151344 PMCID: PMC6091053 DOI: 10.3233/bpl-170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) has an important role in neural development. Functional loss of FMRP in humans leads to fragile X syndrome, and it is the most common monogenetic contributor to intellectual disability and autism. FMRP is part of a larger family of RNA-binding proteins known as FXRs, which also includes fragile X related protein 1 (FXR1P) and fragile X related protein 2 (FXR2P). Despite the similarities of the family members, the functions of FXR1P and FXR2P in human diseases remain unclear. Although most studies focus on FMRP's role in mature neurons, all three FXRs regulate adult neurogenesis. Extensive studies have demonstrated important roles of adult neurogenesis in neuroplasticity, learning, and cognition. Impaired adult neurogenesis is implicated in neuropsychiatric disorders, neurodegenerative diseases, and neurodevelopmental disorders. Interventions aimed at regulating adult neurogenesis are thus being evaluated as potential therapeutic strategies. Here, we review and discuss the functions of FXRs in adult neurogenesis and their known similarities and differences. Understanding the overlapping regulatory functions of FXRs in adult neurogenesis can give us insights into the adult brain and fragile X syndrome.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Khlghatyan J, Beaulieu JM. Are FXR Family Proteins Integrators of Dopamine Signaling and Glutamatergic Neurotransmission in Mental Illnesses? Front Synaptic Neurosci 2018; 10:22. [PMID: 30087606 PMCID: PMC6066532 DOI: 10.3389/fnsyn.2018.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/29/2018] [Indexed: 01/11/2023] Open
Abstract
Dopamine receptors and related signaling pathways have long been implicated in pathophysiology and treatment of mental illnesses, including schizophrenia and bipolar disorder. Dopamine signaling may impact neuronal activity by modulation of glutamate neurotransmission. Recent evidence indicates a direct and/or indirect involvement of fragile X-related family proteins (FXR) in the regulation and mediation of dopamine receptor functions. FXRs consists of fragile X mental retardation protein 1 (Fmr1/FMRP) and its autosomal homologs Fxr1 and Fxr2. These RNA-binding proteins are enriched in the brain. Loss of function mutation in human FMR1 is the major genetic contributor to Fragile X mental retardation syndrome. Therefore, the role of FXR proteins has mostly been studied in the context of autism spectrum disorders. However, recent genome-wide association studies have linked this family to schizophrenia, bipolar disorders, and mood regulation pointing toward a broader involvement in mental illnesses. FXR family proteins play an important role in the regulation of glutamate-mediated neuronal activity and plasticity. Here, we discuss the brain-specific functions of FXR family proteins by focusing on the regulation of dopamine receptor functions, ionotropic glutamate receptors-mediated synaptic plasticity and contribution to mental illnesses. Based on recent evidence, we propose that FXR proteins are potential integrators of dopamine signaling and ionotropic glutamate transmission.
Collapse
Affiliation(s)
- Jivan Khlghatyan
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
24
|
Lepeta K, Purzycka KJ, Pachulska-Wieczorek K, Mitjans M, Begemann M, Vafadari B, Bijata K, Adamiak RW, Ehrenreich H, Dziembowska M, Kaczmarek L. A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms. EMBO Mol Med 2018. [PMID: 28623238 PMCID: PMC5538295 DOI: 10.15252/emmm.201707723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Matrix metalloproteinase 9 (MMP‐9) has recently emerged as a molecule that contributes to pathological synaptic plasticity in schizophrenia, but explanation of the underlying mechanisms has been missing. In the present study, we performed a phenotype‐based genetic association study (PGAS) in > 1,000 schizophrenia patients from the Göttingen Research Association for Schizophrenia (GRAS) data collection and found an association between the MMP‐9 rs20544 C/T single‐nucleotide polymorphism (SNP) located in the 3′untranslated region (UTR) and the severity of a chronic delusional syndrome. In cultured neurons, the rs20544 SNP influenced synaptic MMP‐9 activity and the morphology of dendritic spines. We demonstrated that Fragile X mental retardation protein (FMRP) bound the MMP‐9 3′UTR. We also found dramatic changes in RNA structure folding and alterations in the affinity of FMRP for MMP‐9 RNA, depending on the SNP variant. Finally, we observed greater sensitivity to psychosis‐related locomotor hyperactivity in Mmp‐9 heterozygous mice. We propose a novel mechanism that involves MMP‐9‐dependent changes in dendritic spine morphology and the pathophysiology of schizophrenia, providing the first mechanistic insights into the way in which the single base change in the MMP‐9 gene (rs20544) influences gene function and results in phenotypic changes observed in schizophrenia patients.
Collapse
Affiliation(s)
- Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna J Purzycka
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Katarzyna Pachulska-Wieczorek
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Marina Mitjans
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Behnam Vafadari
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krystian Bijata
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of RNA Biology and Functional Genomics, Warsaw, Poland
| | - Ryszard W Adamiak
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Magdalena Dziembowska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland .,Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
OTTO: a new strategy to extract mental disease-relevant combinations of GWAS hits from individuals. Mol Psychiatry 2018; 23:476-486. [PMID: 27922606 PMCID: PMC5794905 DOI: 10.1038/mp.2016.208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022]
Abstract
Despite high heritability of schizophrenia, genome-wide association studies (GWAS) have not yet revealed distinct combinations of single-nucleotide polymorphisms (SNPs), relevant for mental disease-related, quantifiable behavioral phenotypes. Here we propose an individual-based model to use genome-wide significant markers for extracting first genetic signatures of such behavioral continua. 'OTTO' (old Germanic=heritage) marks an individual characterized by a prominent phenotype and a particular load of phenotype-associated risk SNPs derived from GWAS that likely contributed to the development of his personal mental illness. This load of risk SNPs is shared by a small squad of 'similars' scattered under the genetically and phenotypically extremely heterogeneous umbrella of a schizophrenia end point diagnosis and to a variable degree also by healthy subjects. In a discovery sample of >1000 deeply phenotyped schizophrenia patients and several independent replication samples, including the general population, a gradual increase in the severity of 'OTTO's phenotype' expression is observed with an increasing share of 'OTTO's risk SNPs', as exemplified here by autistic and affective phenotypes. These data suggest a model in which the genetic contribution to dimensional behavioral traits can be extracted from combinations of GWAS SNPs derived from individuals with prominent phenotypes. Even though still in the 'model phase' owing to a world-wide lack of sufficiently powered, deeply phenotyped replication samples, the OTTO approach constitutes a conceptually novel strategy to delineate biological subcategories of mental diseases starting from GWAS findings and individual subjects.
Collapse
|
26
|
Achuta VS, Möykkynen T, Peteri UK, Turconi G, Rivera C, Keinänen K, Castrén ML. Functional changes of AMPA responses in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome. Sci Signal 2018; 11:11/513/eaan8784. [PMID: 29339535 DOI: 10.1126/scisignal.aan8784] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered neuronal network formation and function involving dysregulated excitatory and inhibitory circuits are associated with fragile X syndrome (FXS). We examined functional maturation of the excitatory transmission system in FXS by investigating the response of FXS patient-derived neural progenitor cells to the glutamate analog (AMPA). Neural progenitors derived from induced pluripotent stem cell (iPSC) lines generated from boys with FXS had augmented intracellular Ca2+ responses to AMPA and kainate that were mediated by Ca2+-permeable AMPA receptors (CP-AMPARs) lacking the GluA2 subunit. Together with the enhanced differentiation of glutamate-responsive cells, the proportion of CP-AMPAR and N-methyl-d-aspartate (NMDA) receptor-coexpressing cells was increased in human FXS progenitors. Differentiation of cells lacking GluA2 was also increased and paralleled the increased inward rectification in neural progenitors derived from Fmr1-knockout mice (the FXS mouse model). Human FXS progenitors had increased the expression of the precursor and mature forms of miR-181a, a microRNA that represses translation of the transcript encoding GluA2. Blocking GluA2-lacking, CP-AMPARs reduced the neurite length of human iPSC-derived control progenitors and further reduced the shortened length of neurites in human FXS progenitors, supporting the contribution of CP-AMPARs to the regulation of progenitor differentiation. Furthermore, we observed reduced expression of Gria2 (the GluA2-encoding gene) in the frontal lobe of FXS mice, consistent with functional changes of AMPARs in FXS. Increased Ca2+ influx through CP-AMPARs may increase the vulnerability and affect the differentiation and migration of distinct cell populations, which may interfere with normal circuit formation in FXS.
Collapse
Affiliation(s)
- Venkat Swaroop Achuta
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Tommi Möykkynen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland
| | - Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Giorgio Turconi
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland.,Institut de Neurobiologie de la Méditerranée, INSERM, Unité 901, 13009 Marseille, France.,Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| | - Kari Keinänen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland. .,Rinnekoti Foundation, Rinnekodintie 10, FIN-02980 Espoo, Finland.,Autism Foundation, Kuortaneenkatu 7B, FIN-00520 Helsinki, Finland
| |
Collapse
|
27
|
Mitjans M, Begemann M, Ju A, Dere E, Wüstefeld L, Hofer S, Hassouna I, Balkenhol J, Oliveira B, van der Auwera S, Tammer R, Hammerschmidt K, Völzke H, Homuth G, Cecconi F, Chowdhury K, Grabe H, Frahm J, Boretius S, Dandekar T, Ehrenreich H. Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl Psychiatry 2017; 7:e1247. [PMID: 28994820 PMCID: PMC5682605 DOI: 10.1038/tp.2017.213] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Ambra1 is linked to autophagy and neurodevelopment. Heterozygous Ambra1 deficiency induces autism-like behavior in a sexually dimorphic manner. Extraordinarily, autistic features are seen in female mice only, combined with stronger Ambra1 protein reduction in brain compared to males. However, significance of AMBRA1 for autistic phenotypes in humans and, apart from behavior, for other autism-typical features, namely early brain enlargement or increased seizure propensity, has remained unexplored. Here we show in two independent human samples that a single normal AMBRA1 genotype, the intronic SNP rs3802890-AA, is associated with autistic features in women, who also display lower AMBRA1 mRNA expression in peripheral blood mononuclear cells relative to female GG carriers. Located within a non-coding RNA, likely relevant for mRNA and protein interaction, rs3802890 (A versus G allele) may affect its stability through modification of folding, as predicted by in silico analysis. Searching for further autism-relevant characteristics in Ambra1+/- mice, we observe reduced interest of female but not male mutants regarding pheromone signals of the respective other gender in the social intellicage set-up. Moreover, altered pentylentetrazol-induced seizure propensity, an in vivo readout of neuronal excitation-inhibition dysbalance, becomes obvious exclusively in female mutants. Magnetic resonance imaging reveals mild prepubertal brain enlargement in both genders, uncoupling enhanced brain dimensions from the primarily female expression of all other autistic phenotypes investigated here. These data support a role of AMBRA1/Ambra1 partial loss-of-function genotypes for female autistic traits. Moreover, they suggest Ambra1 heterozygous mice as a novel multifaceted and construct-valid genetic mouse model for female autism.
Collapse
Affiliation(s)
- M Mitjans
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - M Begemann
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany,Department of Psychiatry and Psychotherapy, UMG, Georg-August-University, Göttingen, Germany
| | - A Ju
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - E Dere
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - L Wüstefeld
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S Hofer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - I Hassouna
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - J Balkenhol
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - B Oliveira
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine, and German Center for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| | - R Tammer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - K Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - G Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - F Cecconi
- IRCCS Fondazione Santa Lucia and Department of Biology, University of Rome Tor Vergata, Rome, Italy,Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - K Chowdhury
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - H Grabe
- Department of Psychiatry and Psychotherapy, University Medicine, and German Center for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| | - J Frahm
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - S Boretius
- Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen, Germany
| | - T Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - H Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen 37075, Germany. E-mail:
| |
Collapse
|
28
|
Chyung E, LeBlanc HF, Fallon JR, Akins MR. Fragile X granules are a family of axonal ribonucleoprotein particles with circuit-dependent protein composition and mRNA cargos. J Comp Neurol 2017; 526:96-108. [PMID: 28884477 DOI: 10.1002/cne.24321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/14/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022]
Abstract
Local axonal protein synthesis plays a crucial role in the formation and function of neuronal circuits. Understanding the role of this mechanism in specific circuits requires identifying the protein composition and mRNA cargos of the ribonucleoprotein particles (RNPs) that form the substrate for axonal translation. FXGs (Fragile X granules) are axonal RNPs present in a stereotyped subset of mature axons in the intact brain that contain one or more of the Fragile X related (FXR) proteins (FMRP, FXR2P, and FXR1P) along with mRNA and ribosomes. Here we performed a systematic survey of the FXR protein composition and mRNA association of FXGs in the brain. We have identified four FXG types that can be categorized based on their FXR protein complement. All FXGs contain FXR2P, with FMRP and/or FXR1P present in circuit-selective subsets. Individual neuronal cell types predominantly express a single FXG type, with FMRP-containing FXGs the most prevalent in forebrain neurons. All FXG types associate with ribosomes and mRNA, but the specific mRNA cargos are a function of FXG type, brain region and neuron class. Transcripts for β-catenin and its regulator APC associate with a subset of forebrain FXGs. Moreover, both these transcripts can colocalize within individual FXGs, suggesting that the axonal translation of functionally related proteins may be coordinately regulated with high spatiotemporal resolution. Cell type-dependent expression of specific RNP types with distinct mRNA cargos, such as FXGs, presents a potential mechanism for regulating local translation and its output in a circuit-dependent manner.
Collapse
Affiliation(s)
- Eunice Chyung
- Department of Neuroscience, Brown University, Providence, Rhode Island, 02912
| | - Hannah F LeBlanc
- Department of Neuroscience, Brown University, Providence, Rhode Island, 02912
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, Rhode Island, 02912
| | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, 19104.,Department of Neurobiology & Anatomy, Drexel University, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
29
|
Abstract
Schizophrenia is a devastating disease that arises on the background of genetic predisposition and environmental risk factors, such as early life stress (ELS). In this study, we show that ELS-induced schizophrenia-like phenotypes in mice correlate with a widespread increase of histone-deacetylase 1 (Hdac1) expression that is linked to altered DNA methylation. Hdac1 overexpression in neurons of the medial prefrontal cortex, but not in the dorsal or ventral hippocampus, mimics schizophrenia-like phenotypes induced by ELS. Systemic administration of an HDAC inhibitor rescues the detrimental effects of ELS when applied after the manifestation of disease phenotypes. In addition to the hippocampus and prefrontal cortex, mice subjected to ELS exhibit increased Hdac1 expression in blood. Moreover, Hdac1 levels are increased in blood samples from patients with schizophrenia who had encountered ELS, compared with patients without ELS experience. Our data suggest that HDAC1 inhibition should be considered as a therapeutic approach to treat schizophrenia.
Collapse
|
30
|
EndophilinAs regulate endosomal sorting of BDNF-TrkB to mediate survival signaling in hippocampal neurons. Sci Rep 2017; 7:2149. [PMID: 28526875 PMCID: PMC5438371 DOI: 10.1038/s41598-017-02202-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/07/2017] [Indexed: 11/08/2022] Open
Abstract
The sorting of activated receptors into distinct endosomal compartments is essential to activate specific signaling cascades and cellular events including growth and survival. However, the proteins involved in this sorting are not well understood. We discovered a novel role of EndophilinAs in sorting of activated BDNF-TrkB receptors into late endosomal compartments. Mice lacking all three EndophilinAs accumulate Rab7-positive late endosomes. Moreover, EndophilinAs are differentially localized to, co-traffic with, and tubulate, distinct endosomal compartments: In response to BDNF, EndophilinA2 is recruited to both early and late endosomes, EndophilinA3 is recruited to Lamp1-positive late endosomes, and co-trafficks with Rab5 and Rab7 in both the presence and absence of BDNF, while EndophilinA1 colocalizes at lower levels with endosomes. The absence of all three EndophilinAs caused TrkB to accumulate in EEA1 and Rab7-positive endosomes, and impaired BDNF-TrkB-dependent survival signaling cascades. In addition, EndophilinA triple knockout neurons exhibited increased cell death which could not be rescued by exogenous BDNF, in a neurotrophin-dependent survival assay. Thus, EndophilinAs differentially regulate activated receptor sorting via distinct endosomal compartments to promote BDNF-dependent cell survival.
Collapse
|
31
|
Hu Y, Ehli EA, Boomsma DI. MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: Current progress in genetic association studies, expression profiling, and translational research. Autism Res 2017; 10:1184-1203. [PMID: 28419777 DOI: 10.1002/aur.1789] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules, 18-25 nucleotides in length, which can negatively regulate gene expression at the post-transcriptional level by binding to messenger RNAs. About half of all identified miRNAs in humans are expressed in the brain and display regulatory functions important for many biological processes related to the development of the central nervous system (CNS). Disruptions in miRNA biogenesis and miRNA-target interaction have been related to CNS diseases, including psychiatric disorders. In this review, we focus on the role of miRNAs in autism spectrum disorder (ASD) and summarize recent findings about ASD-associated genetic variants in miRNA genes, in miRNA biogenesis genes, and miRNA targets. We discuss deregulation of miRNA expression in ASD and functional validation of ASD-related miRNAs in animal models. Including miRNAs in studies of ASD will contribute to our understanding of its etiology and pathogenesis and facilitate the discrimination between different disease subgroups. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1184-1203. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yubin Hu
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), The Netherlands
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), The Netherlands.,Avera Institute for Human Genetics, Sioux Falls, South Dakota
| |
Collapse
|
32
|
The interaction of GSK3B and FXR1 genotypes may influence the mania and depression dimensions in mood disorders. J Affect Disord 2017; 213:172-177. [PMID: 28242499 DOI: 10.1016/j.jad.2017.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/15/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous evidence in healthy subjects suggested that functional polymorphisms GSK3B rs12630592 and FXR1 rs496250 interact in regulating mood and emotional processing. We attempted to replicate this interaction primarily on manic and depressive dimensions in mood disorder patients, and secondarily on schizophrenia patients, diagnosis itself and age of onset. METHODS Symptom dimensions were derived from the Comprehensive Assessment of Symptoms and History 82 items rated lifetime in acute episodes and stabilized interepisode intervals in 384 patients from the Schizophrenia and Bipolar Disorder Eastern Quebec Kindred Study. Linear mixed effect models of symptom dimensions included rs12630592-rs496250 main and interaction fixed effects (obtained from TaqMan genotypes), and a polygenic random effect. The distribution of lifetime best-estimate DSM-IV diagnosis of 855 kindred members was studied versus genotype under a polytomous logistic model. RESULTS In mood disorder patients, the level of mania (in both acute and stabilized periods) and depression in stabilized periods was positively associated with GSK3B rs12630592 T only in FXR1 rs496250 A-allele carriers (Bonferroni-corrected interaction p=0.024, 0.052 and 0.017 respectively). The two polymorphisms explained 11% of mania variance and 5% of interepisode depression variance. The association was observed neither in schizophrenia patients nor with the psychotic dimension in mood disorder patients. Interaction with the diagnosis distribution (p=0.03) was driven by the decreasing prevalence of recurrent major depression with rs12630592 T also only in carriers of rs496250 A. LIMITATIONS Sample size was limited, but power was sufficient to detect the tested interaction effect in this replication sample. CONCLUSIONS We replicate in affective patients an interaction between the FXR1 rs496250 and GSK3B rs12630592 polymorphisms in regulating mood dimensions.
Collapse
|
33
|
Patzlaff NE, Nemec KM, Malone SG, Li Y, Zhao X. Fragile X related protein 1 (FXR1P) regulates proliferation of adult neural stem cells. Hum Mol Genet 2017; 26:1340-1352. [PMID: 28204491 PMCID: PMC6075589 DOI: 10.1093/hmg/ddx034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
Fragile X related protein 1 (FXR1P) is a member of the fragile X family of RNA-binding proteins, which includes FMRP and FXR2P. Both FMRP and FXR2P regulate neurogenesis, a process affected in a number of neurological and neuropsychiatric disorders, including fragile X syndrome. Although FXR1P has been implicated in various developmental processes and neuropsychiatric diseases, its role in neurodevelopment is not well understood. The goal of the present study was to elucidate the function of FXR1P in adult neurogenesis. We used an inducible mouse model that allows us to investigate how FXR1P deficiency in adult neural stem cells (aNSCs) affects proliferation and neuronal differentiation. Deletion of FXR1 in aNSCs resulted in fewer adult-born cells in the dentate gyrus (DG) overall, reducing populations across different stages of neurogenesis, including radial glia-like cells, intermediate progenitors, neuroblasts, immature neurons and neurons. We hypothesized that this reduction in new cell numbers resulted from impaired proliferation, which we confirmed both in vivo and in vitro. We discovered that FXR1P-deficient aNSCs have altered expression of a select number of cell-cycle genes, and we identified the mRNA of cyclin-dependent kinase inhibitor 1A (Cdkn1a, p21) as a direct target of FXR1P. Restoration of p21 mRNA to wild-type levels rescued the proliferation deficit in cells lacking FXR1P, demonstrating that p21 is a mediator of FXR1P in aNSCs. These results indicate that FXR1P plays an important role in regulating aNSC self-renewal and maintenance in the adult brain, which may have implications for a number of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kelsey M. Nemec
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sydney G. Malone
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yue Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
34
|
Abstract
While some autoimmune disorders remain extremely rare, others largely predominate the epidemiology of human autoimmunity. Notably, these include psoriasis, diabetes, vitiligo, thyroiditis, rheumatoid arthritis and multiple sclerosis. Thus, despite the quasi-infinite number of "self" antigens that could theoretically trigger autoimmune responses, only a limited set of antigens, referred here as superautoantigens, induce pathogenic adaptive responses. Several lines of evidence reviewed in this paper indicate that, irrespective of the targeted organ (e.g. thyroid, pancreas, joints, brain or skin), a significant proportion of superautoantigens are highly expressed in the synaptic compartment of the central nervous system (CNS). Such an observation applies notably for GAD65, AchR, ribonucleoproteins, heat shock proteins, collagen IV, laminin, tyrosine hydroxylase and the acetylcholinesterase domain of thyroglobulin. It is also argued that cognitive alterations have been described in a number of autoimmune disorders, including psoriasis, rheumatoid arthritis, lupus, Crohn's disease and autoimmune thyroiditis. Finally, the present paper points out that a great majority of the "incidental" autoimmune conditions notably triggered by neoplasms, vaccinations or microbial infections are targeting the synaptic or myelin compartments. On this basis, the concept of an immunological homunculus, proposed by Irun Cohen more than 25 years ago, is extended here in a model where physiological autoimmunity against brain superautoantigens confers both: i) a crucial evolutionary-determined advantage via cognition-promoting autoimmunity; and ii) a major evolutionary-determined vulnerability, leading to the emergence of autoimmune disorders in Homo sapiens. Moreover, in this theoretical framework, the so called co-development/co-evolution model, both the development (at the scale of an individual) and evolution (at the scale of species) of the antibody and T-cell repertoires are coupled to those of the neural repertoires (i.e. the distinct neuronal populations and synaptic circuits supporting cognitive and sensorimotor functions). Clinical implications and future experimental insights are also presented and discussed.
Collapse
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), CarMeN Laboratory, INSERM 1060, INRA 1397, INSA Lyon, Université Claude Bernard Lyon-1, Lyon, F-69000, France
| |
Collapse
|
35
|
Schumann CM, Sharp FR, Ander BP, Stamova B. Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain. Mol Autism 2017; 8:4. [PMID: 28184278 PMCID: PMC5294827 DOI: 10.1186/s13229-017-0117-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is sexually dimorphic in brain structure, genetics, and behaviors. In studies of brain tissue, the age of the population is clearly a factor in interpreting study outcome, yet sex is rarely considered. To begin to address this issue, we extend our previously published microarray analyses to examine expression of small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), in ASD and in the control temporal cortex in males and females. Predicted miRNA targets were identified as well as the pathways they overpopulate. Findings After considering age, sexual dimorphism in ASD sncRNA expression persists in the temporal cortex and in the patterning that distinguishes regions. Among the sexually dimorphic miRNAs are miR-219 and miR-338, which promote oligodendrocyte differentiation, miR-125, implicated in neuronal differentiation, and miR-488, implicated in anxiety. Putative miRNA targets are significantly over-represented in immune and nervous system pathways in both sexes, consistent with previous mRNA studies. Even for common pathways, the specific target mRNAs are often sexually dimorphic. For example, both male and female target genes significantly populate the Axonal Guidance Signaling pathway, yet less than a third of the targets are common to both sexes. Conclusions Our findings of sexual dimorphism in sncRNA levels underscore the importance of considering sex, in addition to age, when interpreting molecular findings on ASD brain. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA.,MIND Institute, University of California, 2805 50th Street, Sacramento, CA 95817 USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
36
|
Stepniak B, Kästner A, Poggi G, Mitjans M, Begemann M, Hartmann A, Van der Auwera S, Sananbenesi F, Krueger-Burg D, Matuszko G, Brosi C, Homuth G, Völzke H, Benseler F, Bagni C, Fischer U, Dityatev A, Grabe HJ, Rujescu D, Fischer A, Ehrenreich H. Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes. EMBO Mol Med 2016; 7:1565-79. [PMID: 26612855 PMCID: PMC4693501 DOI: 10.15252/emmm.201505696] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fragile X syndrome (FXS) is mostly caused by a CGG triplet expansion in the fragile X mental retardation 1 gene (FMR1). Up to 60% of affected males fulfill criteria for autism spectrum disorder (ASD), making FXS the most frequent monogenetic cause of syndromic ASD. It is unknown, however, whether normal variants (independent of mutations) in the fragile X gene family (FMR1, FXR1, FXR2) and in FMR2 modulate autistic features. Here, we report an accumulation model of 8 SNPs in these genes, associated with autistic traits in a discovery sample of male patients with schizophrenia (N = 692) and three independent replicate samples: patients with schizophrenia (N = 626), patients with other psychiatric diagnoses (N = 111) and a general population sample (N = 2005). For first mechanistic insight, we contrasted microRNA expression in peripheral blood mononuclear cells of selected extreme group subjects with high‐ versus low‐risk constellation regarding the accumulation model. Thereby, the brain‐expressed miR‐181 species emerged as potential “umbrella regulator”, with several seed matches across the fragile X gene family and FMR2. To conclude, normal variation in these genes contributes to the continuum of autistic phenotypes.
Collapse
Affiliation(s)
- Beata Stepniak
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anne Kästner
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Giulia Poggi
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marina Mitjans
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Annette Hartmann
- Department of Psychiatry and Psychotherapy, University of Halle, Halle, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Farahnaz Sananbenesi
- Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dilja Krueger-Burg
- Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Gabriela Matuszko
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Cornelia Brosi
- Department of Biochemistry, University of Würzburg, Würzburg, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Fritz Benseler
- Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Claudia Bagni
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Utz Fischer
- Department of Biochemistry, University of Würzburg, Würzburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, University of Halle, Halle, Germany
| | - Andre Fischer
- Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany Department of Psychiatry & Psychotherapy, University of Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
37
|
Bahi A. Sustained lentiviral-mediated overexpression of microRNA124a in the dentate gyrus exacerbates anxiety- and autism-like behaviors associated with neonatal isolation in rats. Behav Brain Res 2016; 311:298-308. [PMID: 27211062 DOI: 10.1016/j.bbr.2016.05.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorders (ASD) are highly disabling psychiatric disorders. Despite a strong genetic etiology, there are no efficient therapeutic interventions that target the core symptoms of ASD. Emerging evidence suggests that dysfunction of microRNA (miR) machinery may contribute to the underlying molecular mechanisms involved in ASD. Here, we report a stress model demonstrating that neonatal isolation-induced long-lasting hippocampal elevation of miR124a was associated with reduced expression of its target BDNF mRNA. In addition, we investigated the impact of lentiviral-mediated overexpression of miR124a into the dentate gyrus (DG) on social interaction, repetitive- and anxiety-like behaviors in the neonatal isolation (Iso) model of autism. Rats isolated from the dams on PND 1 to PND 11 were assessed for their social interaction, marble burying test (MBT) and repetitive self-grooming behaviors as adults following miR124a overexpression. Also, anxiety-like behavior and locomotion were evaluated in the elevated plus maze (EPM) and open-field (OF) tests. Results show that, consistent with previously published reports, Iso rats displayed decreased social interaction contacts but increased repetitive- and anxiety-like behaviors. Interestingly, across both autism- and anxiety-like behavioral assays, miR124a overexpression in the DG significantly exacerbated repetitive behaviors, social impairments and anxiety with no effect on locomotor activity. Our novel findings attribute neonatal isolation-inducible cognitive impairments to induction of miR124a and consequently suppressed BDNF mRNA, opening venues for intercepting these miR124a-mediated damages. They also highlight the importance of studying microRNAs in the context of ASD and identify miR124a as a novel potential therapeutic target for improving mood disorders.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|