1
|
Schmid VK, Hobeika E. B cell receptor signaling and associated pathways in the pathogenesis of chronic lymphocytic leukemia. Front Oncol 2024; 14:1339620. [PMID: 38469232 PMCID: PMC10926848 DOI: 10.3389/fonc.2024.1339620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
B cell antigen receptor (BCR) signaling is a key driver of growth and survival in both normal and malignant B cells. Several lines of evidence support an important pathogenic role of the BCR in chronic lymphocytic leukemia (CLL). The significant improvement of CLL patients' survival with the use of various BCR pathway targeting inhibitors, supports a crucial involvement of BCR signaling in the pathogenesis of CLL. Although the treatment landscape of CLL has significantly evolved in recent years, no agent has clearly demonstrated efficacy in patients with treatment-refractory CLL in the long run. To identify new drug targets and mechanisms of drug action in neoplastic B cells, a detailed understanding of the molecular mechanisms of leukemic transformation as well as CLL cell survival is required. In the last decades, studies of genetically modified CLL mouse models in line with CLL patient studies provided a variety of exciting data about BCR and BCR-associated kinases in their role in CLL pathogenesis as well as disease progression. BCR surface expression was identified as a particularly important factor regulating CLL cell survival. Also, BCR-associated kinases were shown to provide a crosstalk of the CLL cells with their tumor microenvironment, which highlights the significance of the cells' milieu in the assessment of disease progression and treatment. In this review, we summarize the major findings of recent CLL mouse as well as patient studies in regard to the BCR signalosome and discuss its relevance in the clinics.
Collapse
Affiliation(s)
| | - Elias Hobeika
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
3
|
CD4+ T cells sustain aggressive chronic lymphocytic leukemia in Eμ-TCL1 mice through a CD40L-independent mechanism. Blood Adv 2021; 5:2817-2828. [PMID: 34269799 DOI: 10.1182/bloodadvances.2020003795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is caused by the progressive accumulation of mature CD5+ B cells in secondary lymphoid organs. In vitro data suggest that CD4+ T lymphocytes also sustain survival and proliferation of CLL clones through CD40L/CD40 interactions. In vivo data in animal models are conflicting. To clarify this clinically relevant biological issue, we generated genetically modified Eμ-TCL1 mice lacking CD4+ T cells (TCL1+/+AB0), CD40 (TCL1+/+CD40-/-), or CD8+ T cells (TCL1+/+TAP-/-), and we monitored the appearance and progression of a disease that mimics aggressive human CLL by flow cytometry and immunohistochemical analyses. Findings were confirmed by adoptive transfer of leukemic cells into mice lacking CD4+ T cells or CD40L or mice treated with antibodies depleting CD4 T cells or blocking CD40L/CD40 interactions. CLL clones did not proliferate in mice lacking or depleted of CD4+ T cells, thus confirming that CD4+ T cells are essential for CLL development. By contrast, CD8+ T cells exerted an antitumor activity, as indicated by the accelerated disease progression in TCL1+/+TAP-/- mice. Antigen specificity of CD4+ T cells was marginal for CLL development, because CLL clones efficiently proliferated in transgenic mice whose CD4 T cells had a T-cell receptor with CLL-unrelated specificities. Leukemic clones also proliferated when transferred into wild-type mice treated with monoclonal antibodies blocking CD40 or into CD40L-/- mice, and TCL1+/+CD40-/- mice developed frank CLL. Our data demonstrate that CD8+ T cells restrain CLL progression, whereas CD4+ T cells support the growth of leukemic clones in TCL1 mice through CD40-independent and apparently noncognate mechanisms.
Collapse
|
4
|
Perez-Chacon G, Zapata JM. The Traf2DNx BCL2-tg Mouse Model of Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Recapitulates the Biased IGHV Gene Usage, Stereotypy, and Antigen-Specific HCDR3 Selection of Its Human Counterpart. Front Immunol 2021; 12:627602. [PMID: 33912159 PMCID: PMC8072112 DOI: 10.3389/fimmu.2021.627602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL)/Small lymphocytic lymphoma (SLL) is a heterogeneous disease consisting of at least two separate subtypes, based on the mutation status of the immunoglobulin heavy chain variable gene (IGHV) sequence. Exposure to antigens seems to play a role in malignant transformation and in the selection and expansion of more aggressive CLL clones. Furthermore, a biased usage of particular IGHV gene subgroups and the existence of stereotyped B-cell receptors (BCRs) are distinctive characteristics of human CLL. We have previously described that Traf2DN/BCL2 double-transgenic (tg, +/+) mice develop CLL/SLL with high incidence with aging. In this model, TNF-Receptor Associated Factor (TRAF)-2 deficiency cooperates with B cell lymphoma (BCL)-2 in promoting CLL/SLL in mice by specifically enforcing marginal zone (MZ) B cell differentiation and rendering B cells independent of BAFF for survival. In this report, we have performed the sequencing of the IGHV-D-J rearrangements of B cell clones from the Traf2DN/BCL2-tg+/+ mice with CLL/SLL. The results indicate that these mice develop oligoclonal and monoclonal B cell expansions. Allotransplantation of the oligoclonal populations into immunodeficient mice resulted in the preferential expansion of one of the parental clones. The analysis of the IGHV sequences indicated that 15% were mutated (M) and 85% unmutated (UM). Furthermore, while the Traf2DN/BCL2-tg-/- (wild-type), -/+ (BCL2 single-tg) and +/- (Traf2DNDN single-tg) littermates showed the expression of various IGHV gene subgroups, the CLL/SLL expanded clones from the Traf2DN/BCL2-tg+/+ (double-transgenic) mice showed a more restricted IGHV gene subgroup usage and an overrepresentation of particular IGHV genes. In addition, the HCDR3-encoded protein sequence indicates the existence of stereotyped immunoglobulin (Ig) in the BCRs and strong similarities with BCR recognizing autoantigens and pathogen-associated antigens. Altogether, these results highlight the remarkable similarities between the CLL/SLL developed by the Traf2DN/BCL2-tg+/+ mice and its human counterpart.
Collapse
Affiliation(s)
- Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| |
Collapse
|
5
|
Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol 2020; 10:592205. [PMID: 33134182 PMCID: PMC7578574 DOI: 10.3389/fonc.2020.592205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymphoid tissue sites where they actively proliferate, and the peripheral blood (PB) where they become quiescent. Strong evidence exists for a crucial role of B cell receptor (BCR) triggering, either by (self-)antigen or by receptor auto-engagement in the lymph node (LN) to drive CLL proliferation and provide adhesion. The clinical success of Bruton's tyrosine kinase (BTK) inhibitors is widely accepted to be based on blockade of the BCR signal. Additional signals in the LN that support CLL survival derive from surrounding cells, such as CD40L-presenting T helper cells, myeloid and stromal cells. It is not quite clear if and to what extent these non-BCR signals contribute to proliferation in situ. In vitro BCR triggering, in contrast, leads to low-level activation and does not result in cell division. Various combinations of non-BCR signals delivered via co-stimulatory receptors, Toll-like receptors (TLRs), and/or soluble cytokines are applied, leading to comparatively modest and short-lived CLL proliferation in vitro. Thus, an unresolved gap exists between the condition in the patient as we now understand it and applicable knowledge that can be harnessed in the laboratory for future therapeutic applications. Even in this era of targeted drugs, CLL remains largely incurable with frequent relapses and emergence of resistance. Therefore, we require better insight into all aspects of CLL growth and potential rewiring of signaling pathways. We aim here to provide an overview of in vivo versus in vitro signals involved in CLL proliferation, point out areas of missing knowledge and suggest future directions for research.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Arnon P. Kater
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Hematology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
6
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
7
|
A stereotyped light chain may shape virus-specific B-cell receptors in HCV-dependent lymphoproliferative disorders. Genes Immun 2020; 21:131-135. [PMID: 32066891 DOI: 10.1038/s41435-020-0093-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/16/2023]
Abstract
Hepatitis C virus (HCV) causes B-cell lymphoproliferative disorders (LPDs) expressing stereotyped B-cell receptors (BCRs) endowed with rheumatoid factor (RF) activity and putatively recognizing the HCV E2 protein. To further untangle the shaping and function of these BCRs, we analyzed immunoglobulin gene rearrangements of monoclonal B cells from 13 patients with HCV-associated LPDs and correlated their features with the clinical outcomes of antiviral therapy. While only two patients shared a stereotyped heavy-chain complementarity determining region 3 (CDR3) sequence, two kappa chain CDR3 stereotyped sequences accounted for 77% of BCRs. Light chains were enriched in sequences homologous to anti-HCV E2 antibodies compared with heavy chains (7/13 vs. 0/13; p = 0.005). Anti-HCV E2 homology was uniquely associated (7/7 vs. 0/6; p = 0.0006) with a stereotyped CDR3 sequence encoded by IGKV3-20/3D-20 gene(s) accounting for 54% of BCRs. An IGKV3-15/IGKJ1-encoded stereotyped sequence homologous to WA RF accounted for 23% of BCRs. LPDs expressing KCDR3s homologous to anti-HCV E2 antibodies responded more frequently to the eradication of HCV by antiviral therapy (6/6 vs. 1/6; p = 0.015). These findings, although limited by the small sample size, suggest that a stereotyped KCDR3 may predominantly shape anti-HCV specificity of BCRs, possibly providing a signature that may help identifying bona fide HCV-dependent LPDs.
Collapse
|
8
|
Gemenetzi K, Agathangelidis A, Zaragoza-Infante L, Sofou E, Papaioannou M, Chatzidimitriou A, Stamatopoulos K. B Cell Receptor Immunogenetics in B Cell Lymphomas: Immunoglobulin Genes as Key to Ontogeny and Clinical Decision Making. Front Oncol 2020; 10:67. [PMID: 32083012 PMCID: PMC7006488 DOI: 10.3389/fonc.2020.00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
The clonotypic B cell receptor immunoglobulin (BcR IG) plays a seminal role in B cell lymphoma development and evolution. From a clinical perspective, this view is supported by the remarkable therapeutic efficacy of BcR signaling inhibitors, even among heavily pre-treated, relapsed/refractory patients. This clinical development complements immunogenetic evidence for antigen drive in the natural history of these tumors. Indeed, BcR IG gene repertoire biases have been documented in different B cell lymphoma subtypes, alluding to selection of B cell progenitors that express particular BcR IG. Moreover, distinct entities display imprints of somatic hypermutation within the clonotypic BcR IG gene following patterns that strengthen the argument for antigen selection. Of note, at least in certain B cell lymphomas, the BcR IG genes are intraclonally diversified, likely in a context of ongoing interactions with antigen(s). Moreover, BcR IG gene repertoire profiling suggests that unique immune pathways lead to distinct B cell lymphomas through targeting cells at different stages in the B cell differentiation trajectory (e.g., germinal center B cells in follicular lymphoma, FL). Regarding the implicated antigens, although their precise nature remains to be fully elucidated, immunogenetic analysis has offered important hints by revealing similarities between the BcR IG of particular lymphomas and B cell clones with known antigenic specificity: this has paved the way to functional studies that identified relevant antigenic determinants of classes of structurally similar epitopes. Finally, in certain tumors, most notably chronic lymphocytic leukemia (CLL), immunogenetic analysis has also proven instrumental in accurate patient risk stratification since cases with differing BcR IG gene sequence features follow distinct disease courses and respond differently to particular treatment modalities. Overall, delving into the BcR IG gene sequences emerges as key to understanding B cell lymphoma pathophysiology, refining prognostication and assisting in making educated treatment choices.
Collapse
Affiliation(s)
- Katerina Gemenetzi
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Laura Zaragoza-Infante
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Electra Sofou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Maria Papaioannou
- Hematology Department, University General Hospital of Thessaloniki AHEPA, Thessaloniki, Greece
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
9
|
Puła B, Gołos A, Górniak P, Jamroziak K. Overcoming Ibrutinib Resistance in Chronic Lymphocytic Leukemia. Cancers (Basel) 2019; 11:E1834. [PMID: 31766355 PMCID: PMC6966427 DOI: 10.3390/cancers11121834] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Ibrutinib is the first Bruton's tyrosine kinase (BTK) inhibitor, which showed significant clinical activity in chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) patients regardless of cytogenetic risk factors. Recent results of phase III clinical trials in treatment-naïve CLL patients shift the importance of the agent to frontline therapy. Nevertheless, beside its clinical efficacy, ibrutinib possesses some off-target activity resulting in ibrutinib-characteristic adverse events including bleeding diathesis and arrhythmias. Furthermore, acquired and primary resistance to the drug have been described. As the use of ibrutinib in clinical practice increases, the problem of resistance is becoming apparent, and new methods of overcoming this clinical problem arise. In this review, we summarize the mechanisms of BTK inhibitors' resistance and discuss the post-ibrutinib treatment options.
Collapse
Affiliation(s)
- Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Aleksandra Gołos
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Patryk Górniak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| |
Collapse
|
10
|
Molecular modelling of epitopes recognized by neoplastic B lymphocytes in Chronic Lymphocytic Leukemia. Eur J Med Chem 2019; 185:111838. [PMID: 31718942 DOI: 10.1016/j.ejmech.2019.111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Identification of epitopes recognized by tumour B cells could provide insights into the molecular mechanisms of B cell tumorigenesis through aberrant B cell receptor (BCR) signalling. Here, we analysed the structure of eleven peptides binders of BCRs expressed in Chronic Lymphocytic Leukemia (CLL) patients in order to identify the chemical features required for cross-reactive binding to different CLL clonotypes. Four cross-reactive (CR) and seven no-cross-reactive (NCR) peptides were analysed by means of GRID molecular interaction fields, ligand-based pharmacophore and 3D-QSAR approaches. Based on pharmacophore model, two peptides were generated by specific amino acids substitutions of the parental NCR peptides; these new peptides resumed the common chemical features of CR peptides and bound the CLL BCR clonotypes recognized by CR peptides and parental NCR peptides. Thus, our computational approach guided the pharmacophore modelling of CR peptides. In perspective, peptide binders of CLL BCR clonotypes could represent a powerful tool for computational modelling of epitopes recognized by tumour B cells clones.
Collapse
|
11
|
PD-L1 over-expression is driven by B-cell receptor signaling in diffuse large B-cell lymphoma. J Transl Med 2019; 99:1418-1427. [PMID: 31197205 DOI: 10.1038/s41374-019-0262-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 11/08/2022] Open
Abstract
Targeting the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway represents a milestone in cancer therapy. However, the biologic features of diffuse large B-cell lymphoma (DLBCL) with PD-L1 expression remains unknown. We evaluated the correlation between pSYK and PD-L1 mRNA levels with RNAscope in situ hybridization and protein levels with immunohistochemistry in 108 cases of DLBCL, 25 of which featured loss of B-cell receptor (BCR), and investigated the effects of BCR signaling and MYC on PD-L1 mRNA and protein level with qPCR, immunoblotting and flow cytometery in DLBCL cell lines. PD-L1 amplification was detected with fluorescent in situ hybridization. Animal studies were applied to validate the in vitro findings. pSYK and MYC correlated with both PD-L1 mRNA and protein level. Genetic aberrations involving PD-L1 were rare in DLBCL. BCR signaling and MYC increased PD-L1 mRNA and protein expression. Inhibition of BCR signaling and BCR knockdown down-regulated PD-L1. DLBCL with a loss of loss of BCR showed low levels of PD-L1 mRNA and protein. PD-L1 was down-regulated by ibrutinib in a xenograft mouse model and correlated with slower tumor growth. In conclusion, this study demonstrates that DLBCL with PD-L1 expression features an activated B-cell receptor signal pathway, and that BCR inhibition and PD-L1 blockage may potentially synergize to targeting DLBCL.
Collapse
|
12
|
Drennan S, Chiodin G, D'Avola A, Tracy I, Johnson PW, Trentin L, Steele AJ, Packham G, Stevenson FK, Forconi F. Ibrutinib Therapy Releases Leukemic Surface IgM from Antigen Drive in Chronic Lymphocytic Leukemia Patients. Clin Cancer Res 2019; 25:2503-2512. [PMID: 30373751 DOI: 10.1158/1078-0432.ccr-18-1286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/26/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE In chronic lymphocytic leukemia (CLL), disease progression associates with surface IgM (sIgM) levels and signaling capacity. These are variably downmodulated in vivo and recover in vitro, suggesting a reversible influence of tissue-located antigen. Therapeutic targeting of sIgM function via ibrutinib, an inhibitor of Bruton tyrosine kinase (BTK), causes inhibition and tumor cell redistribution into the blood, with significant clinical benefit. Circulating CLL cells persist in an inhibited state, offering a tool to investigate the effects of drug on BTK-inhibited sIgM. EXPERIMENTAL DESIGN We investigated the consequences of ibrutinib therapy on levels and function of sIgM in circulating leukemic cells of patients with CLL. RESULTS At week 1, there was a significant increase of sIgM expression (64% increase from pretherapy) on CLL cells either recently released from tissue or persisting in blood. In contrast, surface IgD (sIgD) and a range of other receptors did not change. SIgM levels remained higher than pretherapy in the following 3 months despite gradual cell size reduction and ongoing autophagy and apoptotic activity. Conversely, IgD and other receptors did not increase and gradually declined. Recovered sIgM was fully N-glycosylated, another feature of escape from antigen, and expression did not increase further during culture in vitro. The sIgM was fully capable of mediating phosphorylation of SYK, which lies upstream of BTK in the B-cell receptor pathway. CONCLUSIONS This specific IgM increase in patients underpins the key role of tissue-based engagement with antigen in CLL, confirms the inhibitory action of ibrutinib, and reveals dynamic adaptability of CLL cells to precision monotherapy.See related commentary by Burger, p. 2372.
Collapse
Affiliation(s)
- Samantha Drennan
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom
| | - Giorgia Chiodin
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom
| | - Annalisa D'Avola
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom
| | - Ian Tracy
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom
| | - Peter W Johnson
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom
| | - Livio Trentin
- Padua University School of Medicine, Department of Medicine, Hematology and Clinical Immunology Branch, Padua, Italy
| | - Andrew J Steele
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom
| | - Graham Packham
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom
| | - Freda K Stevenson
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, United Kingdom.
- Haematology Department, Cancer Care Directorate, University Hospital Southampton NHS Trust, Southampton, United Kingdom
| |
Collapse
|
13
|
Ten Hacken E, Gounari M, Ghia P, Burger JA. The importance of B cell receptor isotypes and stereotypes in chronic lymphocytic leukemia. Leukemia 2018; 33:287-298. [PMID: 30555163 DOI: 10.1038/s41375-018-0303-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
B cell receptor (BCR) signaling is a central pathway promoting the survival and proliferation of normal and malignant B cells. Chronic lymphocytic leukemia (CLL) arises from mature B cells, expressing functional BCRs, mainly of immunoglobulin M (IgM) and IgD isotypes. Importantly, 30% of CLL patients express quasi-identical BCRs, the so-called "stereotyped" receptors, indicating the existence of common antigenic determinants, which may drive disease initiation and favor its progression. Although the antigenic specificity of IgM and IgD receptors is identical, there are distinct isotype-specific responses after IgM and IgD triggering. Here, we discuss the most important steps of normal B cell development, and highlight the importance of BCR signaling for CLL pathogenesis, with a focus on differences between IgM and IgD isotype signaling. We also highlight the main characteristics of CLL patient subsets, based on BCR stereotypy, and describe subset-specific BCR function and antigen-binding characteristics. Finally, we outline the key biologic and clinical responses to kinase inhibitor therapy, targeting the BCR-associated Bruton's tyrosine kinase, phosphoinositide-3-kinase, and spleen tyrosine kinase in patients with CLL.
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Maria Gounari
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Jan A Burger
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer 2018; 17:57. [PMID: 29455639 PMCID: PMC5817726 DOI: 10.1186/s12943-018-0779-z] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature B cells. Shortly after its discovery, BTK was placed in the signal transduction pathway downstream of the B cell antigen receptor (BCR). More recently, small-molecule inhibitors of this kinase have shown excellent anti-tumor activity, first in animal models and subsequently in clinical studies. In particular, the orally administered irreversible BTK inhibitor ibrutinib is associated with high response rates in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) and mantle-cell lymphoma (MCL), including patients with high-risk genetic lesions. Because ibrutinib is generally well tolerated and shows durable single-agent efficacy, it was rapidly approved for first-line treatment of patients with CLL in 2016. To date, evidence is accumulating for efficacy of ibrutinib in various other B cell malignancies. BTK inhibition has molecular effects beyond its classic role in BCR signaling. These involve B cell-intrinsic signaling pathways central to cellular survival, proliferation or retention in supportive lymphoid niches. Moreover, BTK functions in several myeloid cell populations representing important components of the tumor microenvironment. As a result, there is currently a considerable interest in BTK inhibition as an anti-cancer therapy, not only in B cell malignancies but also in solid tumors. Efficacy of BTK inhibition as a single agent therapy is strong, but resistance may develop, fueling the development of combination therapies that improve clinical responses. In this review, we discuss the role of BTK in B cell differentiation and B cell malignancies and highlight the importance of BTK inhibition in cancer therapy.
Collapse
Affiliation(s)
- Simar Pal Singh
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Department of Immunology, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Jiménez de Oya N, De Giovanni M, Fioravanti J, Übelhart R, Di Lucia P, Fiocchi A, Iacovelli S, Efremov DG, Caligaris-Cappio F, Jumaa H, Ghia P, Guidotti LG, Iannacone M. Pathogen-specific B-cell receptors drive chronic lymphocytic leukemia by light-chain-dependent cross-reaction with autoantigens. EMBO Mol Med 2017; 9:1482-1490. [PMID: 28899929 PMCID: PMC5666309 DOI: 10.15252/emmm.201707732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
Several lines of evidence indirectly suggest that antigenic stimulation through the B-cell receptor (BCR) supports chronic lymphocytic leukemia (CLL) development. In addition to self-antigens, a number of microbial antigens have been proposed to contribute to the selection of the immunoglobulins expressed in CLL. How pathogen-specific BCRs drive CLL development remains, however, largely unexplored. Here, we utilized mouse models of CLL pathogenesis to equip B cells with virus-specific BCRs and study the effect of antigen recognition on leukemia growth. Our results show that BCR engagement is absolutely required for CLL development. Unexpectedly, however, neither acute nor chronic exposure to virus-derived antigens influenced leukemia progression. Rather, CLL clones preferentially selected light chains that, when paired with virus-specific heavy chains, conferred B cells the ability to recognize a broad range of autoantigens. Taken together, our results suggest that pathogens may drive CLL pathogenesis by selecting and expanding pathogen-specific B cells that cross-react with one or more self-antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- Disease Models, Animal
- Immunoglobulin Light Chains/metabolism
- Immunoglobulins/metabolism
- Intercellular Adhesion Molecule-3/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Array Analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Spleen/cytology
- Spleen/metabolism
- Vesicular stomatitis Indiana virus/genetics
- Vesicular stomatitis Indiana virus/metabolism
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jessica Fioravanti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rudolf Übelhart
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amleto Fiocchi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Iacovelli
- Molecular Hematology Unit, International Centre for Genetic Engineering & Biotechnology, Trieste, Italy
| | - Dimitar G Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering & Biotechnology, Trieste, Italy
| | | | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
- Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Paolo Ghia
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|