1
|
Maffeo D, Carrer A, Rina A, Adamo L, Lo Rizzo C, Bruttini M, Renieri A, Mari F. MET is a new confirmed gene responsible for familial distal arthrogryposis. EMBO Mol Med 2024; 16:720-722. [PMID: 38429387 PMCID: PMC11018841 DOI: 10.1038/s44321-024-00044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
In this Correspondence, F. Mari and colleagues report a second two-generation family with distal arthrogryposis caused by a mutation in MET tyrosine kinase.
Collapse
Affiliation(s)
- Debora Maffeo
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Anna Carrer
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
- Genetica Medica, Azienda Ospedaliera universitaria Senese, 53100, Siena, Italy
| | - Angela Rina
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Loredaria Adamo
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Caterina Lo Rizzo
- Genetica Medica, Azienda Ospedaliera universitaria Senese, 53100, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
- Genetica Medica, Azienda Ospedaliera universitaria Senese, 53100, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
- Genetica Medica, Azienda Ospedaliera universitaria Senese, 53100, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, 53100, Siena, Italy.
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy.
- Genetica Medica, Azienda Ospedaliera universitaria Senese, 53100, Siena, Italy.
| |
Collapse
|
2
|
Shen X, Zhang S, Zhang X, Zhou T, Rui Y. Two nonsense GLI3 variants are associated with polydactyly and syndactyly in two families by affecting the sonic hedgehog signaling pathway. Mol Genet Genomic Med 2022; 10:e1895. [PMID: 35218158 PMCID: PMC9000928 DOI: 10.1002/mgg3.1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 12/26/2022] Open
Abstract
Background Polydactyly and syndactyly are congenital limb deformities, segregating in an autosomal‐dominant fashion. The variants in the GLI3 gene are closely related to congenital limb malformations. However, the causes underlying polydactyly and syndactyly are not well understood. Methods We conducted a whole‐exome sequencing on two four‐generation Chinese families with polydactyly and syndactyly. Then c.2374C>T and c.1728C>A mutant plasmids were transfected to HEK293T cells and mice limb bud cells to explore the functional consequences of these variants. Western blot and real‐time quantitative PCR were used to analyze the expression of GLI3 and Shh. Results In these two families, the known GLI3 variant (NM_000168.6:c.2374C>T) and the novel GLI3 variant (NM_000168.6:c.1728C>A) contributed to polydactyly and syndactyly. Additionally, the GLI3 c.2374C>T mutant plasmid led to truncated GLI3 protein, and the GLI3 c.1728C>A mutant plasmid led to degraded GLI3 protein. Simultaneously, we demonstrated that the GLI3‐mutant plasmids led to decreased Shh expression in mice limb bud cells. Conclusion We demonstrated that the novel GLI3 variant (c.1728C>A) and known GLI3 variant (c.2374C>T) contributed to the malformations in two four‐generation pedigrees with polydactyly and syndactyly by affecting SHH signaling. We demonstrated that the novel GLI3 variant (c.1728C>A) and known GLI3 variant (c.2374C>T) contributed to the malformations in two four‐generation pedigrees with polydactyly and syndactyly by affecting SHH signaling.
Collapse
Affiliation(s)
- Xiaofang Shen
- Soochow University, Suzhou, China.,Department of Orthopedics, Children's Hospital of Soochow University, Suzhou, China
| | - Shun Zhang
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Zhang
- Department of Clinical Research Unit, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Taifeng Zhou
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongjun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|
3
|
Li Y, Zhou H, Chen Y, Zhong D, Su P, Yuan H, Yang X, Liao Z, Qiu X, Wang X, Liang T, Gao W, Shen X, Zhang X, Lian C, Xu C. MET promotes the proliferation and differentiation of myoblasts. Exp Cell Res 2020; 388:111838. [PMID: 31930964 DOI: 10.1016/j.yexcr.2020.111838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
The receptor tyrosine kinase MET plays a vital role in skeletal muscle development and in postnatal muscle regeneration. However, the effect of MET on myogenesis of myoblasts has not yet been fully understood. This study aimed to investigate the effects of MET on myogenesis in vivo and in vitro. Decreased myonuclei and down-regulated expression of myogenesis-related markers were observed in Met p.Y1232C mutant heterozygous mice. To explore the effects of MET on myoblast proliferation and differentiation, Met was overexpressed or interfered in C2C12 myoblast cells through the lentiviral transfection. The Met overexpression cells exhibited promotion in myoblast proliferation, while the Met deficiency cells showed impediment in proliferation. Moreover, myoblast differentiation was enhanced by the stable Met overexpression, but was impaired by Met deficiency. Furthermore, this study demonstrated that SU11274, an inhibitor of MET kinase activity, suppressed myoblast differentiation, suggesting that MET regulated the expression of myogenic regulatory factors (MRFs) and of desmin through the classical tyrosine kinase pathway. On the basis of the above findings, our work confirmed that MET promoted the proliferation and differentiation of myoblasts, deepening our understanding of the molecular mechanisms underlying muscle development.
Collapse
Affiliation(s)
- Yongyong Li
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuyu Chen
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Dongmei Zhong
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peiqiang Su
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Haodong Yuan
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoming Yang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhiheng Liao
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xudong Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaofang Shen
- Department of Pediatric Orthopedics, Wuxi No.9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214062, China
| | - Xin Zhang
- Department of Laboratory, Wuxi No.9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214062, China
| | - Chengjie Lian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Caixia Xu
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|