1
|
Zhang D, Xu H, Qin C, Cai K, Zhang J, Xia X, Bi J, Zhang L, Xing L, Liang Q, Wang W. Reduced expression of semaphorin 3A in osteoclasts causes lymphatic expansion in a Gorham-Stout disease (GSD) mouse model. J Zhejiang Univ Sci B 2024; 25:38-50. [PMID: 38163665 PMCID: PMC10758210 DOI: 10.1631/jzus.b2300180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 01/03/2024]
Abstract
Gorham-Stout disease (GSD) is a sporadic chronic disease characterized by progressive bone dissolution, absorption, and disappearance along with lymphatic vessel infiltration in bone-marrow cavities. Although the osteolytic mechanism of GSD has been widely studied, the cause of lymphatic hyperplasia in GSD is rarely investigated. In this study, by comparing the RNA expression profile of osteoclasts (OCs) with that of OC precursors (OCPs) by RNA sequencing, we identified a new factor, semaphorin 3A (Sema3A), which is an osteoprotective factor involved in the lymphatic expansion of GSD. Compared to OCPs, OCs enhanced the growth, migration, and tube formation of lymphatic endothelial cells (LECs), in which the expression of Sema3A is low compared to that in OCPs. In the presence of recombinant Sema3A, the growth, migration, and tube formation of LECs were inhibited, further confirming the inhibitory effect of Sema3A on LECs in vitro. Using an LEC-induced GSD mouse model, the effect of Sema3A was examined by injecting lentivirus-expressing Sema3A into the tibiae in vivo. We found that the overexpression of Sema3A in tibiae suppressed the expansion of LECs and alleviated bone loss, whereas the injection of lentivirus expressing Sema3A short hairpin RNA (shRNA) into the tibiae caused GSD-like phenotypes. Histological staining further demonstrated that OCs decreased and osteocalcin increased after Sema3A lentiviral treatment, compared with the control. Based on the above results, we propose that reduced Sema3A in OCs is one of the mechanisms contributing to the pathogeneses of GSD and that expressing Sema3A represents a new approach for the treatment of GSD.
Collapse
Affiliation(s)
- Dongfang Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Hao Xu
- Longhua Hospital & Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai 201203, China
| | - Chi Qin
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Kangming Cai
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Jing Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Xinqiu Xia
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Jingwen Bi
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Li Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester 14642, USA
| | - Qianqian Liang
- Longhua Hospital & Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China. ,
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai 201203, China. ,
| | - Wensheng Wang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
2
|
Ricci KW, Iacobas I. How we approach the diagnosis and management of complex lymphatic anomalies. Pediatr Blood Cancer 2022; 69 Suppl 3:e28985. [PMID: 33844431 DOI: 10.1002/pbc.28985] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 12/26/2022]
Abstract
Complex lymphatic anomalies (CLA) are congenital diseases of the lymphatic circulation system that are associated with significant morbidity and early mortality. While guidelines for the comprehensive evaluation of the CLA were recently published, the diagnostic approach and medical management are not standardized. This article presents the clinical features of four CLA: Gorham-Stout disease, generalized lymphatic anomaly, kaposiform lymphangiomatosis, and central collecting lymphatic anomaly. We also offer three cases from the authors' practice and our views on diagnostic testing and disease management including supportive care, medical therapies, and other interventions.
Collapse
Affiliation(s)
- Kiersten W Ricci
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Hematology and Hemangioma and Vascular Malformation Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ionela Iacobas
- Department of Pediatrics, Baylor College of Medicine, Vascular Anomalies Center at Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
3
|
Rabinowitz D, Dysart K, Itkin M. Neonatal lymphatic flow disorders: central lymphatic flow disorder and isolated chylothorax, diagnosis and treatment using novel lymphatic imaging and interventions technique. Curr Opin Pediatr 2022; 34:191-196. [PMID: 35102115 DOI: 10.1097/mop.0000000000001109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neonatal lymphatic disorders (NLDs) are conditions that are relatively rare and difficult to treat. The recent development of lymphatic imaging, such as Dynamic Contrast-Enhanced MR Lymphangiography and Intranodal Lymphangiography has led to a new, better understanding of the anatomical substrate and pathophysiological mechanisms of the diseases. Consequently, this has allowed the development of new targeted therapeutic interventions as well as prognostication for this population with lymphatic flow disorders. RECENT FINDINGS The underlying causes of all NLD is an obstruction or altered flow of the central lymphatic flow. Two types of NLD have been described: isolated neonatal chylothorax and central lymphatic flow disorder (CLFD). Isolated neonatal chylothorax can be treated successfully with oil-based contrast (lipiodol) embolization. CLFD secondary to obstruction of the thoraco-venous junction can be successfully treated with surgical thoracic duct-venous anastomosis. CLFD caused by elevated central pressure and/or thoracic duct dysplasia can be treated medically, including with new systemic therapies such as mammalian target of rapamycin inhibitors. SUMMARY New diagnostic and interventional tools have recently allowed for classification, prognostication, and targeted interventions for neonatal patients with lymphatic flow disorders. Further research will build on these discoveries.
Collapse
Affiliation(s)
- Deborah Rabinowitz
- Division of Interventional Radiology, Department of Medical Imaging, Nemours Children's Hospital, Delaware, Wilmington, Delaware
- Department of Radiology and Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kevin Dysart
- Division of Neonatal-Perinatal Medicine, Department of Neonatology, Nemours Children's Hospital, Delaware, Wilmington, Delaware
| | - Maxim Itkin
- Center for Lymphatic Imaging, Penn Medicine, Hospital of the University of Pennsylvania
- Department of Radiology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Dellinger MT, McCormack FX. The emergence of targetable MEKanisms in sporadic lymphatic disorders. EMBO Mol Med 2020; 12:e12822. [PMID: 32945117 PMCID: PMC7539175 DOI: 10.15252/emmm.202012822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sporadic lymphatic diseases are orphans among orphans in the medical community, a diverse collection of disorders at the intersection of cardiac, gastrointestinal, pulmonary, dermatologic, and oncologic disease that receives only passing attention in medical school and that no subspecialty in medicine fully embraces as its own. They often present in a confusing and illusive manner, with a fractured bone, expectoration of blood or a branching airway cast, a swollen limb or a collection of chylous material; protean manifestations that can challenge even the most expert diagnostician. Yet many of these acquired disorders have been discovered to have a targetable genetic basis, and as the case report of Foster et al (2020) demonstrates, the sedulous clinician–patient dyad can be rewarded with an almost miraculous result when the molecular pathogenesis of the disease is pursued and an exquisitely targeted therapy is administered.
Collapse
Affiliation(s)
- Michael T Dellinger
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| |
Collapse
|