1
|
Lee S, Ohn J, Kang BM, Hwang ST, Kwon O. Activation of mitochondrial aldehyde dehydrogenase 2 promotes hair growth in human hair follicles. J Adv Res 2024; 64:237-247. [PMID: 37972887 PMCID: PMC11464481 DOI: 10.1016/j.jare.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Hair loss is a common phenomenon associated with various environmental and genetic factors. Mitochondrial dysfunction-induced oxidative stress has been recognized as a crucial determinant of hair follicle (HF) biology. Aldehyde dehydrogenase 2 (ALDH2) mitigates oxidative stress by detoxifying acetaldehyde. This study investigated the potential role of ALDH2 modulation in HF function and hair growth promotion. OBJECTIVES To evaluate the effects of ALDH2 activation on oxidative stress in HFs and hair growth promotion. METHODS The modulatory role of ALDH2 on HFs was investigated using an ALDH2 activator. ALDH2 expression in human HFs was evaluated through in vitro immunofluorescence staining. Ex vivo HF organ culture was employed to assess hair shaft elongation, while the fluorescence probe 2',7'- dichlorodihydrofluorescein diacetate was utilized to detect reactive oxygen species (ROS). An in vivo mouse model was used to determine whether ALDH2 activation induces anagen. RESULTS During the anagen phase, ALDH2 showed significantly higher intensity than that in the telogen phase, and its expression was primarily localized along the outer layer of HFs. ALDH2 activation promoted anagen phase induction by reducing ROS levels and enhancing reactive aldehyde clearance, which indicated that ALDH2 functions as a ROS scavenger within HFs. Moreover, ALDH2 activation upregulated Akt/GSK 3β/β-catenin signaling in HFs. CONCLUSIONS Our findings highlight the hair growth promotion effects of ALDH2 activation in HFs and its potential as a promising therapeutic approach for promoting anagen induction.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jungyoon Ohn
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | | | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
2
|
Suh JH, Lee Y, Jin SP, Kim EJ, Seo EY, Li N, Oh JH, Kim SJ, Lee SH, Lee DH, Cho S, Chung JH. Adiponectin Prevents Skin Inflammation in Rosacea by Suppressing S6 Phosphorylation in Keratinocytes. J Invest Dermatol 2024:S0022-202X(24)01982-1. [PMID: 39122145 DOI: 10.1016/j.jid.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Numerous recent evidence highlights epidemiological connections between rosacea and metabolic disorders. However, the precise path through which metabolic factors impact rosacea risk is still unclear. Therefore, this study aims to investigate the role of adiponectin, a crucial adipokine that regulates metabolic homeostasis, in the pathogenesis of rosacea. We elucidated a detrimental feedback loop between rosacea-like skin inflammation and decreased levels of skin adiponectin. To elaborate, rosacea lesional skin exhibits diminished adiponectin expression compared with nonlesional areas in the same patients. Induction of rosacea-like inflammation reduced adiponectin levels in the skin by generating inflammatory cytokines that suppress adiponectin production from subcutaneous adipocytes. Conversely, complete depletion of adiponectin exacerbated rosacea-like features in the mouse model. Mechanistically, adiponectin deficiency led to heightened S6 phosphorylation, a marker of the mTORC1 signaling pathway, in the epidermis. Adiponectin significantly inhibited S6 phosphorylation in cultured keratinocytes. Notably, replenishing adiponectin whole protein or topically applying an agonist for adiponectin receptor 1 successfully improved rosacea-like features in mice. This study contributes to understanding the role of adiponectin in skin inflammation associated with rosacea pathophysiology, suggesting that restoring adiponectin function in the skin could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Joong Heon Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eun Young Seo
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Na Li
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Soyun Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Republic of Korea; Institute of Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Kim EJ, Quan QL, Cho SI, Kim YK, Lee DH, Chung JH. The novel adiponectin receptor agonist APN5N alleviates sensitive skin by upregulating adiponectin expression. J Dermatol Sci 2024; 113:80-83. [PMID: 38368220 DOI: 10.1016/j.jdermsci.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 12/05/2023] [Indexed: 02/19/2024]
Affiliation(s)
- Eun Ju Kim
- Department of Dermatology, Seoul National University College of Medicine, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Korea; Institute of Human-Environment Interface Biology, Seoul National University, Korea
| | - Qing-Ling Quan
- Department of Dermatology, Seoul National University College of Medicine, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Korea; Institute of Human-Environment Interface Biology, Seoul National University, Korea
| | - Soo Ick Cho
- Department of Dermatology, Seoul National University College of Medicine, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Korea; Institute of Human-Environment Interface Biology, Seoul National University, Korea
| | - Yeon Kyung Kim
- Department of Dermatology, Seoul National University College of Medicine, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Korea; Institute of Human-Environment Interface Biology, Seoul National University, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Korea; Institute of Human-Environment Interface Biology, Seoul National University, Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Korea; Institute of Human-Environment Interface Biology, Seoul National University, Korea; Institute on Aging, Seoul National University, Seoul, Korea.
| |
Collapse
|
4
|
Cruz CJG, Hong YK, Aala WJF, Tsai RY, Chung PL, Tsai YS, Hsu CK, Yang CC. Adipose transcriptome in the scalp of androgenetic alopecia. Front Med (Lausanne) 2023; 10:1195656. [PMID: 37746084 PMCID: PMC10513442 DOI: 10.3389/fmed.2023.1195656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Previous studies have shown how adipocytes can modulate the activity of hair follicle stem cells. However, the role of adipocytes in the pathogenesis of androgenetic alopecia (AGA) remains unknown. We aimed to determine signaling pathways related to the adipose tissue changes in the human scalp with AGA through RNA-seq analysis. RNA was isolated from the adipose tissues derived from the bald (frontal) and normal (occipital) scalps of male patients with AGA (n = 4). The pooled RNA extracts from these samples were subjected to RNA sequencing, followed by differential gene expression and pathway analysis. Our gene expression analysis identified 1,060 differentially expressed genes, including 522 upregulated and 538 downregulated genes in the bald AGA scalp. Biological pathways pertaining to either adipose tissue metabolism or the hair cycle were generated in our pathway analysis. Downregulation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway was noted to be significant in the bald scalp. Expression of adipogenic markers (e.g., PPARG, FABP4, PLN1, and ADIPOQ) was also decreased in the bald site. These findings imply that adipogenesis becomes downregulated in AGA, specifically within the bald scalp adipose. Our results lead to the hypothesis that PPARγ-mediated adipogenesis in the scalp adipose, via crosstalk with signaling pathways involved in hair cycling, might play a role in AGA.
Collapse
Affiliation(s)
- Criselda Jean G. Cruz
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Wilson Jr. F. Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ren-Yeu Tsai
- Department of Dermatology and Skin Laser Center, Taipei Municipal Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pei-Lun Chung
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Feng Z, Qin Y, Jiang G. Reversing Gray Hair: Inspiring the Development of New Therapies Through Research on Hair Pigmentation and Repigmentation Progress. Int J Biol Sci 2023; 19:4588-4607. [PMID: 37781032 PMCID: PMC10535703 DOI: 10.7150/ijbs.86911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Hair graying is a common and visible sign of aging resulting from decreased or absence of melanogenesis. Although it has been established that gray hair greatly impacts people's mental health and social life, there is no effective countermeasure other than hair dyes. It has long been thought that reversal of gray hair on a large scale is rare. However, a recent study reported that individual gray hair darkening is a common phenomenon, suggesting the possibility of large-scale reversal of gray hair. In this article, we summarize the regulation mechanism of melanogenesis and review existing cases of hair repigmentation caused by several factors, including monoclonal antibodies drugs, tyrosine kinase inhibitors (TKIs), immunomodulators, other drugs, micro-injury, and tumors, and speculate on the mechanisms behind them. This review offers some insights for further research into the modulation of melanogenesis and presents a novel perspective on the development of clinical therapies, with emphasis on topical treatments.
Collapse
Affiliation(s)
- Zhaorui Feng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Yi Qin
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Kiełbowski K, Bakinowska E, Ostrowski P, Pala B, Gromowska E, Gurazda K, Dec P, Modrzejewski A, Pawlik A. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076390. [PMID: 37047363 PMCID: PMC10094354 DOI: 10.3390/ijms24076390] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17 pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence highlights the immunomodulatory roles of adipokines, which may contribute to the progression or suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to present the pathogenesis of psoriasis and the roles of adipokines in this process.
Collapse
|
7
|
Suh JH, Lee Y, Ohn J, Kim EJ, Kim TG, Jo SJ, Kim SJ, Chung JH. Adiponectin-derived pentapeptide ameliorates psoriasiform skin inflammation by suppressing IL-17 production in γδT cells. J Dermatol Sci 2022; 106:45-52. [DOI: 10.1016/j.jdermsci.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
|
8
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|