1
|
Wang X, Zhang X, Zhang J, Yang H, Liu Z, Peng D, Han L. Illustrate the metabolic regulatory mechanism of Taohong Siwu decoction in ischemic stroke by mass spectrometry imaging. Anal Bioanal Chem 2024; 416:6931-6944. [PMID: 39467910 DOI: 10.1007/s00216-024-05591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Metabolic dysregulation in the ischemic region has been increasingly recognized as a contributing factor to ischemic stroke pathogenesis. Taohong Siwu decoction (THSWD), a traditional Chinese medicine preparation used to enhance blood circulation, is frequently employed in treating ischemic stroke. However, the metabolic regulatory mechanism underlying the therapeutic effects of THSWD in ischemic stroke remains largely unexplored. In this study, we employed desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to investigate the metabolic changes in the brain tissue of ischemic stroke rat model. Our investigation revealed that 30 metabolites exhibited significant dysregulation in the ischemic brain regions, specifically the cortex and striatum, following ischemic injury. Following the treatment of THSWD, almost all the dysregulated metabolites got different degrees of callback. Further pathway analysis indicated that THSWD might exert its therapeutic effects by restoring energy metabolism, improving neurotransmitter metabolism, recovering polyamine metabolism, and so on. DESI-MSI offers a favorable methodology for investigating the alterations in the spatial distribution and level within the ischemic brain region following treatment with THSWD in ischemic stroke. These findings provide a novel perspective on the underlying mechanisms of the efficacy of THSWD in ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
| | - Xueting Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jiayu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hanxue Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Zhuqing Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China.
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China.
| |
Collapse
|
2
|
Sharma P, Kim CY, Keys HR, Imada S, Joseph AB, Ferro L, Kunchok T, Anderson R, Yilmaz O, Weng JK, Jain A. Genetically encoded fluorescent reporter for polyamines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609500. [PMID: 39253442 PMCID: PMC11383275 DOI: 10.1101/2024.08.24.609500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Polyamines are abundant and evolutionarily conserved metabolites that are essential for life. Dietary polyamine supplementation extends life-span and health-span. Dysregulation of polyamine homeostasis is linked to Parkinson's disease and cancer, driving interest in therapeutically targeting this pathway. However, measuring cellular polyamine levels, which vary across cell types and states, remains challenging. We introduce a first-in-class genetically encoded polyamine reporter for real-time measurement of polyamine concentrations in single living cells. This reporter utilizes the polyamine-responsive ribosomal frameshift motif from the OAZ1 gene. We demonstrate broad applicability of this approach and reveal dynamic changes in polyamine levels in response to genetic and pharmacological perturbations. Using this reporter, we conducted a genome-wide CRISPR screen and uncovered an unexpected link between mitochondrial respiration and polyamine import, which are both risk factors for Parkinson's disease. By offering a new lens to examine polyamine biology, this reporter may advance our understanding of these ubiquitous metabolites and accelerate therapy development.
Collapse
Affiliation(s)
- Pushkal Sharma
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colin Y Kim
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Heather R Keys
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Shinya Imada
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Alex B Joseph
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Luke Ferro
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Rachel Anderson
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omer Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jing-Ke Weng
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Department of Bioengineering and Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ankur Jain
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Wu B, Liu S. Structural Insights into the Mechanisms Underlying Polyaminopathies. Int J Mol Sci 2024; 25:6340. [PMID: 38928047 PMCID: PMC11203672 DOI: 10.3390/ijms25126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamines are ubiquitous in almost all biological entities and involved in various crucial physiological processes. They are also closely associated with the onset and progression of many diseases. Polyaminopathies are a group of rare genetic disorders caused by alterations in the function of proteins within the polyamine metabolism network. Although the identified polyaminopathies are all rare diseases at present, they are genetically heritable, rendering high risks not only to the carriers but also to their descendants. Meanwhile, more polyaminopathic patients might be discovered with the increasing accessibility of gene sequencing. This review aims to provide a comprehensive overview of the structural variations of mutated proteins in current polyaminopathies, in addition to their causative genes, types of mutations, clinical symptoms, and therapeutic approaches. We focus on analyzing how alterations in protein structure lead to protein dysfunction, thereby facilitating the onset of diseases. We hope this review will offer valuable insights and references for the future clinical diagnosis and precision treatment of polyaminopathies.
Collapse
Affiliation(s)
- Bing Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Akinyele O, Munir A, Johnson MA, Perez MS, Gao Y, Foley JR, Nwafor A, Wu Y, Murray-Stewart T, Casero RA, Bayir H, Kemaladewi DU. Impaired polyamine metabolism causes behavioral and neuroanatomical defects in a mouse model of Snyder-Robinson syndrome. Dis Model Mech 2024; 17:dmm050639. [PMID: 38463005 PMCID: PMC11103582 DOI: 10.1242/dmm.050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.
Collapse
Affiliation(s)
- Oluwaseun Akinyele
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Anushe Munir
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marie A. Johnson
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Megan S. Perez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuan Gao
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jackson R. Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Ashley Nwafor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Hülya Bayir
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Dwi U. Kemaladewi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
5
|
Li B, Liang J, Baniasadi HR, Kurihara S, Phillips MA, Michael AJ. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N 1-aminopropylagmatine synthases. J Biol Chem 2024; 300:107281. [PMID: 38588807 PMCID: PMC11107197 DOI: 10.1016/j.jbc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid R Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
6
|
Cressman A, Morales D, Zhang Z, Le B, Foley J, Murray-Stewart T, Genetos DC, Fierro FA. Effects of Spermine Synthase Deficiency in Mesenchymal Stromal Cells Are Rescued by Upstream Inhibition of Ornithine Decarboxylase. Int J Mol Sci 2024; 25:2463. [PMID: 38473716 PMCID: PMC10931026 DOI: 10.3390/ijms25052463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.
Collapse
Affiliation(s)
- Amin Cressman
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - David Morales
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Zhenyang Zhang
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Bryan Le
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
| | - Jackson Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; (J.F.); (T.M.-S.)
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; (J.F.); (T.M.-S.)
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Fernando A. Fierro
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA; (A.C.); (D.M.); (Z.Z.); (B.L.)
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Gilmour SK. Rebalancing polyamine levels to treat Snyder-Robinson syndrome. EMBO Mol Med 2023; 15:e18506. [PMID: 37712293 PMCID: PMC10630864 DOI: 10.15252/emmm.202318506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Snyder-Robinson syndrome (SRS) is a rare genetic disorder characterized by intellectual disability and delayed development beginning early in childhood. It was first described in a single family in 1969 as a sex-linked disorder (Snyder & Robinson, 1969) and has since been only identified in less than 100 individuals worldwide. Inherited in an X-linked recessive pattern, SRS has only been identified in males thus far. Snyder-Robinson syndrome primarily affects the nervous system and skeletal tissues and is caused by loss-of-function mutations in the gene encoding spermine synthase (SMS), a polyamine biosynthesis enzyme. Affected males display a collection of clinical features including intellectual disability ranging from mild to profound, speech and vision impairment, osteoporosis, hypotonia, and increasing loss of muscle tissue with age, kyphoscoliosis, seizures, and distinctive facial features including a prominent lower lip and facial asymmetry. Currently, there is no cure or treatment for this debilitating disorder aside from symptom management.
Collapse
|