1
|
Wang J, Lou Y, Peng X, Ye M, Cao W, Wu J, Yan Z, Zhao X, Zhou Y, Zheng C, Wei X, Chen Q, Hu C, Zhang M, Qu L, Chen Z, Fu Q, Wang W, Li J, Zhang Q, Liang T. Comprehensive analysis of protein post-translational modifications reveals PTPN2-STAT1-AOX axis-mediated tumor progression in hepatocellular carcinomas. Transl Oncol 2025; 53:102275. [PMID: 39837058 PMCID: PMC11788854 DOI: 10.1016/j.tranon.2025.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. Although the proteomics of HCC is well studied, the landscape of post-translational modifications (PTMs) in HCC is poorly understood. The PTMs themselves and their crosstalk might be deeply involved in HCC development and progression. Herein, we investigated nine types of PTMs in paired tumor and normal tissues from nine patients with HCC using the label-free quantitative liquid chromatography with tandem mass spectrometry (LC-MS)-based technique. We identified >60,000 modified sites, and found that phosphorylation and ubiquitination were two most frequently changed PTMs between tumor and normal tissues. Crosstalk between malonylation-ubiquitination, phosphorylation-ubiquitination, and succinylation-propionylation were most significant among all PTMs. Further analysis revealed that Thr-160 of CDK2 regulated EZH2 via H3K27me3, and proposed a PTPN2-STAT1-AOX1 axis for HCC development through driver PTM exploration. In conclusion, our study provides a database of multiple PTMs in HCC, which might help to understand the biology of HCC and reveal novel targets for drug development.
Collapse
Affiliation(s)
- Junli Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Lou
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Peng
- Cosmos Wisdom Biotechnology Co. Ltd., Hangzhou, China
| | - Mao Ye
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanyue Cao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangchao Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Yu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenlei Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobao Wei
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qitai Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyang Hu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lanqing Qu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zeshe Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qihan Fu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, China; Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixin Wang
- Cosmos Wisdom Biotechnology Co. Ltd., Hangzhou, China
| | - Jingsong Li
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Qi Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, China; Zhejiang University Cancer Center, Hangzhou, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, China; Zhejiang University Cancer Center, Hangzhou, China.
| |
Collapse
|
2
|
Burbano de Lara S, Kemmer S, Biermayer I, Feiler S, Vlasov A, D'Alessandro LA, Helm B, Mölders C, Dieter Y, Ghallab A, Hengstler JG, Körner C, Matz-Soja M, Götz C, Damm G, Hoffmann K, Seehofer D, Berg T, Schilling M, Timmer J, Klingmüller U. Basal MET phosphorylation is an indicator of hepatocyte dysregulation in liver disease. Mol Syst Biol 2024; 20:187-216. [PMID: 38216754 PMCID: PMC10912216 DOI: 10.1038/s44320-023-00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024] Open
Abstract
Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.
Collapse
Affiliation(s)
- Sebastian Burbano de Lara
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
| | - Svenja Kemmer
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
- FDM - Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany
| | - Ina Biermayer
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
| | - Svenja Feiler
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of General, Visceral and Transplant Surgery, Heidelberg University, Heidelberg, Germany
| | - Artyom Vlasov
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenza A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Helm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Mölders
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
| | - Yannik Dieter
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Ghallab
- Systems Toxicology, Leibniz Research Center for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Jan G Hengstler
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Systems Toxicology, Leibniz Research Center for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Christiane Körner
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Madlen Matz-Soja
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Christina Götz
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital Leipzig, Leipzig University, 04103, Leipzig, Germany
| | - Georg Damm
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital Leipzig, Leipzig University, 04103, Leipzig, Germany
| | - Katrin Hoffmann
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Department of General, Visceral and Transplant Surgery, Heidelberg University, Heidelberg, Germany
| | - Daniel Seehofer
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital Leipzig, Leipzig University, 04103, Leipzig, Germany
| | - Thomas Berg
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jens Timmer
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany.
- Institute of Physics, University of Freiburg, Freiburg, Germany.
- FDM - Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Liver Systems Medicine against Cancer (LiSyM-Krebs), Heidelberg, Germany.
| |
Collapse
|
3
|
Liu J, Wang W, Kong N, Yu S, Dong M, Yang W, Li Y, Zhou X, Wang L, Song L. A pattern recognition receptor CgTLR3 involves in regulating the proliferation of haemocytes in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104762. [PMID: 37353060 DOI: 10.1016/j.dci.2023.104762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity, and they also play significant roles in regulating cell proliferation and differentiation. In the present study, the binding activity of CgTLR3 to PAMPs and CgMyD88-2, and its role in mediating the proliferation of haemocytes was investigated. The recombinant proteins of the extracellular six LRR domains (rCgTLR3-LRR) and intracellular TIR domain (rCgTLR3-TIR) of CgTLR3 were obtained respectively. rCgTLR3-LRR exhibited binding activity to lipopolysaccharide (LPS), peptidoglycan (PGN), mannan (MAN) and Poly (I:C), with the highest affinity for LPS. While rCgTLR3-TIR displayed binding activity to the recombinant protein of rCgMyD88-2, with KD value of 7.22 × 10-7 M. The CgTLR3 mRNA and protein were detected in three subpopulations of oyster haemocytes, and they were mainly concentrated in granulocytes, which was 7.27-fold (p < 0.05) of that in semi-granulocytes and 8.51-fold (p < 0.01) of that in agranulocytes. The percentage of CgTLR3 positive cells (FITC+ haemocytes) in granulocytes was 4.45-fold (p < 0.01) and 2.57-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. After Vibrio splendidus stimulation, the mRNA expression level of CgTLR3 in haemocytes significantly upregulated at 6 h and 12 h, which was 2.93-fold (p < 0.05) and 4.15-fold (p < 0.05) of that in the control group. After the expression of CgTLR3 was inhibited by the injection of si-CgTLR3, the expression levels of transcription factors associated with hematopoiesis (CgGATA, CgRunx), cell cycle-related genes (CgPCNA, CgCDC-45, CgCDK-2), the agranulocyte marker CgCD-9, the granulocyte marker CgAATase, and the inflammatory factor CgIL17-1 significantly decreased (p < 0.05) after the V. splendidus stimulation, which were 0.43-fold, 0.83-fold, 0.48-fold, 0.44-fold, 0.53-fold, 0.7-fold, 0.62-fold, and 0.47-fold of that in NC + V. s group in vivo, respectively. Meanwhile, the percentage of EdU+ haemocytes in si-CgTLR3+V. s group was significantly reduced by 0.54-fold (p < 0.05) compared to the control group (2.7%). These results collectively indicated that CgTLR3 was involved in modulating the proliferation of haemocytes by regulating the expression of proliferation-related genes and inflammatory factor in oyster C. gigas.
Collapse
Affiliation(s)
- Jinyu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxu Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Chakraborty S, Andrieux G, Kastl P, Adlung L, Altamura S, Boehm ME, Schwarzmüller LE, Abdullah Y, Wagner MC, Helm B, Gröne HJ, Lehmann WD, Boerries M, Busch H, Muckenthaler MU, Schilling M, Klingmüller U. Erythropoietin-driven dynamic proteome adaptations during erythropoiesis prevent iron overload in the developing embryo. Cell Rep 2022; 40:111360. [PMID: 36130519 DOI: 10.1016/j.celrep.2022.111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes. In the absence of the Epo receptor (EpoR) in embryos, we observe a lack of hemoglobin in CFU-E cells and massive iron overload of the fetal liver pointing to a miscommunication between liver and placenta. A reduction of iron-sulfur cluster-containing proteins involved in oxidative phosphorylation in these embryos leads to a metabolic shift toward glycolysis. This link connecting erythropoiesis with the regulation of iron homeostasis and metabolic reprogramming suggests that balancing these interactions is crucial for protection from iron intoxication and for survival.
Collapse
Affiliation(s)
- Sajib Chakraborty
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Systems Cell-Signalling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philipp Kastl
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lorenz Adlung
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Medicine & Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandro Altamura
- Center for Translational Biomedical Iron Research (CeTBI), Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin E Boehm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa E Schwarzmüller
- Division Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yomn Abdullah
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marie-Christine Wagner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Helm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wolf D Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg im Breisgau, Germany.
| | - Hauke Busch
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany.
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research (CeTBI), Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany; German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Verma A, Manchel A, Melunis J, Hengstler JG, Vadigepalli R. From Seeing to Simulating: A Survey of Imaging Techniques and Spatially-Resolved Data for Developing Multiscale Computational Models of Liver Regeneration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:917191. [PMID: 37575468 PMCID: PMC10421626 DOI: 10.3389/fsysb.2022.917191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Liver regeneration, which leads to the re-establishment of organ mass, follows a specifically organized set of biological processes acting on various time and length scales. Computational models of liver regeneration largely focused on incorporating molecular and signaling detail have been developed by multiple research groups in the recent years. These modeling efforts have supported a synthesis of disparate experimental results at the molecular scale. Incorporation of tissue and organ scale data using noninvasive imaging methods can extend these computational models towards a comprehensive accounting of multiscale dynamics of liver regeneration. For instance, microscopy-based imaging methods provide detailed histological information at the tissue and cellular scales. Noninvasive imaging methods such as ultrasound, computed tomography and magnetic resonance imaging provide morphological and physiological features including volumetric measures over time. In this review, we discuss multiple imaging modalities capable of informing computational models of liver regeneration at the organ-, tissue- and cellular level. Additionally, we discuss available software and algorithms, which aid in the analysis and integration of imaging data into computational models. Such models can be generated or tuned for an individual patient with liver disease. Progress towards integrated multiscale models of liver regeneration can aid in prognostic tool development for treating liver disease.
Collapse
Affiliation(s)
- Aalap Verma
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Manchel
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Justin Melunis
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jan G. Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Sun W, Song X, Dong M, Liu Z, Song Y, Wang L, Song L. DNA binding protein CgIkaros-like regulates the proliferation of agranulocytes and granulocytes in oyster (Crassostrea gigas). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104201. [PMID: 34252475 DOI: 10.1016/j.dci.2021.104201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
DNA-binding protein Ikaros is a major determinant of haematopoietic lineage, especially in the development, differentiation and proliferation of lymphocytes. In the present study, a Ikaros homologue (designed as CgIkaros-like) was identified and characterized as a vital determinant in the proliferation of haemocytes during haematopoiesis of Pacific oyster Crassostrea gigas. The complete coding sequence of CgIkaros-like was of 1329 bp encoding a predicted polypeptide of 442 amino acids with four ZnF regions, locating at the C-terminus and N-terminus respectively. The highest expression level of CgIkaros-like mRNA was found in gills, followed by haemocytes and gonad. The mRNA transcripts of CgIkaros-like could be detected in all the haemocytes with higher abundance in semi-granulocytes and agranulocytes. CgIkaros-like protein was localized in both of cytoplasm and nucleus with higher abundance in nucleus of oyster haemocytes. The mRNA and protein expression levels of agranulocyte marker CgCD9, granulocyte marker CgAATase, cell cycle related gene CgCDK2, Notch receptor CgNotch and Notch target gene CgHes1 all increased significantly (p < 0.05) after CgIkaros-like was interfered by siRNAs, which were about 27.33-, 2.63-, 24.34-, 4.45- and 6.08-fold of that in the siRNA-NC control group, respectively. While the transcripts of CgGATA3 and CgRunx did not change significantly after CgIkaros-like was interfered. These results demonstrated that CgIkaros-like functioned as a transcription factor combined with Notch pathway to mediate CgCDK2 and regulate the proliferation of oyster haemocytes.
Collapse
Affiliation(s)
- Wending Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhuyun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ying Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
7
|
Imoto H, Okada M. Signal-dependent regulation of early-response genes and cell cycle: a quantitative view. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Ran Q, Xiang Y, Stephen P, Wu C, Li T, Lin SX, Li Z. CRIF1-CDK2 Interface Inhibitors: An Unprecedented Strategy for Modulation of Cell Radiosensitivity. J Am Chem Soc 2019; 141:1420-1424. [PMID: 30653304 DOI: 10.1021/jacs.8b10207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclin-dependent kinases (CDKs) are historic therapeutic targets implicated in tumorigenic events due to their critical involvement in the cell cycle phase. However, selectivity has proven to be a bottleneck, causing repeated failures. Previously, we reported CR6-interacting factor 1 (CRIF1), acting as a cell cycle negative regulator through interaction with CDK2. In the current report, we identified the CRIF1-CDK2 interaction interface by in silico studies and shortlisted interface inhibitors through virtual screening on CRIF1 using 40 678 drug-like compounds. These compounds were tested by cell proliferation assay, and four of these molecules were found to selectively inhibit the proliferation of osteosarcoma (OS) cell lines, but do not affect normal bone mesenchymal stem cells (BMSC). A binding study reveals significant affinities of the inhibitors on CRIF1. More importantly, treatment of the OS cells with a combination of ionizing radiation (IR) and the best-performing inhibitors remarkably increased IR inhibition potential from 19.9% to 59.6%. This occurred by selectively promoting G2/M arrest and apoptosis related to CDK2 overactivation in OS cells but not in BMSC and was supported by significant CDK2 phosphorylation modifications. Knocking down of CRIF1 by siRNA treatment showed similar effects to the interface inhibitors. Together we substantiate the identification of novel lead molecules, which may provide a new treatment to overcome selectivity issues and enhance the radiosensitivity of tumor cells, opening a conceptually novel strategy of CDK-targeting for different cancer types.
Collapse
Affiliation(s)
- Qian Ran
- Department of Blood Transfusion, Irradiation Biology Laboratory , Xinqiao Hospital , Chongqing , 400037 , China
| | - Yang Xiang
- Department of Blood Transfusion, Irradiation Biology Laboratory , Xinqiao Hospital , Chongqing , 400037 , China
| | - Preyesh Stephen
- Axe Molecular Endocrinology and Nephrology , CHU Research Center and Laval University , Québec City , Québec G1V 4G2 , Canada
| | - Chun Wu
- Department of Blood Transfusion, Irradiation Biology Laboratory , Xinqiao Hospital , Chongqing , 400037 , China
| | - Tang Li
- Axe Molecular Endocrinology and Nephrology , CHU Research Center and Laval University , Québec City , Québec G1V 4G2 , Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology , CHU Research Center and Laval University , Québec City , Québec G1V 4G2 , Canada
| | - Zhongjun Li
- Department of Blood Transfusion, Irradiation Biology Laboratory , Xinqiao Hospital , Chongqing , 400037 , China
| |
Collapse
|
9
|
Zhu B, Pan Y, Zheng X, Zhang Q, Wu Y, Luo J, Li Q, Lu E, Xu L, Jin G, Ren B. A clinical, biologic and mechanistic analysis of the role of ZNF692 in cervical cancer. Gynecol Oncol 2018; 152:396-407. [PMID: 30466806 DOI: 10.1016/j.ygyno.2018.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cervical cancer (CC) is the most common malignancy in women. The zinc finger protein 692 (ZNF692) has been identified as a transcription factor and its aberrant expression participates in tumorigenesis of various cancers. However, its biological function and molecular mechanisms in cervical cancer remain unclear. METHODS Microarrays were analysed by immunohistochemistry (IHC) to investigate the expression of ZNF692 in cervical cancer and its relationship with clinicopathologic characteristics. siRNAs and expression plasmids were used to reveal the biological function of ZNF692 in CC and subcutaneous xenograft model to examine the role of ZNF692 in vivo. Chromatin Immunoprecipitation and luciferase reporter assay were performed to ascertain whether ZNF692 binds to the promoter region of p27kip1. RESULTS By analyzing The Cancer Genome Atlas (TCGA) dataset, we confirmed ZNF692 as a potential oncogene in CC. ZNF692 expression was up-regulated in CC tissues compared with that in adjacent normal tissues, and its overexpression was correlated with poor clinicopathologic characteristics. Moreover, ZNF692 promoted the proliferation, migration and invasion of CC cells both in vitro and in vivo. Regarding molecular mechanisms, up-regulation of ZNF692 was found to enhance the G1/S transition via regulating the p27kip1/PThr160-CDK2 signal pathway in CC cells. CONCLUSION ZNF692 promotes CC cells proliferation and invasion through suppressing p27kip1 transcription by directly binding its promoter region, which suggests that ZNF692 may serve as an underlying therapeutic target and prognostic marker in CC.
Collapse
Affiliation(s)
- Biqing Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Yinpeng Pan
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China; Department of Thoracic Surgery, the First People's Hospital of Lianyungang City Affiliated with Lianyungang Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufen Zheng
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China; Department of Clinical Pharmacy, China Pharmaceutical University, China
| | - Quanli Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, China
| | - Qian Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Emei Lu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China.
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, China.
| | - Binhui Ren
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China.
| |
Collapse
|
10
|
Yang B, Jia Y, Jia Z, Wang W, Song X, Li Y, Yi Q, Wang L, Song L. The cyclin-dependent kinase 2 (CDK2) mediates hematopoiesis through G1-to-S transition in Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:156-166. [PMID: 29198777 DOI: 10.1016/j.dci.2017.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Cyclin-dependent kinases (CDKs), a family of cell cycle-related serine/threonine kinases, participate in various biological processes, and play crucial roles in the innate immunity. In the present study, a CDK2 (designed as EsCDK2) with a serine/threonine protein kinase catalytic domain was identified from Chinese mitten crab (Eriocheir sinensis). The full-length cDNA sequence of EsCDK2 was of 2405 bp with an open reading frame (ORF) of 909 bp. EsCDK2 shared 66%-81% sequence similarities with previously identified CDK2s. It was clustered with the CDK2 from Penaeus monodon in the invertebrate branch of the phylogenetic tree. The mRNA transcripts of EsCDK2 were highly expressed in hematopoietic tissue (HPT) and gonad, while lower in hemocytes, heart, gills, and muscle. EsCDK2 protein distributed in both cytoplasm and nucleus of HPT cells. The expression of EsCDK2 mRNA in HPT was significantly up-regulated and peaked at 3 h post stimulations with Aeromonas hydrophila (2.31-fold, p < 0.05) and Lipopolysaccharide (LPS) (2.02-fold, p < 0.05). After exsanguination, the total hemocyte counts (THC) decreased significantly to 0.42 × 107/ml (0.39-fold, p < 0.05) at 0.5 h, then returned to a normal level at 6 h, while the mRNA expression of EsCDK2 in HPT cells was up-regulated at the early phase from 0.5 h to 6 h. After injection of EsCDK2-dsRNA, the mRNA expression level of EsCDK2 in HPT and THC both decreased to 0.53-fold (p < 0.01) and 0.78-fold (p < 0.05) at 24 h, respectively, and the percentage of new-born hemocytes in HPT also decreased significantly from 37.7% to 16.3% (0.43-fold, p < 0.01). After knocking down of EsCDK2, THC decreased dramatically at 6 h (0.65-fold, p < 0.01) post exsanguination, while returned normal at 6 h in PBS group. After interference of EsCDK2 mRNA expression, the percentage of G0-G1 phase cells significantly increased to 85.01% (1.26-fold, p < 0.01), while S phase and G2-M phase cells significantly decreased to 7.92% (0.46-fold, p < 0.01) and 7.07% (0.43-fold, p < 0.01) respectively, indicating that the cell cycle of HPT cells arrested at G1 phase. These results collectively demonstrated that EsCDK2 participated in the regeneration of hemocytes or hematopoiesis by regulating the transition from G1 to S phase in the cell cycle, and involves in the innate immune responses of E. sinensis.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yannan Li
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
11
|
Lucarelli P, Schilling M, Kreutz C, Vlasov A, Boehm ME, Iwamoto N, Steiert B, Lattermann S, Wäsch M, Stepath M, Matter MS, Heikenwälder M, Hoffmann K, Deharde D, Damm G, Seehofer D, Muciek M, Gretz N, Lehmann WD, Timmer J, Klingmüller U. Resolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression. Cell Syst 2018; 6:75-89.e11. [DOI: 10.1016/j.cels.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/23/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
|
12
|
Sobotta S, Raue A, Huang X, Vanlier J, Jünger A, Bohl S, Albrecht U, Hahnel MJ, Wolf S, Mueller NS, D'Alessandro LA, Mueller-Bohl S, Boehm ME, Lucarelli P, Bonefas S, Damm G, Seehofer D, Lehmann WD, Rose-John S, van der Hoeven F, Gretz N, Theis FJ, Ehlting C, Bode JG, Timmer J, Schilling M, Klingmüller U. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib. Front Physiol 2017; 8:775. [PMID: 29062282 PMCID: PMC5640784 DOI: 10.3389/fphys.2017.00775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines.
Collapse
Affiliation(s)
- Svantje Sobotta
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Raue
- Discovery Division, Merrimack Pharmaceuticals, Cambridge, MA, United States
| | - Xiaoyun Huang
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Joep Vanlier
- Institute of Physics, Albert Ludwigs University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Anja Jünger
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Sebastian Bohl
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Ute Albrecht
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Maximilian J Hahnel
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stephanie Wolf
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Nikola S Mueller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lorenza A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Stephanie Mueller-Bohl
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Martin E Boehm
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Philippe Lucarelli
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Sandra Bonefas
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, Leipzig University, Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, Leipzig University, Leipzig, Germany
| | - Wolf D Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | | | - Frank van der Hoeven
- Transgenic Service, Center for Preclinical Research, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Christian Ehlting
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Johannes G Bode
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jens Timmer
- Institute of Physics, Albert Ludwigs University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
13
|
Magi S, Iwamoto K, Okada-Hatakeyama M. Current status of mathematical modeling of cancer – From the viewpoint of cancer hallmarks. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Adlung L, Kar S, Wagner MC, She B, Chakraborty S, Bao J, Lattermann S, Boerries M, Busch H, Wuchter P, Ho AD, Timmer J, Schilling M, Höfer T, Klingmüller U. Protein abundance of AKT and ERK pathway components governs cell type-specific regulation of proliferation. Mol Syst Biol 2017; 13:904. [PMID: 28123004 PMCID: PMC5293153 DOI: 10.15252/msb.20167258] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro‐proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type‐specific proliferation. First, cell type‐specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate‐limiting for faster cycling cells while slower cell cycles are controlled at the G1‐S progression. The integrated mathematical model of Epo‐driven proliferation explains cell type‐specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti‐proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance.
Collapse
Affiliation(s)
- Lorenz Adlung
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandip Kar
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany.,Department of Chemistry, Indian Institute of Technology, Mumbai, India
| | - Marie-Christine Wagner
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bin She
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sajib Chakraborty
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jie Bao
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany
| | - Susen Lattermann
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, University of Heidelberg, Mannheim, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Jens Timmer
- Center for Biological Signaling Studies (BIOSS), Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Marcel Schilling
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany .,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany .,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
15
|
Kostallari E, Shah VH. Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G246-51. [PMID: 27288423 PMCID: PMC5007289 DOI: 10.1152/ajpgi.00118.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
The capillary network irrigating the liver is important not only for nutrient and oxygen delivery, but also for the signals distributed to other hepatic cell types necessary to maintain liver homeostasis. During development, endothelial cells are a key component in liver zonation. In adulthood, they maintain hepatic stellate cells and hepatocytes in quiescence. Their importance in pathobiology is highlighted in liver regeneration and chronic liver diseases, where they coordinate paracrine cell behavior. During regeneration, liver sinusoidal endothelial cells induce hepatocyte proliferation and angiogenesis. During fibrogenesis, they undergo morphological and functional changes, which are reflected by their role in hepatic stellate cell activation, inflammation, and distorted sinusoidal structure. Therapeutic strategies to target angiocrine signaling are in progress but are in the early stages. Here, we offer a short synthesis of recent studies on angiocrine signaling in liver homeostasis, regeneration, and fibrogenesis.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Hentzschel F, Herrmann AK, Mueller AK, Grimm D. Plasmodium meets AAV-the (un)likely marriage of parasitology and virology, and how to make the match. FEBS Lett 2016; 590:2027-45. [PMID: 27117587 DOI: 10.1002/1873-3468.12187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/24/2016] [Accepted: 04/21/2016] [Indexed: 01/21/2023]
Abstract
The increasing use of screening technologies in malaria research has substantially expanded our knowledge on cellular factors hijacked by the Plasmodium parasite in the infected host, including those that participate in the clinically silent liver stage. This rapid gain in our understanding of the hepatic interaction partners now requires a means to validate and further disentangle parasite-host networks in physiologically relevant liver model systems. Here, we outline seminal work that contributed to our present knowledge on the intrahepatic Plasmodium host factors, followed by a discussion of surrogate models of mammalian livers or hepatocytes. We finally describe how Adeno-associated viruses could be engineered and used as hepatotropic tools to dissect Plasmodium-host interactions, and to deliberately control these networks for antimalaria vaccination or therapy.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Department of Parasitology, Center for Infectious Diseases, Heidelberg University Hospital, Germany.,Department of Virology, Center for Infectious Diseases, Heidelberg University Hospital, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Anne-Kathrin Herrmann
- Department of Virology, Center for Infectious Diseases, Heidelberg University Hospital, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Department of Parasitology, Center for Infectious Diseases, Heidelberg University Hospital, Germany
| | - Dirk Grimm
- Department of Virology, Center for Infectious Diseases, Heidelberg University Hospital, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
17
|
Höfer T, Barile M, Flossdorf M. Stem-cell dynamics and lineage topology from in vivo fate mapping in the hematopoietic system. Curr Opin Biotechnol 2016; 39:150-156. [PMID: 27107166 DOI: 10.1016/j.copbio.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
In recent years, sophisticated fate-mapping tools have been developed to study the behavior of stem cells in the intact organism. These experimental approaches are beginning to yield a quantitative picture of how cell numbers are regulated during steady state and in response to challenges. Focusing on hematopoiesis and immune responses, we discuss how novel mathematical approaches driven by these fate-mapping data have provided insights into the dynamics and topology of cellular differentiation pathways in vivo. The combination of experiment and theory has allowed to quantify the degree of self-renewal in stem and progenitor cells, shown how native hematopoiesis differs fundamentally from post-transplantation hematopoiesis, and uncovered that the diversification of T lymphocytes during immune responses resembles tissue renewal driven by stem cells.
Collapse
Affiliation(s)
- Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | - Melania Barile
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Michael Flossdorf
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Iwamoto N, D'Alessandro LA, Depner S, Hahn B, Kramer BA, Lucarelli P, Vlasov A, Stepath M, Böhm ME, Deharde D, Damm G, Seehofer D, Lehmann WD, Klingmüller U, Schilling M. Context-specific flow through the MEK/ERK module produces cell- and ligand-specific patterns of ERK single and double phosphorylation. Sci Signal 2016; 9:ra13. [PMID: 26838549 DOI: 10.1126/scisignal.aab1967] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The same pathway, such as the mitogen-activated protein kinase (MAPK) pathway, can produce different cellular responses, depending on stimulus or cell type. We examined the phosphorylation dynamics of the MAPK kinase MEK and its targets extracellular signal-regulated kinase 1 and 2 (ERK1/2) in primary hepatocytes and the transformed keratinocyte cell line HaCaT A5 exposed to either hepatocyte growth factor or interleukin-6. By combining quantitative mass spectrometry with dynamic modeling, we elucidated network structures for the reversible threonine and tyrosine phosphorylation of ERK in both cell types. In addition to differences in the phosphorylation and dephosphorylation reactions, the HaCaT network model required two feedback mechanisms, which, as the experimental data suggested, involved the induction of the dual-specificity phosphatase DUSP6 and the scaffold paxillin. We assayed and modeled the accumulation of the double-phosphorylated and active form of ERK1/2, as well as the dynamics of the changes in the monophosphorylated forms of ERK1/2. Modeling the differences in the dynamics of the changes in the distributions of the phosphorylated forms of ERK1/2 suggested that different amounts of MEK activity triggered context-specific responses, with primary hepatocytes favoring the formation of double-phosphorylated ERK1/2 and HaCaT A5 cells that produce both the threonine-phosphorylated and the double-phosphorylated form. These differences in phosphorylation distributions explained the threshold, sensitivity, and saturation of the ERK response. We extended the findings of differential ERK phosphorylation profiles to five additional cultured cell systems and matched liver tumor and normal tissue, which revealed context-specific patterns of the various forms of phosphorylated ERK.
Collapse
Affiliation(s)
- Nao Iwamoto
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lorenza A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sofia Depner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bettina Hahn
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernhard A Kramer
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Philippe Lucarelli
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Artyom Vlasov
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Markus Stepath
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Martin E Böhm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniela Deharde
- Department of General, Visceral and Transplantation Surgery, Campus Virchow Clinic, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Georg Damm
- Department of General, Visceral and Transplantation Surgery, Campus Virchow Clinic, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Daniel Seehofer
- Department of General, Visceral and Transplantation Surgery, Campus Virchow Clinic, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Wolf D Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|