1
|
Homer CM, Ochoa E, Voorhies M, Sil A. Optimizing in vitro spherulation cues in the fungal pathogen Coccidioides. mSphere 2024:e0067924. [PMID: 39688406 DOI: 10.1128/msphere.00679-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 12/18/2024] Open
Abstract
Coccidioides spp. are part of a group of thermally dimorphic fungal pathogens, which grow as filamentous cells (hyphae) in the soil and transform to a different morphology upon inhalation into the host. The Coccidioides host form, the spherule, is unique and highly undercharacterized due to both technical and biocontainment challenges. Each spherule arises from an environmental spore (arthroconidium), matures, and develops hundreds of internal endospores, which are released from the spherule upon rupture. Each endospore can then go on to form another spherule in a cycle called spherulation. One of the foremost technical challenges has been reliably growing spherules in culture without the formation of contaminating hyphae and consistently inducing endospore release from spherules. Here, we present optimization of in vitro spherule growth and endospore release, by closely controlling starting cell density in the culture, using freshly harvested arthroconidia, and decreasing the concentration of multiple salts in spherulation media. We developed a minimal medium to test spherule growth on various carbon and nitrogen sources. We defined a critical role for the dispersant Tamol in both early spherule formation and prevention of the accumulation of a visible film around spherules. Finally, we examined how the conditions under which arthroconidia are generated influence their transcriptome and subsequent development into spherules, demonstrating that this is an important variable to control when designing spherulation experiments. Together, our data reveal multiple strategies to optimize in vitro spherulation growth, enabling characterization of this virulence-relevant morphology.IMPORTANCECoccidioides spp. are thermally dimorphic fungal pathogens found in the Southwest United States, Mexico, Central America, and South America. Coccidioides can infect both immunocompetent and immunocompromised people and can cause a devastating disseminated infection, including meningitis, with 30% mortality despite all currently available treatments. In this work, we tackle one of the current largest technical barriers to studying the fungus Coccidioides: reliably growing its host form in vitro. Our work is impactful because we have created a set of foundational tools for the burgeoning field of Coccidioides pathogenesis research. We have carefully optimized conditions that allow the development of Coccidioides in vitro into its pathogenic form. This work will open up many lines of investigation into the molecules that underlie Coccidioides pathogenesis.
Collapse
Affiliation(s)
- Christina M Homer
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
| | - Elena Ochoa
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Ofori-Anyinam B, Hamblin M, Coldren ML, Li B, Mereddy G, Shaikh M, Shah A, Grady C, Ranu N, Lu S, Blainey PC, Ma S, Collins JJ, Yang JH. Catalase activity deficiency sensitizes multidrug-resistant Mycobacterium tuberculosis to the ATP synthase inhibitor bedaquiline. Nat Commun 2024; 15:9792. [PMID: 39537610 PMCID: PMC11561320 DOI: 10.1038/s41467-024-53933-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB), defined as resistance to the first-line drugs isoniazid and rifampin, is a growing source of global mortality and threatens global control of tuberculosis disease. The diarylquinoline bedaquiline has recently emerged as a highly efficacious drug against MDR-TB and kills Mycobacterium tuberculosis by inhibiting mycobacterial ATP synthase. However, the mechanisms underlying bedaquiline's efficacy against MDR-TB remain unknown. Here we investigate bedaquiline hyper-susceptibility in drug-resistant Mycobacterium tuberculosis using systems biology approaches. We discovered that MDR clinical isolates are commonly sensitized to bedaquiline. This hypersensitization is caused by several physiological changes induced by deficient catalase activity. These include enhanced accumulation of reactive oxygen species, increased susceptibility to DNA damage, induction of sensitizing transcriptional programs, and metabolic repression of several biosynthetic pathways. In this work we demonstrate how resistance-associated changes in bacterial physiology can mechanistically induce collateral antimicrobial drug sensitivity and reveal druggable vulnerabilities in antimicrobial resistant pathogens.
Collapse
Affiliation(s)
- Boatema Ofori-Anyinam
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Meagan Hamblin
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Eversana Consulting, Boston, MA, 02120, USA
| | - Miranda L Coldren
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
| | - Barry Li
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Gautam Mereddy
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Mustafa Shaikh
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Avi Shah
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Courtney Grady
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Navpreet Ranu
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- insitro, South San Francisco, CA, 94080, USA
| | - Sean Lu
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Paul C Blainey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute of Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jason H Yang
- Ruy V. Lourenço Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Bruger EL, Hying ZT, Singla D, Márquez Reyes NL, Pandey SK, Patel JS, Bazurto JV. Enhanced catabolism of glycine betaine and derivatives provides improved osmotic stress protection in Methylorubrum extorquens PA1. Appl Environ Microbiol 2024; 90:e0031024. [PMID: 38934615 PMCID: PMC11323934 DOI: 10.1128/aem.00310-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Integration of metabolites into the overall metabolic network of a cell requires careful coordination dependent upon the ultimate usage of the metabolite. Different stoichiometric needs, and thus pathway fluxes, must exist for compounds destined for diverse uses, such as carbon sources, nitrogen sources, or stress-protective agents. Herein, we expand upon our previous work that highlighted the nature of glycine betaine (GB) metabolism in Methylobacteria to examine the utilization of GB-derivative compounds dimethylglycine (DMG) and sarcosine into Methylorubrum extorquens in different metabolic capacities, including as sole nitrogen and/or carbon sources. We isolated gain-of-function mutations that allowed M. extorquens PA1 to utilize dimethylglycine as a carbon source and dimethylglycine and sarcosine as nitrogen source. Characterization of mutants demonstrated selection for variants of the AraC-like regulator Mext_3735 that confer constitutive expression of the GB metabolic gene cluster, allowing direct utilization of the downstream GB derivatives. Finally, among the distinct isolates examined, we found that catabolism of the osmoprotectant used for selection (GB or dimethylglycine) enhanced osmotic stress resistance provided in the presence of that particular osmolyte. Thus, access to the carbon and nitrogen and osmoprotective effects of GB and DMG are made readily accessible through adaptive mutations. In M. extorquens PA1, the limitations to exploiting this group of compounds appear to exist predominantly at the levels of gene regulation and functional activity, rather than being constrained by transport or toxicity.IMPORTANCEOsmotic stress is a common challenge for bacteria colonizing the phyllosphere, where glycine betaine (GB) can be found as a prevalent osmoprotectant. Though Methylorubrum extorquens PA1 cannot use GB or its demethylation products, dimethylglycine (DMG) and sarcosine, as a sole carbon source, utilization is highly selectable via single nucleotide changes for both GB and DMG growth. The innate inability to use these compounds is due to limited flux through steps in the pathway and regulatory constraints. Herein, the characterization of the transcriptional regulator, Mext_3735 (GbdR), expands our understanding of the various roles in which GB derivatives can be used in M. extorquens PA1. Interestingly, increased catabolism of GB and derivatives does not interfere with, but rather improves, the ability of cells to thrive under increased salt stress conditions, suggesting that metabolic flux improves stress tolerance rather than providing a distinct tension between uses.
Collapse
Affiliation(s)
- Eric L. Bruger
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| | - Zachary T. Hying
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| | - Deepanshu Singla
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| | - Nicole L. Márquez Reyes
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| | - Shubham Kumar Pandey
- Department of Chemical
and Biological Engineering, University of
Idaho, Moscow,
Idaho, USA
| | - Jagdish Suresh Patel
- Department of Chemical
and Biological Engineering, University of
Idaho, Moscow,
Idaho, USA
| | - Jannell V. Bazurto
- Department of Plant
and Microbial Biology, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
- Biotechnology
Institute, University of Minnesota-Twin
Cities, St. Paul,
Minnesota, USA
| |
Collapse
|
4
|
Homer C, Ochoa E, Voorhies M, Sil A. Optimizing in vitro spherulation cues in the fungal pathogen Coccidioides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597856. [PMID: 38895214 PMCID: PMC11185734 DOI: 10.1101/2024.06.06.597856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Coccidioides spp . are part of a group of thermally dimorphic fungal pathogens, which grow as filamentous cells (hyphae) in the soil and transform to a different morphology upon inhalation into the host. The Coccidioides host form, the spherule, is unique and highly under characterized due to both technical and biocontainment challenges. Each spherule arises from an environmental spore (arthroconidium), matures, and develops hundreds of internal endospores, which are released from the spherule upon rupture. Each endospore can then go on to form another spherule in a cycle called spherulation. One of the foremost technical challenges has been reliably growing spherules in culture without the formation of contaminating hyphae, and consistently inducing endospore release from spherules. Here, we present optimization of in vitro spherule growth and endospore release, by closely controlling starting cell density in the culture, using freshly-harvested arthroconidia, and decreasing the concentration of multiple salts in spherulation media. We developed a minimal media to test spherule growth on various carbon and nitrogen sources. We defined a critical role for the dispersant Tamol in both early spherule formation and prevention of the accumulation of a visible film around spherules. Finally, we examined how the conditions under which arthroconidia are generated influence their transcriptome and subsequent development into spherules, demonstrating that this is an important variable to control when designing spherulation experiments. Together, our data reveal multiple strategies to optimize in vitro spherulation growth, enabling characterization of this virulence-relevant morphology.
Collapse
|
5
|
Koley S, Jyoti P, Lingwan M, Allen DK. Isotopically nonstationary metabolic flux analysis of plants: recent progress and future opportunities. THE NEW PHYTOLOGIST 2024; 242:1911-1918. [PMID: 38628036 DOI: 10.1111/nph.19734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 01/02/2025]
Abstract
Metabolic flux analysis (MFA) is a valuable tool for quantifying cellular phenotypes and to guide plant metabolic engineering. By introducing stable isotopic tracers and employing mathematical models, MFA can quantify the rates of metabolic reactions through biochemical pathways. Recent applications of isotopically nonstationary MFA (INST-MFA) to plants have elucidated nonintuitive metabolism in leaves under optimal and stress conditions, described coupled fluxes for fast-growing algae, and produced a synergistic multi-organ flux map that is a first in MFA for any biological system. These insights could not be elucidated through other approaches and show the potential of INST-MFA to correct an oversimplified understanding of plant metabolism.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Poonam Jyoti
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Maneesh Lingwan
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
- United States Department of Agriculture, Agriculture Research Service, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
6
|
Theorell A, Jadebeck JF, Wiechert W, McFadden J, Nöh K. Rethinking 13C-metabolic flux analysis - The Bayesian way of flux inference. Metab Eng 2024; 83:137-149. [PMID: 38582144 DOI: 10.1016/j.ymben.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Metabolic reaction rates (fluxes) play a crucial role in comprehending cellular phenotypes and are essential in areas such as metabolic engineering, biotechnology, and biomedical research. The state-of-the-art technique for estimating fluxes is metabolic flux analysis using isotopic labelling (13C-MFA), which uses a dataset-model combination to determine the fluxes. Bayesian statistical methods are gaining popularity in the field of life sciences, but the use of 13C-MFA is still dominated by conventional best-fit approaches. The slow take-up of Bayesian approaches is, at least partly, due to the unfamiliarity of Bayesian methods to metabolic engineering researchers. To address this unfamiliarity, we here outline similarities and differences between the two approaches and highlight particular advantages of the Bayesian way of flux analysis. With a real-life example, re-analysing a moderately informative labelling dataset of E. coli, we identify situations in which Bayesian methods are advantageous and more informative, pointing to potential pitfalls of current 13C-MFA evaluation approaches. We propose the use of Bayesian model averaging (BMA) for flux inference as a means of overcoming the problem of model uncertainty through its tendency to assign low probabilities to both, models that are unsupported by data, and models that are overly complex. In this capacity, BMA resembles a tempered Ockham's razor. With the tempered razor as a guide, BMA-based 13C-MFA alleviates the problem of model selection uncertainty and is thereby capable of becoming a game changer for metabolic engineering by uncovering new insights and inspiring novel approaches.
Collapse
Affiliation(s)
- Axel Theorell
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Johann F Jadebeck
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52062 Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52062 Aachen, Germany
| | - Johnjoe McFadden
- Department of Microbial and Cellular Sciences, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
7
|
Kambhampati S, Hubbard AH, Koley S, Gomez JD, Marsolais F, Evans BS, Young JD, Allen DK. SIMPEL: using stable isotopes to elucidate dynamics of context specific metabolism. Commun Biol 2024; 7:172. [PMID: 38347116 PMCID: PMC10861564 DOI: 10.1038/s42003-024-05844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling experiments is an untapped opportunity to derive insights on context-specific metabolism, that is difficult to assess quantitatively. Tools are needed to comprehensively mine isotopologue information in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling experiment. Available as an R package, SIMPEL extends metabolomics analyses to include isotopologue signatures necessary to quantify metabolic flux.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Allen H Hubbard
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Javier D Gomez
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frédéric Marsolais
- London Research and Development Center, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bradley S Evans
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jamey D Young
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Agricultural Research Service, US Department of Agriculture, St. Louis, MO, 63132, USA.
| |
Collapse
|
8
|
Hogg M, Wolfschmitt EM, Wachter U, Zink F, Radermacher P, Vogt JA. Bayesian 13C-Metabolic Flux Analysis of Parallel Tracer Experiments in Granulocytes: A Directional Shift within the Non-Oxidative Pentose Phosphate Pathway Supports Phagocytosis. Metabolites 2023; 14:24. [PMID: 38248827 PMCID: PMC10820746 DOI: 10.3390/metabo14010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The pentose phosphate pathway (PPP) plays a key role in the cellular regulation of immune function; however, little is known about the interplay of metabolic adjustments in granulocytes, especially regarding the non-oxidative PPP. For the determination of metabolic mechanisms within glucose metabolism, we propose a novel set of measures for 13C-metabolic flux analysis based on ex vivo parallel tracer experiments ([1,2-13C]glucose, [U-13C]glucose, [4,5,6-13C]glucose) and gas chromatography-mass spectrometry labeling measurements of intracellular metabolites, such as sugar phosphates and their fragments. A detailed constraint analysis showed that the permission range for net and irreversible fluxes was limited to a three-dimensional space. The overall workflow, including its Bayesian flux estimation, resulted in precise flux distributions and pairwise confidence intervals, some of which could be represented as a line due to the strength of their correlation. The principal component analysis that was enabled by these behaviors comprised three components that explained 99.6% of the data variance. It showed that phagocytic stimulation reversed the direction of non-oxidative PPP net fluxes from ribose-5-phosphate biosynthesis toward glycolytic pathways. This process was closely associated with the up-regulation of the oxidative PPP to promote the oxidative burst.
Collapse
Affiliation(s)
- Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (E.-M.W.); (U.W.); (F.Z.); (P.R.); (J.A.V.)
| | | | | | | | | | | |
Collapse
|
9
|
Ofori-Anyinam N, Hamblin M, Coldren ML, Li B, Mereddy G, Shaikh M, Shah A, Ranu N, Lu S, Blainey PC, Ma S, Collins JJ, Yang JH. KatG catalase deficiency confers bedaquiline hyper-susceptibility to isoniazid resistant Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562707. [PMID: 37905073 PMCID: PMC10614911 DOI: 10.1101/2023.10.17.562707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a growing source of global mortality and threatens global control of tuberculosis (TB) disease. The diarylquinoline bedaquiline (BDQ) recently emerged as a highly efficacious drug against MDR-TB, defined as resistance to the first-line drugs isoniazid (INH) and rifampin. INH resistance is primarily caused by loss-of-function mutations in the catalase KatG, but mechanisms underlying BDQ's efficacy against MDR-TB remain unknown. Here we employ a systems biology approach to investigate BDQ hyper-susceptibility in INH-resistant Mycobacterium tuberculosis . We found hyper-susceptibility to BDQ in INH-resistant cells is due to several physiological changes induced by KatG deficiency, including increased susceptibility to reactive oxygen species and DNA damage, remodeling of transcriptional programs, and metabolic repression of folate biosynthesis. We demonstrate BDQ hyper-susceptibility is common in INH-resistant clinical isolates. Collectively, these results highlight how altered bacterial physiology can impact drug efficacy in drug-resistant bacteria.
Collapse
|
10
|
Pavao A, Girinathan B, Peltier J, Altamirano Silva P, Dupuy B, Muti IH, Malloy C, Cheng LL, Bry L. Elucidating dynamic anaerobe metabolism with HRMAS 13C NMR and genome-scale modeling. Nat Chem Biol 2023; 19:556-564. [PMID: 36894723 PMCID: PMC10154198 DOI: 10.1038/s41589-023-01275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
Anaerobic microbial metabolism drives critical functions within global ecosystems, host-microbiota interactions, and industrial applications, yet remains ill-defined. Here we advance a versatile approach to elaborate cellular metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an amino acid and carbohydrate-fermenting Clostridia. High-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy of C. difficile, grown with fermentable 13C substrates, informed dynamic flux balance analysis (dFBA) of the pathogen's genome-scale metabolism. Analyses identified dynamic recruitment of oxidative and supporting reductive pathways, with integration of high-flux amino acid and glycolytic metabolism at alanine's biosynthesis to support efficient energy generation, nitrogen handling and biomass generation. Model predictions informed an approach leveraging the sensitivity of 13C NMR spectroscopy to simultaneously track cellular carbon and nitrogen flow from [U-13C]glucose and [15N]leucine, confirming the formation of [13C,15N]alanine. Findings identify metabolic strategies used by C. difficile to support its rapid colonization and expansion in gut ecosystems.
Collapse
Affiliation(s)
- Aidan Pavao
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brintha Girinathan
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ginkgo Bioworks, The Innovation and Design Building, Boston, MA, USA
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
- Institute for Integrative Biology of the Cell (I2BC), 91198, University of Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pamela Altamirano Silva
- Centre for Investigations in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Isabella H Muti
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig Malloy
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|