1
|
Jóźwiak T, Filipkowska U, Bakuła T, Bralewska-Piotrowicz B, Karczmarczyk K, Gierszewska M, Olewnik-Kruszkowska E, Szyryńska N, Lewczuk B. The Use of Chitin from the Molts of Mealworm ( Tenebrio molitor) for the Removal of Anionic and Cationic Dyes from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020545. [PMID: 36676283 PMCID: PMC9865315 DOI: 10.3390/ma16020545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 05/27/2023]
Abstract
The possibility of using chitin from the molts of an insect-ealworm (Tenebrio molitor) to remove anionic (RB5, RY84) and cationic dyes (BV10, BR46) from aqueous solutions was investigated. The scope of the research included, among others: Characteristics of chitin from mealworms (FTIR, SEM, pHPZC), the effect of pH on sorption efficiency, sorption kinetics (pseudo-first, pseudo-second order, intramolecular diffusion models) and the determination of the maximum sorption capacity (Langmuir and Freundlich models). The sorption efficiency of anionic dyes on chitin from mealworm was the highest at pH 2-3, and for cationic dyes at pH 6. The equilibrium time of sorption of anionic dyes was 240-300 min and for cationic dyes it was 180-240 min. The experimental data on dye sorption kinetics was best described by the pseudo-second order model. The maximum sorption capacity of chitin from the mealworm for the anionic dyes RB5 and RY84 was 121.15 mg/g and 138.55 mg/g, respectively, and was higher than with some carbon-based materials (literature data). In the case of cationic dyes, the sorption capacity of the tested chitin was lower and reached 3.22 mg/g and 59.56 mg/g for BV10 and BR46, respectively.
Collapse
Affiliation(s)
- Tomasz Jóźwiak
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Urszula Filipkowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St., 10-718 Olsztyn, Poland
| | - Beata Bralewska-Piotrowicz
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Konrad Karczmarczyk
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| | - Natalia Szyryńska
- Department of Histology and Embryology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St., 10-719 Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St., 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Graphene Oxide/Fe3O4/Chitosan−Coated Nonwoven Polyester Fabric Extracted from Disposable Face Mask for Enhanced Efficiency of Organic Dye Adsorption. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8055615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Owing to the COVID-19 pandemic, huge amounts of disposable face masks have been manufactured and used, and these discarded face masks have to be treated. In this study, we propose a simple approach for reusing the nonwoven polyester fabric (NWPF) from disposable face masks. In this approach, NWPF is utilized as a supporter for coating of a layer of graphene oxide/Fe3O4/chitosan (GFC) to form a GFC/NWPF adsorbent at room temperature via a simple spray coating method that does not require any solvent. The specific properties of GFC, NWPF, and the GFC/NWPF adsorbent were analysed via X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy, vibrating sample magnetometry, and field-emission scanning electron microscopy. Results showed that the presence of NWPF enhanced the adsorption capacity of GFC towards organic dyes. At high concentrations of the organic dyes, the adsorption efficiency of the GFC/NWPF adsorbent to the dyes reached 100% within 24 h. The adsorption capacity (
) of the GFC/NWPF adsorbent to methylene blue, methyl orange, Congo red, and moderacid red was 54.795, 87.489, 88.573, and 29.010 mg g−1, respectively, which were considerably higher than that of bulk GFC (39.308, 82.304, 52.910, and 21.249 mg g−1, respectively).
Collapse
|