1
|
Xia J, Song X, Meng J, Lou D. Endothelial progenitor cells-derived exosomes transfer microRNA-30e-5p to regulate Erastin-induced ferroptosis in human umbilical vein endothelial cells via the specificity protein 1/adenosine monophosphate-activated protein kinase axis. Bioengineered 2022; 13:3566-3580. [PMID: 35068337 PMCID: PMC8973625 DOI: 10.1080/21655979.2022.2025519] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Jia Xia
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Song
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Meng
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danfei Lou
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Ebrahim N, Al Saihati HA, Shaman A, Dessouky AA, Farid AS, Hussien NI, Mostafa O, Seleem Y, Sabry D, Saad AS, Emam HT, Hassouna A, Badr OAM, Saffaf BA, Forsyth NR, Salim RF. Bone marrow-derived mesenchymal stem cells combined with gonadotropin therapy restore postnatal oogenesis of chemo-ablated ovaries in rats via enhancing very small embryonic-like stem cells. Stem Cell Res Ther 2021; 12:517. [PMID: 34579781 PMCID: PMC8477571 DOI: 10.1186/s13287-021-02415-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Very small embryonic-like stem cells (VSELs) are a rare population within the ovarian epithelial surface. They contribute to postnatal oogenesis as they have the ability to generate immature oocytes and resist the chemotherapy. These cells express markers of pluripotent embryonic and primordial germ cells. OBJECTIVE We aimed to explore the capability of VSELs in restoring the postnatal oogenesis of chemo-ablated rat ovaries treated with bone marrow-derived mesenchymal stem cells (BM-MSCs) combined with pregnant mare serum gonadotropin (PMSG). METHODS Female albino rats were randomly assigned across five groups: I (control), II (chemo-ablation), III (chemo-ablation + PMSG), IV (chemo-ablation + MSCs), and V (chemo-ablation + PMSG + MSCs). Postnatal oogenesis was assessed through measurement of OCT4, OCT4A, Scp3, Mvh, Nobox, Dazl4, Nanog, Sca-1, FSHr, STRA8, Bax, miR143, and miR376a transcript levels using qRT-PCR. Expression of selected key proteins were established as further confirmation of transcript expression changes. Histopathological examination and ovarian hormonal assessment were determined. RESULTS Group V displayed significant upregulation of all measured genes when compared with group II, III or IV. Protein expression confirmed the changes in transcript levels as group V displayed the highest average density in all targeted proteins. These results were confirmed histologically by the presence of cuboidal germinal epithelium, numerous primordial, unilaminar, and mature Graafian follicles in group V. CONCLUSION VSELs can restore the postnatal oogenesis in chemo-ablated ovaries treated by BM-MSCs combined with PMSG.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hajir A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Al-Batin, Saudi Arabia
| | - Amani Shaman
- Obstetrics and Gynecology Medical College, Tabuk University, Tabuk, Saudi Arabia
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Noha I Hussien
- Department of Medical Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Yasmin Seleem
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University, Cairo, Egypt
| | - Ahmed S Saad
- Department of Obstetrics & Gynecology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hanan Tawfeek Emam
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Amira Hassouna
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand
| | - Omnia A M Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Bayan A Saffaf
- Department of pharmacology, Faculty of Pharmacy, Future University, Cairo, Egypt
| | - Nicholas R Forsyth
- Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Qalyubia, 13512, Egypt.
| |
Collapse
|
3
|
Ebrahim N, Dessouky AA, Mostafa O, Hassouna A, Yousef MM, Seleem Y, El Gebaly EAEAM, Allam MM, Farid AS, Saffaf BA, Sabry D, Nawar A, Shoulah AA, Khalil AH, Abdalla SF, El-Sherbiny M, Elsherbiny NM, Salim RF. Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway. Stem Cell Res Ther 2021; 12:392. [PMID: 34256844 PMCID: PMC8276220 DOI: 10.1186/s13287-021-02454-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic foot ulceration is a serious chronic complication of diabetes mellitus characterized by high disability, mortality, and morbidity. Platelet-rich plasma (PRP) has been widely used for diabetic wound healing due to its high content of growth factors. However, its application is limited due to the rapid degradation of growth factors. The present study aimed to evaluate the efficacy of combined adipose-derived mesenchymal stem cells (ADSCs) and PRP therapy in promoting diabetic wound healing in relation to the Notch signaling pathway. Methods Albino rats were allocated into 6 groups [control (unwounded), sham (wounded but non-diabetic), diabetic, PRP-treated, ADSC-treated, and PRP+ADSCs-treated groups]. The effect of individual and combined therapy was evaluated by assessing wound closure rate, epidermal thickness, dermal collagen, and angiogenesis. Moreover, gene and protein expression of key elements of the Notch signaling pathway (Notch1, Delta-like canonical Notch ligand 4 (DLL4), Hairy Enhancer of Split-1 (Hes1), Hey1, Jagged-1), gene expression of angiogenic marker (vascular endothelial growth factor and stromal cell-derived factor 1) and epidermal stem cells (EPSCs) related gene (ß1 Integrin) were assessed. Results Our data showed better wound healing of PRP+ADSCs compared to their individual use after 7 and 14 days as the combined therapy caused reepithelialization and granulation tissue formation with a marked increase in area percentage of collagen, epidermal thickness, and angiogenesis. Moreover, Notch signaling was significantly downregulated, and EPSC proliferation and recruitment were enhanced compared to other treated groups and diabetic groups. Conclusions These data demonstrated that PRP and ADSCs combined therapy significantly accelerated healing of diabetic wounds induced experimentally in rats via modulating the Notch pathway, promoting angiogenesis and EPSC proliferation.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt.,Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt
| | - Arigue A Dessouky
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola Mostafa
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt
| | - Amira Hassouna
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand
| | - Mohamed M Yousef
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt
| | - Yasmin Seleem
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Mona M Allam
- Department of Medical Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Bayan A Saffaf
- Department of Pharmacology, Faculty of Pharmacy, Future University, New Cairo, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University, Cairo, 11562, Egypt
| | - Ahmed Nawar
- Department of General Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed A Shoulah
- Department of General Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed H Khalil
- Department of Surgery, & Radiology Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sami F Abdalla
- Clinical Department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. .,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt.
| |
Collapse
|
4
|
Cipriano J, Lakshmikanthan A, Buckley C, Mai L, Patel H, Pellegrini M, Freeman JW. Characterization of a prevascularized biomimetic tissue engineered scaffold for bone regeneration. J Biomed Mater Res B Appl Biomater 2019; 108:1655-1668. [PMID: 31692189 DOI: 10.1002/jbm.b.34511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/30/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022]
Abstract
Significant bone loss due to disease or severe injury can result in the need for a bone graft, with over 500,000 procedures occurring each year in the United States. However, the current standards for grafting, autografts and allografts, can result in increased patient morbidity or a high rate of failure respectively. An ideal alternative would be a biodegradable tissue engineered graft that fulfills the function of bone while promoting the growth of new bone tissue. We developed a prevascularized tissue engineered scaffold of electrospun biodegradable polymers PLLA and PDLA reinforced with hydroxyapatite, a mineral similar to that found in bone. A composite design was utilized to mimic the structure and function of human trabecular and cortical bone. These scaffolds were characterized mechanically and in vitro to determine osteoinductive and angioinductive properties. It was observed that further reinforcement is necessary for the scaffolds to mechanically match bone, but the scaffolds are successful at inducing the differentiation of mesenchymal stem cells into mature bone cells and vascular endothelial cells. Prevascularization was seen to have a positive effect on angiogenesis and cellular metabolic activity, critical factors for the integration of a graft.
Collapse
Affiliation(s)
- James Cipriano
- Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | | | | | - Linh Mai
- Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Het Patel
- Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | | | - Joseph W Freeman
- Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
5
|
Ebrahim N, Mandour YMH, Farid AS, Nafie E, Mohamed AZ, Safwat M, Taha R, Sabry D, Sorour SM, Refae A. Adipose Tissue-Derived Mesenchymal Stem Cell Modulates the Immune Response of Allergic Rhinitis in a Rat Model. Int J Mol Sci 2019; 20:E873. [PMID: 30781605 PMCID: PMC6412869 DOI: 10.3390/ijms20040873] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
This study was designed to investigate the potential effects and underlying mechanism of adipose tissue-derived mesenchymal stem cells (MSCs) on allergic inflammation compared to Montelukast as an antileukotriene drug in a rat model of allergic rhinitis (AR). The effect of MSCs was evaluated in albino rats that were randomly divided into four (control, AR, AR + Montelukast, and AR + MSCs) groups. Rats of AR group were sensitized by ovalbumin (OVA) and then challenged with daily nasal drops of OVA diluted in sterile physiological saline (50 μL/nostril, 100 mg/mL, 10% OVA) from day 15 to day 21 of treatment with/without Montelukast (1 h before each challenge) or MSCs I/P injection (1 × 10⁶ MCSs; weekly for three constitutive weeks). Both Montelukast and MSCs treatment started from day 15 of the experiment. At the end of the 5th week, blood samples were collected from all rats for immunological assays, histological, and molecular biology examinations. Both oral Montelukast and intraperitoneal injection of MSCs significantly reduced allergic symptoms and OVA-specific immunoglobulin E (IgE), IgG1, IgG2a and histamine as well as increasing prostaglandin E2 (PGE2). Further analysis revealed that induction of nasal innate cytokines, such as interleukin (IL)-4 and TNF-α; and chemokines, such as CCL11 and vascular cell adhesion molecule-1 (VCAM-1), were suppressed; and transforming growth factor-β (TGF-β) was up-regulated in Montelukast and MSCs-treated groups with superior effect to MSCs, which explained their underlying mechanism. In addition, the adipose tissue-derived MSCs-treated group had more restoring effects on nasal mucosa structure demonstrated by electron microscopical examination.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology, Benha University, Benha, Qalyubia 13518, Egypt.
- Stem Cell Unit, Benha University, Benha, Qalyubia 13518, Egypt.
| | | | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia 13736, Egypt.
| | - Ebtesam Nafie
- Zoology Department, Faculty of Science, Benha University, Benha 13518, Egypt.
| | - Amira Zaky Mohamed
- Department of Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Miriam Safwat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| | - Radwa Taha
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
- Molecular Biology and Stem Cell Unit, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| | - Safwa M Sorour
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Qalyubia 13518, Egypt.
| | - Ahmed Refae
- Department of Otorhinolaryngology, Faculty of Medicine, Benha University, Benha, Qalyubia 13518, Egypt.
| |
Collapse
|
6
|
Wang X, Zhao Z, Zhang H, Hou J, Feng W, Zhang M, Guo J, Xia J, Ge Q, Chen X, Wu X. Simultaneous isolation of mesenchymal stem cells and endothelial progenitor cells derived from murine bone marrow. Exp Ther Med 2018; 16:5171-5177. [PMID: 30542473 PMCID: PMC6257072 DOI: 10.3892/etm.2018.6844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are identified as sources of pluripotent stem cells with varying degrees of plasticity. Endothelial progenitor cells (EPCs) originate from either bone marrow (BM) or peripheral blood and can mature into cells that line the lumen of blood vessels. MSC and EPC therapies exhibit promising results in a variety of diseases. The current study described the simultaneous isolation of EPCs and MSCs from murine BM using a straightforward approach. The method is based on differences in attachment time and trypsin sensitivity of MSCs and EPCs. The proposed method revealed characteristics of isolated cells. Isolated MSCs were positive for cell surface markers, cluster of differentiation (CD)29, CD44 and stem cell antigen-1 (Sca-1), and negative for hematopoietic surface markers, CD45 and CD11b. Isolated EPCs were positive for Sca-1 and vascular endothelial growth factor receptor 2 and CD133. The results indicate that the proposed method ensured simultaneous isolation of homogenous populations of MSCs and EPCs from murine BM.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Zongsheng Zhao
- Department of Animal Genetic Breeding and Reproduction, College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Hongwei Zhang
- Department of General Surgery, First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jixue Hou
- Department of General Surgery, First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Wenlei Feng
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Meng Zhang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jun Guo
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jie Xia
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Quanhu Ge
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xueling Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xiangwei Wu
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China.,Department of General Surgery, First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
7
|
Wang S, Miao J, Qu M, Yang GY, Shen L. Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochem Biophys Res Commun 2017; 493:64-70. [DOI: 10.1016/j.bbrc.2017.09.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023]
|
8
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
9
|
Van Pham P, Vu NB, Dao TTT, Le HTN, Phi LT, Phan NK. Production of endothelial progenitor cells from skin fibroblasts by direct reprogramming for clinical usages. In Vitro Cell Dev Biol Anim 2016; 53:207-216. [PMID: 27778229 DOI: 10.1007/s11626-016-0106-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/10/2016] [Indexed: 11/30/2022]
Abstract
Endothelial progenitor cells (EPCs) play an important role in angiogenesis. However, they exist in limited numbers in the human body. This study was aimed to produce EPCs, for autologous transplantation, using direct reprogramming of skin fibroblasts under GMP-compliant conditions. Fibroblasts were collected and cultured from the skin in DMEM/F12 medium supplemented with 5% activated platelet-rich plasma and 1% antibiotic-antimycotic solution. They were then transfected with mRNA ETV2 and incubated in culture medium under hypoxia (5% oxygen) for 14 d. Phenotype analysis of transfected cells confirmed that single-factor ETV2 transfection successfully reprogrammed dermal fibroblasts into functional EPCs. Our results showed that ETV2 mRNA combined with hypoxia can give rise to functional EPCs. The cells exhibited functional phenotypes similar to endothelial cells derived from umbilical cord vein; they expressed CD31 and VEGFR2, and formed capillary-like structures in vitro. Moreover, these EPCs could significantly improve hindlimb ischemia in mouse models. Although the direct conversion efficacy was low (3.12 ± 0.98%), altogether our study demonstrates that functional EPCs can be produced from fibroblasts and can be used in clinical applications.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Ngoc Bich Vu
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thuy Thi-Thanh Dao
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ha Thi-Ngan Le
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lan Thi Phi
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ngoc Kim Phan
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|