1
|
Ilia K, Shakiba N, Bingham T, Jones RD, Kaminski MM, Aravera E, Bruno S, Palacios S, Weiss R, Collins JJ, Del Vecchio D, Schlaeger TM. Synthetic genetic circuits to uncover the OCT4 trajectories of successful reprogramming of human fibroblasts. SCIENCE ADVANCES 2023; 9:eadg8495. [PMID: 38019912 PMCID: PMC10686568 DOI: 10.1126/sciadv.adg8495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. We develop a system that accurately reports OCT4 protein levels in live cells and use it to reveal the trajectories of OCT4 in successful reprogramming. Our system comprises a synthetic genetic circuit that leverages noise to generate a wide range of OCT4 trajectories and a microRNA targeting endogenous OCT4 to set total cellular OCT4 protein levels. By fusing OCT4 to a fluorescent protein, we are able to track OCT4 trajectories with clonal resolution via live-cell imaging. We discover that a supraphysiological, stable OCT4 level is required, but not sufficient, for efficient iPSC colony formation. Our synthetic genetic circuit design and high-throughput live-imaging pipeline are generalizable for investigating TF dynamics for other cell fate programming applications.
Collapse
Affiliation(s)
- Katherine Ilia
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Trevor Bingham
- Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard University, Boston, MA 02115, USA
| | - Ross D. Jones
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Michael M. Kaminski
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz-Association, Berlin 10115, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Medizinische Klinik m.S. Nephrologie und Intensivmedizin, Berlin 10117, Germany
- Berlin Institute of Health, Berlin 13125, Germany
| | - Eliezer Aravera
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Simone Bruno
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - James J. Collins
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Domitilla Del Vecchio
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
2
|
Wang B, Li C, Ming J, Wu L, Fang S, Huang Y, Lin L, Liu H, Kuang J, Zhao C, Huang X, Feng H, Guo J, Yang X, Guo L, Zhang X, Chen J, Liu J, Zhu P, Pei D. The NuRD complex cooperates with SALL4 to orchestrate reprogramming. Nat Commun 2023; 14:2846. [PMID: 37208322 DOI: 10.1038/s41467-023-38543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.
Collapse
Affiliation(s)
- Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Wu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shicai Fang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Huang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihui Lin
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Xuejie Yang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Liman Guo
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jing Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
3
|
Ilia K, Shakiba N, Bingham T, Jones RD, Kaminski MM, Aravera E, Bruno S, Palacios S, Weiss R, Collins JJ, Del Vecchio D, Schlaeger TM. Synthetic genetic circuits to uncover and enforce the OCT4 trajectories of successful reprogramming of human fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525529. [PMID: 36747813 PMCID: PMC9900859 DOI: 10.1101/2023.01.25.525529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. Here, we identify the successful reprogramming trajectories of the core pluripotency TF, OCT4, and design a genetic controller that enforces such trajectories with high precision. By combining a genetic circuit that generates a wide range of OCT4 trajectories with live-cell imaging, we track OCT4 trajectories with clonal resolution and find that a distinct constant OCT4 trajectory is required for colony formation. We then develop a synthetic genetic circuit that yields a tight OCT4 distribution around the identified trajectory and outperforms in terms of reprogramming efficiency other circuits that less accurately regulate OCT4. Our synthetic biology approach is generalizable for identifying and enforcing TF dynamics for cell fate programming applications.
Collapse
Affiliation(s)
- Katherine Ilia
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Trevor Bingham
- Boston Children’s Hospital Stem Cell Program, Boston Children’s Hospital, Boston, MA, 02115, USA
- Harvard University, Boston, MA, 02115, USA
| | - Ross D. Jones
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Michael M. Kaminski
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
| | - Eliezer Aravera
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Simone Bruno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - James J. Collins
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Domitilla Del Vecchio
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thorsten M. Schlaeger
- Boston Children’s Hospital Stem Cell Program, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Xing G, Liu Z, Huang L, Zhao D, Wang T, Yuan H, Wu Y, Li L, Long Q, Zhou Y, Hao Z, Liu Y, Lu J, Li S, Zhu J, Wang B, Wang J, Liu J, Chen J, Pei D, Liu X, Chen K. MAP2K6 remodels chromatin and facilitates reprogramming by activating Gatad2b-phosphorylation dependent heterochromatin loosening. Cell Death Differ 2022; 29:1042-1054. [PMID: 34815549 PMCID: PMC9090911 DOI: 10.1038/s41418-021-00902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Somatic cell reprogramming is an ideal model for studying epigenetic regulation as it undergoes dramatic chromatin remodeling. However, a role for phosphorylation signaling in chromatin protein modifications for reprogramming remains unclear. Here, we identified mitogen-activated protein kinase kinase 6 (Mkk6) as a chromatin relaxer and found that it could significantly enhance reprogramming. The function of Mkk6 in heterochromatin loosening and reprogramming requires its kinase activity but does not depend on its best-known target, P38. We identified Gatad2b as a novel target of Mkk6 phosphorylation that acts downstream to elevate histone acetylation levels and loosen heterochromatin. As a result, Mkk6 over-expression facilitates binding of Sox2 and Klf4 to their targets and promotes pluripotency gene expression during reprogramming. Our studies not only reveal an Mkk phosphorylation mediated modulation of chromatin status in reprogramming, but also provide new rationales to further investigate and improve the cell fate determination processes.
Collapse
Affiliation(s)
- Guangsuo Xing
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zichao Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Luyuan Huang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Danyun Zhao
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Hao Yuan
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yi Wu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Linpeng Li
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Qi Long
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yanshuang Zhou
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zhihong Hao
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jianghuan Lu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Shiting Li
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jieying Zhu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Bo Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Junwei Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jing Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jiekai Chen
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
5
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,*Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew's Center for Burns and Plastic Surgery, Chelmsford, United Kingdom.,*Both the authors contributed equally to this article
| |
Collapse
|
6
|
Sharifi Tabar M, Mackay JP, Low JKK. The stoichiometry and interactome of the Nucleosome Remodeling and Deacetylase (NuRD) complex are conserved across multiple cell lines. FEBS J 2019; 286:2043-2061. [DOI: 10.1111/febs.14800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/27/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Joel P. Mackay
- School of Life and Environmental Sciences University of Sydney Australia
| | - Jason K. K. Low
- School of Life and Environmental Sciences University of Sydney Australia
| |
Collapse
|