1
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
2
|
Ly M, Lau NS, McKenzie C, Kench JG, Seyfi D, Majumdar A, Liu K, McCaughan G, Crawford M, Pulitano C. Histological Assessment of the Bile Duct before Liver Transplantation: Does the Bile Duct Injury Score Predict Biliary Strictures? J Clin Med 2023; 12:6793. [PMID: 37959258 PMCID: PMC10648970 DOI: 10.3390/jcm12216793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Histological injury to the biliary tree during organ preservation leads to biliary strictures after liver transplantation. The Bile Duct Injury (BDI) score was developed to assess histological injury and identify the grafts most likely to develop biliary strictures. The BDI score evaluates the bile duct mural stroma, peribiliary vascular plexus (PVP) and deep peribiliary glands (DPGs), which were correlated with post-transplant biliary strictures. However, the BDI score has not been externally validated. The aim of this study was to verify whether the BDI score could predict biliary strictures at our transplant centre. METHODS Brain-dead donor liver grafts transplanted at a single institution from March 2015 to June 2016 were included in this analysis. Bile duct biopsies were collected immediately before transplantation and assessed for bile duct injury by two blinded pathologists. The primary outcome was the development of clinically significant biliary strictures within 24 months post-transplant. RESULTS Fifty-seven grafts were included in the study which included 16 biliary strictures (28%). Using the BDI score, mural stromal, PVP and DPG injury did not correlate with biliary strictures including Non-Anastomotic Strictures. Severe inflammation (>50 leucocytes per HPF) was the only histological feature inversely correlated with the primary outcome (absent in the biliary stricture group vs. 41% in the no-stricture group, p = 0.001). CONCLUSIONS The current study highlights limitations of the histological assessment of bile duct injury. Although all grafts had bile duct injury, only inflammation was associated with biliary strictures. The BDI score was unable to predict post-transplant biliary strictures in our patient population.
Collapse
Affiliation(s)
- Mark Ly
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ngee-Soon Lau
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Catriona McKenzie
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - James G. Kench
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Doruk Seyfi
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Avik Majumdar
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ken Liu
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Centenary Institute, Sydney, NSW 2050, Australia
| | - Geoffrey McCaughan
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Centenary Institute, Sydney, NSW 2050, Australia
| | - Michael Crawford
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Carlo Pulitano
- 9E Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Missenden Rd., Camperdown, Sydney, NSW 2050, Australia; (M.L.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
3
|
Li P, Miyamoto D, Huang Y, Adachi T, Hidaka M, Hara T, Soyama A, Matsushima H, Imamura H, Kanetaka K, Gu W, Eguchi S. Three-dimensional human bile duct formation from chemically induced human liver progenitor cells. Front Bioeng Biotechnol 2023; 11:1249769. [PMID: 37671190 PMCID: PMC10475568 DOI: 10.3389/fbioe.2023.1249769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Background: The intrahepatic bile ducts (BDs) play an important role in the modification and transport of bile, and the integration between the BD and hepatocytes is the basis of the liver function. However, the lack of a source of cholangiocytes limits in vitro research. The aim of the present study was to establish three-dimensional BDs combined with human mature hepatocytes (hMHs) in vitro using chemically induced human liver progenitor cells (hCLiPs) derived from hMHs. Methods: In this study, we formed functional BDs from hCLiPs using hepatocyte growth factor and extracellular matrix. BDs expressed the typical biliary markers CK-7, GGT1, CFTR and EpCAM and were able to transport the bile-like substance rhodamine 123 into the lumen. The established three-dimensional BDs were cocultured with hMHs. These cells were able to bind to the BDs, and the bile acid analog CLF was transported from the culture medium through the hMHs and accumulated in the lumen of the BDs. The BDs generated from the hCLiPs showed a BD function and a physiological system (e.g., the transport of bile within the liver) when they were connected to the hMHs. Conclusion: We present a novel in vitro three-dimensional BD combined with hMHs for study, drug screening and the therapeutic modulation of the cholangiocyte function.
Collapse
Affiliation(s)
- Peilin Li
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Weili Gu
- Department of Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
4
|
Buisson EM, Park S, Kim M, Kang K, Yoon S, Lee JE, Kim YW, Lee NK, Jeong MA, Kang B, Lee SB, Factor VM, Seo D, Kim H, Jeong J, Kim HJ, Choi D. Transplantation of patient-specific bile duct bioengineered with chemically reprogrammed and microtopographically differentiated cells. Bioeng Transl Med 2022; 7:e10252. [PMID: 35079629 PMCID: PMC8780056 DOI: 10.1002/btm2.10252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
Cholangiopathy is a diverse spectrum of chronic progressive bile duct disorders with limited treatment options and dismal outcomes. Scaffold- and stem cell-based tissue engineering technologies hold great promise for reconstructive surgery and tissue repair. Here, we report a combined application of 3D scaffold fabrication and reprogramming of patient-specific human hepatocytes to produce implantable artificial tissues that imitate the mechanical and biological properties of native bile ducts. The human chemically derived hepatic progenitor cells (hCdHs) were generated using two small molecules A83-01 and CHIR99021 and seeded inside the tubular scaffold engineered as a synergistic combination of two layers. The inner electrospun fibrous layer was made of nanoscale-macroscale polycaprolactone fibers acting to promote the hCdHs attachment and differentiation, while the outer microporous foam layer served to increase mechanical stability. The two layers of fiber and foam were fused robustly together thus creating coordinated mechanical flexibility to exclude any possible breaking during surgery. The gene expression profiling and histochemical assessment confirmed that hCdHs acquired the biliary epithelial phenotype and filled the entire surface of the fibrous matrix after 2 weeks of growth in the cholangiocyte differentiation medium in vitro. The fabricated construct replaced the macroscopic part of the common bile duct (CBD) and re-stored the bile flow in a rabbit model of acute CBD injury. Animals that received the acellular scaffolds did not survive after the replacement surgery. Thus, the artificial bile duct constructs populated with patient-specific hepatic progenitor cells could provide a scalable and compatible platform for treating bile duct diseases.
Collapse
Affiliation(s)
- Elina Maria Buisson
- Department of SurgeryHanyang University College of MedicineSeoulRepublic of Korea
- HY Indang Center of Regenerative Medicine and Stem Cell ResearchHanyang UniversitySeoulRepublic of Korea
| | - Suk‐Hee Park
- School of Mechanical EngineeringPusan National UniversityBusanRepublic of Korea
| | - Myounghoi Kim
- Department of SurgeryHanyang University College of MedicineSeoulRepublic of Korea
- HY Indang Center of Regenerative Medicine and Stem Cell ResearchHanyang UniversitySeoulRepublic of Korea
| | - Kyojin Kang
- Department of SurgeryHanyang University College of MedicineSeoulRepublic of Korea
- HY Indang Center of Regenerative Medicine and Stem Cell ResearchHanyang UniversitySeoulRepublic of Korea
| | - Sangtae Yoon
- Department of SurgeryHanyang University College of MedicineSeoulRepublic of Korea
- HY Indang Center of Regenerative Medicine and Stem Cell ResearchHanyang UniversitySeoulRepublic of Korea
| | - Ji Eun Lee
- Digital Manufacturing Process GroupKorea Institute of Industrial TechnologySiheungsiGyeonggi‐doRepublic of Korea
| | - Young Won Kim
- Digital Manufacturing Process GroupKorea Institute of Industrial TechnologySiheungsiGyeonggi‐doRepublic of Korea
- Present address:
Current address: School of Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Nak Kyu Lee
- Digital Manufacturing Process GroupKorea Institute of Industrial TechnologySiheungsiGyeonggi‐doRepublic of Korea
| | - Mi Ae Jeong
- Department of Anesthesiology and pain medicineHanyang University College of MedicineSeoulRepublic of Korea
| | - Bo‐Kyeong Kang
- Department of RadiologyHanyang University, College of medicineSeoulRepublic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & TherapeuticsNational Radiation Emergency Medical Center, Korea Institute of Radiological & Medical ScienceSeoulRepublic of Korea
| | - Valentina M. Factor
- Laboratory of Molecular PharmacologyCenter for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | | | - Hyunsung Kim
- Department of PathologyHanyang University College of MedicineSeoulRepublic of Korea
| | - Jaemin Jeong
- Department of SurgeryHanyang University College of MedicineSeoulRepublic of Korea
- HY Indang Center of Regenerative Medicine and Stem Cell ResearchHanyang UniversitySeoulRepublic of Korea
| | - Han Joon Kim
- Department of SurgeryHanyang University College of MedicineSeoulRepublic of Korea
- HY Indang Center of Regenerative Medicine and Stem Cell ResearchHanyang UniversitySeoulRepublic of Korea
| | - Dongho Choi
- Department of SurgeryHanyang University College of MedicineSeoulRepublic of Korea
- HY Indang Center of Regenerative Medicine and Stem Cell ResearchHanyang UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Yao J, Yu Y, Nyberg SL. Induced Pluripotent Stem Cells for the Treatment of Liver Diseases: Novel Concepts. Cells Tissues Organs 2022; 211:368-384. [PMID: 32615573 PMCID: PMC7775900 DOI: 10.1159/000508182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Millions of people worldwide with incurable liver disease die because of inadequate treatment options and limited availability of donor organs for liver transplantation. Regenerative medicine as an innovative approach to repairing and replacing cells, tissues, and organs is undergoing a major revolution due to the unprecedented need for organs for patients around the world. Induced pluripotent stem cells (iPSCs) have been widely studied in the field of liver regeneration and are considered to be the most promising candidate therapies. This review will conclude the current state of efforts to derive human iPSCs for potential use in the modeling and treatment of liver disease.
Collapse
Affiliation(s)
- Jia Yao
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Clinical Research and Project Management Office, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing, China
| | - Scott L. Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Corresponding Author: Scott L. Nyberg, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA, Tel: Rochester, MN 55905, USA, Fax: (507) 284-2511,
| |
Collapse
|
6
|
Gontran E, Loarca L, El Kassis C, Bouzhir L, Ayollo D, Mazari-Arrighi E, Fuchs A, Dupuis-Williams P. Self-Organogenesis from 2D Micropatterns to 3D Biomimetic Biliary Trees. Bioengineering (Basel) 2021; 8:112. [PMID: 34436115 PMCID: PMC8389215 DOI: 10.3390/bioengineering8080112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND AIMS Globally, liver diseases account for 2 million deaths per year. For those with advanced liver disease the only curative approach is liver transplantation. However, less than 10% of those in need get a liver transplant due to limited organ availability. To circumvent this challenge, there has been a great focus in generating a bioengineered liver. Despite its essential role in liver functions, a functional biliary system has not yet been developed. In this framework, exploration of epithelial cell self-organogenesis and microengineering-driven geometrical cell confinement allow to envision the bioengineering of a functional biomimetic intrahepatic biliary tract. APPROACH three-dimensional (3D) bile ducts were built in vitro by restricting cell adhesion to two-dimensional (2D) patterns to guide cell self-organization. Tree shapes mimicking the configuration of the human biliary system were micropatterned on glass slides, restricting cell attachment to these areas. Different tree geometries and culture conditions were explored to stimulate self-organogenesis of normal rat cholangiocytes (NRCs) used as a biliary cell model, either alone or in co-culture with human umbilical endothelial cells (HUVECs). RESULTS Pre-seeding the micropatterns with HUVECs promoted luminogenesis with higher efficiency to yield functional branched biliary tubes. Lumen formation, apico-basal polarity, and preservation of the cholangiocyte phenotype were confirmed. Moreover, intact and functional biliary structures were detached from the micropatterns for further manipulation. CONCLUSION This study presents physiologically relevant 3D biliary duct networks built in vitro from 2D micropatterns. This opens opportunities for investigating bile duct organogenesis, physiopathology, and drug testing.
Collapse
Affiliation(s)
- Emilie Gontran
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
- INSERM U-1279, Gustave Roussy, F-94805 Villejuif, France
| | - Lorena Loarca
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Cyrille El Kassis
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Latifa Bouzhir
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
| | - Dmitry Ayollo
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Elsa Mazari-Arrighi
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Alexandra Fuchs
- INSERM, Institut Universitaire d’Hematologie, Université de Paris, U976 HIPI, F-75006 Paris, France; (D.A.); (E.M.-A.); (A.F.)
- AP-HP, Hôpital Saint-Louis, 1 Avenue Vellefaux, F-75010 Paris, France
- CEA, IRIG, F-38000 Grenoble, France
| | - Pascale Dupuis-Williams
- Physiopathogenèse et Traitement des Maladies du Foie, Université Paris-Saclay, Inserm, F-94800 Villejuif, France; (E.G.); (C.E.K.); (L.B.)
- ESPCI Paris, Université PSL, F-75005 Paris, France
| |
Collapse
|
7
|
Hamada T, Nakamura A, Soyama A, Sakai Y, Miyoshi T, Yamaguchi S, Hidaka M, Hara T, Kugiyama T, Takatsuki M, Kamiya A, Nakayama K, Eguchi S. Bile duct reconstruction using scaffold-free tubular constructs created by Bio-3D printer. Regen Ther 2021; 16:81-89. [PMID: 33732817 PMCID: PMC7921183 DOI: 10.1016/j.reth.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/16/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Biliary strictures after bile duct injury or duct-to-duct biliary reconstruction are serious complications that markedly reduce patients’ quality of life because their treatment involves periodic stent replacements. This study aimed to create a scaffold-free tubular construct as an interposition graft to treat biliary complications. Methods Scaffold-free tubular constructs of allogeneic pig fibroblasts, that is, fibroblast tubes, were created using a Bio-3D Printer and implanted into pigs as interposition grafts for duct-to-duct biliary reconstruction. Results Although the fibroblast tube was weaker than the native bile duct, it was sufficiently strong to enable suturing. The pigs' serum hepatobiliary enzyme levels remained stable during the experimental period. Micro-computed tomography showed no biliary strictures, no biliary leakages, and no intrahepatic bile duct dilations. The tubular structure was retained in all resected specimens, and the fibroblasts persisted at the graft sites. Immunohistochemical analyses revealed angiogenesis in the fibroblast tube and absence of extensions of the biliary epithelium into the fibroblast tube's lumen. Conclusions This study's findings demonstrated successful reconstruction of the extrahepatic bile duct with a scaffold-free tubular construct created from pig fibroblasts using a novel Bio-3D Printer. This construct could provide a novel regenerative treatment for patients with hepatobiliary diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Artificial bile duct
- Bio-3D printer
- Cr, creatinine
- DMEM, Dulbecco's Modified Eagle's Medium
- EDTA, trypsin-ethylenediaminetetraacetic acid
- FBS, fetal bovine serum
- IBDI, iatrogenic bile duct injury
- KCL, potassium chloride
- LDLT, living donor liver transplantation
- PBS, phosphate-buffered saline
- QOL, quality of life
- Reconstruction
- Scaffold-free tubular construct
- T-Bil, total bilirubin
- γ-GTP, γ-glutamyl transpeptidase
Collapse
Affiliation(s)
- Takashi Hamada
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Anna Nakamura
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Japan
| | - Takayuki Miyoshi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Shun Yamaguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Tota Kugiyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
8
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Luce E, Dubart-Kupperschmitt A. Pluripotent stem cell-derived cholangiocytes and cholangiocyte organoids. Methods Cell Biol 2020; 159:69-93. [PMID: 32586450 DOI: 10.1016/bs.mcb.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of protocols for pluripotent stem cell (PSC) differentiation into cholangiocytes and cholangiocyte organoids in three-dimensional structures represent a huge advance in both research and medical fields because of the limited access to primary human cholangiocytes and the potential bias induced by animal models used to study cholangiopathies in vivo. PSC-derived cholangiocyte organoids consisting of either cysts with luminal space or branching tubular structures are composed of cells with apico-basal polarity that can fulfill cholangiocyte functions like the transport of bile salts. Several protocols of PSC differentiation have already been published but we added to the detailed protocol we describe here some notes or advice to facilitate its handling by new users. We also propose detailed protocols to carry out some of the characterization analyses using immunofluorescence to study the expression of specific markers and a functionality test to visualize bile acid transport using cholyl-lysyl-fluorescein (CLF).
Collapse
Affiliation(s)
- Eléanor Luce
- INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France.
| | - Anne Dubart-Kupperschmitt
- INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France
| |
Collapse
|