1
|
Ryu JR, Ko K, Sun W. Polarization of organoids by bioengineered symmetry breaking. IBRO Neurosci Rep 2024; 17:22-31. [PMID: 38881849 PMCID: PMC11176950 DOI: 10.1016/j.ibneur.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Symmetry breaking leading to axis formation and spatial patterning is crucial for achieving more accurate recapitulation of human development in organoids. While these processes can occur spontaneously by self-organizing capabilities of pluripotent stem cells, they can often result in variation in structure and composition of cell types within organoids. To address this limitation, bioengineering techniques that utilize geometric, topological and stiffness factors are increasingly employed to enhance control and consistency. Here, we review how spontaneous manners and engineering tools such as micropattern, microfluidics, biomaterials, etc. can facilitate the process of symmetry breaking leading to germ layer patterning and the formation of anteroposterior and dorsoventral axes in blastoids, gastruloids, neuruloids and neural organoids. Furthermore, brain assembloids, which are composed of multiple brain regions through fusion processes are discussed. The overview of organoid polarization in terms of patterning tools can offer valuable insights for enhancing the physiological relevance of organoid system.
Collapse
Affiliation(s)
- Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kahee Ko
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Alani M, Altarturih H, Pars S, Al-mhanawi B, Wolvetang EJ, Shaker MR. A Roadmap for Selecting and Utilizing Optimal Features in scRNA Sequencing Data Analysis for Stem Cell Research: A Comprehensive Review. Int J Stem Cells 2024; 17:347-362. [PMID: 38531607 PMCID: PMC11612217 DOI: 10.15283/ijsc23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Stem cells and the cells they produce are unique because they vary from one cell to another. Traditional methods of studying cells often overlook these differences. However, the development of new technologies for studying individual cells has greatly changed biological research in recent years. Among these innovations, single-cell RNA sequencing (scRNA-seq) stands out. This technique allows scientists to examine the activity of genes in each cell, across thousands or even millions of cells. This makes it possible to understand the diversity of cells, identify new types of cells, and see how cells differ across different tissues, individuals, species, times, and conditions. This paper discusses the importance of scRNA-seq and the computational tools and software that are essential for analyzing the vast amounts of data generated by scRNA-seq studies. Our goal is to provide practical advice for bioinformaticians and biologists who are using scRNA-seq to study stem cells. We offer an overview of the scRNA-seq field, including the tools available, how they can be used, and how to present the results of these studies effectively. Our findings include a detailed overview and classification of tools used in scRNA-seq analysis, based on a review of 2,733 scientific publications. This review is complemented by information from the scRNA-tools database, which lists over 1,400 tools for analyzing scRNA-seq data. This database is an invaluable resource for researchers, offering a wide range of options for analyzing their scRNA-seq data.
Collapse
Affiliation(s)
- Maath Alani
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Hamza Altarturih
- Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
| | - Selin Pars
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Bahaa Al-mhanawi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Mohammed R. Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Huang R, Zhu Y, Chen H, Yu L, Liu Z, Liu Y, Wang Z, He X, Yang L, Xu X, Bai Y, Chen B, Zhu R. Progress in spinal cord organoid research: advancing understanding of neural development, disease modelling, and regenerative medicine. BIOMATERIALS TRANSLATIONAL 2024; 5:355-371. [PMID: 39872925 PMCID: PMC11764192 DOI: 10.12336/biomatertransl.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025]
Abstract
Stem cell-derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders. Despite these strides, challenges in achieving vascularisation and mature neuronal integration persist. The future of SCOs lies in addressing these limitations, potentially leading to transformative impactions in regenerative medicine and therapeutic development.
Collapse
Affiliation(s)
- Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Haokun Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Liqun Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Zhibo Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yuchen Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Bairu Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Pietrogrande G, Shaker MR, Stednitz SJ, Soheilmoghaddam F, Aguado J, Morrison SD, Zambrano S, Tabassum T, Javed I, Cooper-White J, Davis TP, O'Brien TJ, Scott EK, Wolvetang EJ. Valproic acid-induced teratogenicity is driven by senescence and prevented by Rapamycin in human spinal cord and animal models. Mol Psychiatry 2024:10.1038/s41380-024-02732-0. [PMID: 39227432 DOI: 10.1038/s41380-024-02732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Valproic acid (VPA) is an effective and widely used anti-seizure medication but is teratogenic when used during pregnancy, affecting brain and spinal cord development for reasons that remain largely unclear. Here we designed a genetic recombinase-based SOX10 reporter system in human pluripotent stem cells that enables tracking and lineage tracing of Neural Crest cells (NCCs) in a human organoid model of the developing neural tube. We found that VPA induces extensive cellular senescence and promotes mesenchymal differentiation of human NCCs. We next show that the clinically approved drug Rapamycin inhibits senescence and restores aberrant NCC differentiation trajectory after VPA exposure in human organoids and in developing zebrafish, highlighting the therapeutic promise of this approach. Finally, we identify the pioneer factor AP1 as a key element of this process. Collectively our data reveal cellular senescence as a central driver of VPA-associated neurodevelopmental teratogenicity and identifies a new pharmacological strategy for prevention. These results exemplify the power of genetically modified human stem cell-derived organoid models for drug discovery.
Collapse
Affiliation(s)
- Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Sarah J Stednitz
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Farhad Soheilmoghaddam
- School of Chemical Engineering, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Sean D Morrison
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, Milan, 20132, Italy
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Tahmina Tabassum
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Justin Cooper-White
- School of Chemical Engineering, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Terence J O'Brien
- Department of Neuroscience, The Central Clinical School, Alfred Health, Monash University, Melbourne, VIC, Australia
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ethan K Scott
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
5
|
Yong SH, Kim SM, Kong GW, Ko SH, Lee EH, Oh Y, Park CH. ASCL1-mediated direct reprogramming: converting ventral midbrain astrocytes into dopaminergic neurons for Parkinson's disease therapy. BMB Rep 2024; 57:363-368. [PMID: 38649147 PMCID: PMC11362138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024] Open
Abstract
Parkinson's disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra, is caused by various genetic and environmental factors. Current treatment methods are medication and surgery; however, a primary therapy has not yet been proposed. In this study, we aimed to develop a new treatment for PD that induces direct reprogramming of dopaminergic neurons (iDAN). Achaete-scute family bHLH transcription factor 1 (ASCL1) is a primary factor that initiates and regulates central nervous system development and induces neurogenesis. In addition, it interacts with BRN2 and MYT1L, which are crucial transcription factors for the direct conversion of fibroblasts into neurons. Overexpression of ASCL1 along with the transcription factors NURR1 and LMX1A can directly reprogram iDANs. Using a retrovirus, GFP-tagged ASCL1 was overexpressed in astrocytes. One week of culture in iDAN convertsion medium reprogrammed the astrocytes into iDANs. After 7 days of differentiation, TH+/TUJ1+ cells emerged. After 2 weeks, the number of mature TH+/TUJ1+ dopaminergic neurons increased. Only ventral midbrain (VM) astrocytes exhibited these results, not cortical astrocytes. Thus, VM astrocytes can undergo direct iDAN reprogramming with ASCL1 alone, in the absence of transcription factors that stimulate dopaminergic neurons development. [BMB Reports 2024; 57(8): 363-368].
Collapse
Affiliation(s)
- Sang Hui Yong
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sang-Mi Kim
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea, Seoul 04763, Korea
| | - Gyeong Woon Kong
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Seung Hwan Ko
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Eun-Hye Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, Korea
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Seoul 04763, Korea
| | - Yohan Oh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul 04763, Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
6
|
Wu W, Liu Y, Liu R, Wang Y, Zhao Y, Li H, Lu B, Ju C, Gao X, Xu H, Cao Y, Cheng S, Wang Z, Jia S, Hu C, Zhu L, Hao D. Decellularized Brain Extracellular Matrix Hydrogel Aids the Formation of Human Spinal-Cord Organoids Recapitulating the Complex Three-Dimensional Organization. ACS Biomater Sci Eng 2024; 10:3203-3217. [PMID: 38557027 DOI: 10.1021/acsbiomaterials.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of in vitro models for spinal cord-related diseases highly challenging. Currently, both in vivo and in vitro models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable in vitro models for spinal cord-related diseases. However, the cultivation of spinal cord organoids predominantly relies on Matrigel, a matrix derived from murine sarcoma tissue. Tissue-specific extracellular matrices are key drivers of complex organ development, thus underscoring the urgent need to research safer and more physiologically relevant organoid culture materials. Herein, we have prepared a rat decellularized brain extracellular matrix hydrogel (DBECMH), which supports the formation of hiPSC-derived spinal cord organoids. Compared with Matrigel, organoids cultured in DBECMH exhibited higher expression levels of markers from multiple compartments of the natural spinal cord, facilitating the development and maturation of spinal cord organoid tissues. Our study suggests that DBECMH holds potential to replace Matrigel as the standard culture medium for human spinal cord organoids, thereby advancing the development of spinal cord organoid culture protocols and their application in in vitro modeling of spinal cord-related diseases.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Yuhao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Yuqi Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Yulin Cao
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair of Tianjin Economic-Technological Development Area, No. 220 DongTing Road, TEDA District, Tianjin 300457, China
- TANGYI Biomedicine (Tianjin) Co., Ltd. (TBMed), No. 286 Anshan West Road, Nankai District, Tianjin 300190, China
| | - Shixiang Cheng
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair of Tianjin Economic-Technological Development Area, No. 220 DongTing Road, TEDA District, Tianjin 300457, China
- TANGYI Biomedicine (Tianjin) Co., Ltd. (TBMed), No. 286 Anshan West Road, Nankai District, Tianjin 300190, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Chunping Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Dingjun Hao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| |
Collapse
|
7
|
Shin A, Ryu JR, Kim BG, Sun W. Establishment and Validation of a Model for Fetal Neural Ischemia Using Necrotic Core-Free Human Spinal Cord Organoids. Stem Cells Transl Med 2024; 13:268-277. [PMID: 38103168 PMCID: PMC10940837 DOI: 10.1093/stcltm/szad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Fetal spinal cord ischemia is a serious medical condition that can result in significant neurological damage and adverse outcomes for the fetus. However, the lack of an appropriate experimental model has hindered the understanding of the pathology and the development of effective treatments. In our study, we established a system for screening drugs that affect fetal spinal cord ischemia using spinal cord organoids. Importantly, we produced necrotic core-free human spinal cord organoids (nf-hSCOs) by reducing the organoid size to avoid potential complications of spontaneous necrosis in large organoids. Exposing nf-hSCOs to CoCl2 as a hypoxia mimetic and hypoglycemic conditions resulted in significant neuronal damage, as assessed by multiple assay batteries. By utilizing this model, we tested chemicals that have been reported to exhibit beneficial effects in brain organoid-based ischemia models. Surprisingly, these chemicals did not provide sufficient benefit, and we discovered that rapamycin is a mild neuroprotective reagent for both axon degeneration and neuronal survival. We propose that nf-hSCO is suitable for large-scale screening of fetal neural ischemia due to its scalability, ease of ischemic induction, implementation of quantifiable assay batteries, and the absence of spontaneous necrosis.
Collapse
Affiliation(s)
- Aeri Shin
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, A-Jou University School of Medicine, Suwon, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|