1
|
Amorim MDSDN, Batista JA, Junior FM, Fontes A, Santos-Oliveira R, Rebelo Alencar LM. New Insights into Hemolytic Anemias: Ultrastructural and Nanomechanical Investigation of Red Blood Cells Showed Early Morphological Changes. J Biomed Nanotechnol 2022; 18:405-421. [PMID: 35484760 DOI: 10.1166/jbn.2022.3267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several diseases are characterized by changes in the mechanical properties of erythrocytes. Hemolytic anemias are an example of these diseases. Among the hemolytic anemias, Sickle Cell Disease and Thalassemia are the most common, characterized by alterations in the structure of their hemoglobin. Sickle cell disease has a pathological origin in synthesizing abnormal hemoglobin, HbS. In contrast, thalassemia results in extinction or decreased synthesis of α and β hemoglobin chains. This work presents a detailed study of biophysical and ultrastructural early erythrocytes membrane alterations at the nanoscale using Atomic Force Microscopy (AFM). Cells from individuals with sickle cell anemia and thalassemia mutations were studied. The analysis methodology in the AFM was given by blood smear and exposure of the inner membrane for ghost analysis. A robust statistic was used with 65,536 force curves for each map, ten cells of each type, with three individuals for each sample group. The results showed significant differences in cell rigidity, adhesion, volume, and roughness at early morphological alterations, bringing new perspectives for understanding pathogenesis. The sickle cell trait (HbAS) results stand out. Significant alterations were observed in the membrane properties, bringing new perspectives for the knowledge of this mutation. This work presents ultrastructural and biomechanical signatures of sickle cell anemia and thalassemia genotypes, which may help determine a more accurate biophysical description and clinical prognosis for these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do N Amorim
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Jerias A Batista
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Francisco Maia Junior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró, 59625-900, Rio Grande do Norte, Brazil
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Center for Biosciences, Federal University of Pernambuco, Recife, 52171-011, Brazil
| | - Ralph Santos-Oliveira
- Zona Oeste State University, Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro, 23070200, Brazil
| | - Luciana M Rebelo Alencar
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| |
Collapse
|
2
|
Abikoye TM, Idowu OO, Oluleye TS. A systematic review of cases of West African crystalline maculopathy. Int J Clin Pract 2021; 75:e14911. [PMID: 34551184 DOI: 10.1111/ijcp.14911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/21/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022] Open
Abstract
AIM West African crystalline maculopathy (WACM) is, reportedly, a rare condition whose aetiology remains unclear. This study aims to describe the epidemiology, summarizing the identified risk factors and clinical characteristics of cases of WACM, with the goal of highlighting presentation patterns and the clinical course of the condition. METHODS A comprehensive PubMed, Medline, EMBASE, Web of Science, OMIM and Google scholar search of all articles written in English, and non-English language articles with abstract translated to English on WACM was carried out. Only full case reports and series were included. Data reviewed included epidemiology, risk factors, clinical presentations, imaging characteristics, management and prognosis of WACM. Information on the location of the study was also extracted. RESULTS Ten studies - seven case reports and three case series - comprising of 30 patients were included. The patients were from West, Central and North-east Africa, with all the studies carried out in North America and Europe. The majority of the patients (76.7%) had diabetes mellitus, 80% had a vascular retinopathy (diabetic retinopathy, sickle cell retinopathy, familial exudative vitreoretinopathy and branch retinal vein occlusion) and 50% had macular oedema. There was no report of associated visual impairment or retinal degeneration. Clinical improvement in the number of crystals was documented in two cases with retinal laser photocoagulation for associated vascular retinopathies. Clinical observation was employed by most clinicians. CONCLUSION West African crystalline retinopathy is a seemingly innocuous condition affecting black or African people, who were also born in Africa. The majority of the patients have a vascular retinopathy. Longitudinal studies, particularly in Africa, may be required to elucidate the aetiology, as well as the long-term prognosis, of the crystals.
Collapse
Affiliation(s)
- Temiloluwa M Abikoye
- Department of Ophthalmology, Guinness Eye Center, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Oluwatobi O Idowu
- Department of Ophthalmology, Guinness Eye Center, Lagos University Teaching Hospital, Lagos, Nigeria
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Tunji S Oluleye
- Department of Ophthalmology, University of Ibadan/University College Hospital, Ibadan, Nigeria
| |
Collapse
|
3
|
Boisson C, Rab MAE, Nader E, Renoux C, van Oirschot BA, Joly P, Fort R, Stauffer E, van Beers EJ, Sheehan VA, van Wijk R, Connes P. Methodological aspects of oxygen gradient ektacytometry in sickle cell disease: Effects of sample storage on outcome parameters in distinct patient subgroups. Clin Hemorheol Microcirc 2021; 77:391-394. [PMID: 33361587 DOI: 10.3233/ch-201037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sickle cell disease (SCD) is a genetic disorder characterized by the production of an abnormal hemoglobin (Hb), which, under deoxygenation, may polymerize and cause a mechanical distortion of red blood cell (RBC) into a crescent-like shape. Recently a method, using ektacytometry principle, has been developed to assess RBC deformability as a function of oxygen tension (pO2) and is called oxygen gradient ektacytometry (oxygenscan). However, standardization of this test is needed to properly assess the tendency of sickling of RBCs under deoxygenation and to allow comparisons between different laboratories. The study compared the oxygenscan responses during blood storage between distinct populations of SCD patients. Blood from 40 non-transfused homozygous SCD patients (HbSS), 16 chronically transfused HbSS patients, and 14 individuals with compound heterozygous hemoglobin SC disease (HbSC) at steady-state was collected in EDTA tubes. Measurements were performed within 4 hours after collection and after 24 hours of storage at 4°C. We showed that storage affected the minimum RBC deformability reached during deoxygenation (EImin) in both non-transfused HbSS and HbSC patients and the maximum RBC deformability (EImax) measured before deoxygenation (i.e., in normoxia) in the three groups. In contrast, the tendency of RBCs to sickle under deoxygenation (i.e., the point of sickling; PoS) remained rather stable between the two time of measurements. Collectively, since the time between blood sampling and analysis affects some key oxygen gradient ektacytometry-derived parameters we recommend that each laboratory performs oxygenscan measurements at a standardized time point.
Collapse
Affiliation(s)
- Camille Boisson
- "Vascular Biology and Red Blood Cell" Team, Laboratory LIBM EA7424, University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Minke A E Rab
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Van Creveldkliniek,University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elie Nader
- "Vascular Biology and Red Blood Cell" Team, Laboratory LIBM EA7424, University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Céline Renoux
- "Vascular Biology and Red Blood Cell" Team, Laboratory LIBM EA7424, University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Laboratory of Biochemistry and Molecular Biology, UF Biochemistry of Red Blood Cell Diseases, Est Center of Biology and Pathology, Hospices Civils de Lyon, Lyon, France
| | - Brigitte A van Oirschot
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Joly
- "Vascular Biology and Red Blood Cell" Team, Laboratory LIBM EA7424, University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Laboratory of Biochemistry and Molecular Biology, UF Biochemistry of Red Blood Cell Diseases, Est Center of Biology and Pathology, Hospices Civils de Lyon, Lyon, France
| | - Romain Fort
- Department of Internal Medicine, Hospices Civils de Lyon, Lyon, France
| | - Emeric Stauffer
- Department of Functional Respiratory Investigations, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Eduard J van Beers
- Van Creveldkliniek,University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Richard van Wijk
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Connes
- "Vascular Biology and Red Blood Cell" Team, Laboratory LIBM EA7424, University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
4
|
Boisson C, Rab MAE, Nader E, Renoux C, Kanne C, Bos J, van Oirschot BA, Joly P, Fort R, Gauthier A, Stauffer E, Poutrel S, Kebaili K, Cannas G, Garnier N, Renard C, Hequet O, Hot A, Bertrand Y, van Wijk R, Sheehan VA, van Beers EJ, Connes P. Effects of Genotypes and Treatment on Oxygenscan Parameters in Sickle Cell Disease. Cells 2021; 10:cells10040811. [PMID: 33916502 PMCID: PMC8067408 DOI: 10.3390/cells10040811] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
(1) Background: The aim of the present study was to compare oxygen gradient ektacytometry parameters between sickle cell patients of different genotypes (SS, SC, and S/β+) or under different treatments (hydroxyurea or chronic red blood cell exchange). (2) Methods: Oxygen gradient ektacytometry was performed in 167 adults and children at steady state. In addition, five SS patients had oxygenscan measurements at steady state and during an acute complication requiring hospitalization. (3) Results: Red blood cell (RBC) deformability upon deoxygenation (EImin) and in normoxia (EImax) was increased, and the susceptibility of RBC to sickle upon deoxygenation was decreased in SC patients when compared to untreated SS patients older than 5 years old. SS patients under chronic red blood cell exchange had higher EImin and EImax and lower susceptibility of RBC to sickle upon deoxygenation compared to untreated SS patients, SS patients younger than 5 years old, and hydroxyurea-treated SS and SC patients. The susceptibility of RBC to sickle upon deoxygenation was increased in the five SS patients during acute complication compared to steady state, although the difference between steady state and acute complication was variable from one patient to another. (4) Conclusions: The present study demonstrates that oxygen gradient ektacytometry parameters are affected by sickle cell disease (SCD) genotype and treatment.
Collapse
Affiliation(s)
- Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - Minke A. E. Rab
- Central Diagnostic Laboratory—Research, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands; (M.A.E.R.); (J.B.); (B.A.v.O.); (R.v.W.)
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands;
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
| | - Céline Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - Celeste Kanne
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (C.K.); (V.A.S.)
| | - Jennifer Bos
- Central Diagnostic Laboratory—Research, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands; (M.A.E.R.); (J.B.); (B.A.v.O.); (R.v.W.)
| | - Brigitte A. van Oirschot
- Central Diagnostic Laboratory—Research, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands; (M.A.E.R.); (J.B.); (B.A.v.O.); (R.v.W.)
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de Biochimie des Pathologies Érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - Romain Fort
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France; (G.C.); (A.H.)
| | - Alexandra Gauthier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Centre de Médecine du Sommeil et des Maladies Respiratoires, Hôpital Croix Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| | - Solene Poutrel
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France; (G.C.); (A.H.)
| | - Kamila Kebaili
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Giovanna Cannas
- Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France; (G.C.); (A.H.)
| | - Nathalie Garnier
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Cécile Renard
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Olivier Hequet
- Apheresis Unit, Etablissement Français du Sang Rhône Alpes, Centre Hospitalier Lyon Sud Pierre Bénite, 69310 Pierre Bénite, France;
| | - Arnaud Hot
- Département de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69008 Lyon, France; (G.C.); (A.H.)
| | - Yves Bertrand
- Institut d’Hématologie et d’Oncologie Pédiatrique, Hospices Civils de Lyon, 69008 Lyon, France; (N.G.); (C.R.); (Y.B.)
| | - Richard van Wijk
- Central Diagnostic Laboratory—Research, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands; (M.A.E.R.); (J.B.); (B.A.v.O.); (R.v.W.)
| | - Vivien A. Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (C.K.); (V.A.S.)
| | - Eduard J. van Beers
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, 85500, 3508 GA Utrecht, The Netherlands;
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (C.B.); (E.N.); (C.R.); (P.J.); (R.F.); (A.G.); (E.S.); (S.P.); (K.K.)
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 75006 Paris, France
- Correspondence:
| |
Collapse
|
5
|
Connes P, Möckesch B, Tudor Ngo Sock E, Hardy-Dessources MD, Reminy K, Skinner S, Billaud M, Nader E, Tressieres B, Etienne-Julan M, Guillot N, Lemonne N, Hue O, Romana M, Antoine-Jonville S. Oxidative stress, inflammation, blood rheology, and microcirculation in adults with sickle cell disease: Effects of hydroxyurea treatment and impact of sickle cell syndrome. Eur J Haematol 2021; 106:800-807. [PMID: 33629431 DOI: 10.1111/ejh.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Inflammation and oxidative stress play a key role in the pathophysiology of sickle cell disease (SCD). However, the potential influence of different sickle genotypes, or hydroxyurea (HU) treatment, on these factors remains poorly documented. The present study compared several plasma markers of inflammation and oxidative stress, as well as microvascular function, between patients with sickle SC disease (HbSC, n = 19) and patients with sickle cell anemia (HbSS) under hydroxyurea (HU) treatment (n = 16), or not (n = 13). Hemorheological parameters and levels of inflammatory (IL-6, IL-8, IFN-γ, MCP-1, MIP-1β, TNF-α) and oxidative stress (AOPP, MDA, MPO) markers were determined. Peripheral microcirculatory cutaneous blood flow and immediate microvascular response to local heat were evaluated using laser Doppler flowmetry. Oxidative stress and inflammation were lower in HbSC patients and HbSS patients under HU therapy compared to HbSS patients not treated with HU. Blood viscosity was higher in HbSC than in HbSS patients treated with or not with HU. Vasodilation response of the cutaneous microcirculation to heat stress was higher in HbSS patients receiving HU treatment. Our results clearly established that both sickle cell genotype and HU treatment modulate inflammation and oxidative stress.
Collapse
Affiliation(s)
- Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Lyon 1 (COMUE Lyon), Equipe "Biologie Vasculaire et du Globule Rouge", Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Berenike Möckesch
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France
| | - Emilienne Tudor Ngo Sock
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France
| | - Marie-Dominique Hardy-Dessources
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR Inserm, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Karen Reminy
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France
| | - Sarah Skinner
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Lyon 1 (COMUE Lyon), Equipe "Biologie Vasculaire et du Globule Rouge", Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marie Billaud
- Unité Transversale de la Drépanocytose, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Lyon 1 (COMUE Lyon), Equipe "Biologie Vasculaire et du Globule Rouge", Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Benoit Tressieres
- Centre d'Investigation Clinique Antilles Guyane, Pointe-à-Pitre, France
| | - Maryse Etienne-Julan
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR Inserm, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Unité Transversale de la Drépanocytose, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Nicolas Guillot
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Université Lyon 1 (COMUE Lyon), Equipe "Biologie Vasculaire et du Globule Rouge", Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Olivier Hue
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR Inserm, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Sophie Antoine-Jonville
- EA "ACTES": Adaptation, Climat Tropical, Exercice et Santé, Université des Antilles, Pointe-à-Pitre, France.,Université d'Avignon, LAPEC EA4278, Avignon, France
| |
Collapse
|
6
|
Fellows AP, Casford MTL, Davies PB, Gibson JS, Brewin JN, Rees DC. Nanoscale adhesion profiling and membrane characterisation in sickle cell disease using hybrid atomic force microscopy-IR spectroscopy. Colloids Surf B Biointerfaces 2020; 197:111383. [PMID: 33039752 DOI: 10.1016/j.colsurfb.2020.111383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Sickle cell disease (SCD) presents a significant global health problem. At present there is no effective treatment, with most being supportive for its associated complications such as the vaso-occlusive crises that result from increased cell adhesion. Hypoxic sickle cells have previously shown greater phosphatidylserine (PS) exposure and oxidative damage, as well as being notably "stickier" suggesting that increased cell cohesion and adhesion to the blood vessel endothelium is a possible mechanism for vaso-occlusion. The present work uses the hybrid technique of atomic force microscopy nano-infrared spectroscopy (AFM-IR) to probe changes to the coefficient of friction and C-O IR intensity in SCD on a nanoscale for dried red blood cells (RBCs) fixed under conditions of hypoxia and correlates these observations with adhesive interactions at the membrane. Using functionalised AFM tips, it has been possible to probe adhesive interactions between hydrophilic and hydrophobic moieties exposed at the surface of the dried RBCs fixed under different oxygenation states and for different cell genotypes. The results are consistent with greater PS-exposure and oxidative damage in hypoxic sickle cells, as previously proposed, and also show strong correlation between localised oxidative damage and increased adhesion. A mechanistic explanation involving significant lipid tail disruption as a result of oxidative action, in combination with differing concentrations of externalised PS lipids, is proposed to explain the observed adhesion behaviour of each type of cell.
Collapse
Affiliation(s)
- A P Fellows
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - M T L Casford
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - P B Davies
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - J S Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK.
| | - J N Brewin
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| | - D C Rees
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| |
Collapse
|
7
|
Schönherr R, Rudolph JM, Redecke L. Protein crystallization in living cells. Biol Chem 2019; 399:751-772. [PMID: 29894295 DOI: 10.1515/hsz-2018-0158] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Protein crystallization in living cells has been observed surprisingly often as a native assembly process during the past decades, and emerging evidence indicates that this phenomenon is also accessible for recombinant proteins. But only recently the advent of high-brilliance synchrotron sources, X-ray free-electron lasers, and improved serial data collection strategies has allowed the use of these micrometer-sized crystals for structural biology. Thus, in cellulo crystallization could offer exciting new possibilities for proteins that do not crystallize applying conventional approaches. In this review, we comprehensively summarize the current knowledge of intracellular protein crystallization. This includes an overview of the cellular functions, the physical properties, and, if known, the mode of regulation of native in cellulo crystal formation, complemented with a discussion of the reported crystallization events of recombinant proteins and the current method developments to successfully collect X-ray diffraction data from in cellulo crystals. Although the intracellular protein self-assembly mechanisms are still poorly understood, regulatory differences between native in cellulo crystallization linked to a specific function and accidently crystallizing proteins, either disease associated or recombinantly introduced, become evident. These insights are important to systematically exploit living cells as protein crystallization chambers in the future.
Collapse
Affiliation(s)
- Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Janine Mia Rudolph
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
8
|
Chure G, Lee HJ, Rasmussen A, Phillips R. Connecting the Dots between Mechanosensitive Channel Abundance, Osmotic Shock, and Survival at Single-Cell Resolution. J Bacteriol 2018; 200:e00460-18. [PMID: 30201782 PMCID: PMC6222198 DOI: 10.1128/jb.00460-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022] Open
Abstract
Rapid changes in extracellular osmolarity are one of many insults microbial cells face on a daily basis. To protect against such shocks, Escherichia coli and other microbes express several types of transmembrane channels that open and close in response to changes in membrane tension. In E. coli, one of the most abundant channels is the mechanosensitive channel of large conductance (MscL). While this channel has been heavily characterized through structural methods, electrophysiology, and theoretical modeling, our understanding of its physiological role in preventing cell death by alleviating high membrane tension remains tenuous. In this work, we examine the contribution of MscL alone to cell survival after osmotic shock at single-cell resolution using quantitative fluorescence microscopy. We conducted these experiments in an E. coli strain which is lacking all mechanosensitive channel genes save for MscL, whose expression was tuned across 3 orders of magnitude through modifications of the Shine-Dalgarno sequence. While theoretical models suggest that only a few MscL channels would be needed to alleviate even large changes in osmotic pressure, we find that between 500 and 700 channels per cell are needed to convey upwards of 80% survival. This number agrees with the average MscL copy number measured in wild-type E. coli cells through proteomic studies and quantitative Western blotting. Furthermore, we observed zero survival events in cells with fewer than ∼100 channels per cell. This work opens new questions concerning the contribution of other mechanosensitive channels to survival, as well as regulation of their activity.IMPORTANCE Mechanosensitive (MS) channels are transmembrane protein complexes which open and close in response to changes in membrane tension as a result of osmotic shock. Despite extensive biophysical characterization, the contribution of these channels to cell survival remains largely unknown. In this work, we used quantitative video microscopy to measure the abundance of a single species of MS channel in single cells, followed by their survival after a large osmotic shock. We observed total death of the population with fewer than ∼100 channels per cell and determined that approximately 500 to 700 channels were needed for 80% survival. The number of channels we found to confer nearly full survival is consistent with the counts of the numbers of channels in wild-type cells in several earlier studies. These results prompt further studies to dissect the contribution of other channel species to survival.
Collapse
Affiliation(s)
- Griffin Chure
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of Technology, Pasadena, California, USA
| | - Akiko Rasmussen
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rob Phillips
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Department of Physics, California Institute of Technology, Pasadena, California, USA
- Department of Applied Physics, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
9
|
Rowe JB, Cancel RA, Evangelous TD, Flynn RP, Pechenov S, Subramony JA, Zhang J, Wang Y. Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody. Biophys J 2017; 113:1750-1756. [PMID: 29045869 DOI: 10.1016/j.bpj.2017.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/26/2022] Open
Abstract
Crystallization of IgG antibodies has important applications in the fields of structural biology, biotechnology, and biopharmaceutics. However, a rational approach to crystallize antibodies is still lacking. In this work, we report a method to estimate the solubility of antibodies at various temperatures. We experimentally determined the full phase diagram of an IgG antibody. Using the full diagram, we examined the metastability gaps, i.e., the distance between the crystal solubility line and the liquid-liquid coexistence curve, of IgG antibodies. By comparing our results to the partial phase diagrams of other IgGs reported in literature, we found that IgG antibodies have similar metastability gaps. Thereby, we present an equation with two phenomenological parameters to predict the approximate location of the solubility line of IgG antibodies with respect to their liquid-liquid coexistence curves. We have previously shown that the coexistence curve of an antibody solution can be readily determined by the polyethylene glycol-induced liquid-liquid phase separation method. Combining the polyethylene glycol-induced liquid-liquid phase separation measurements and the phenomenological equation in this article, we provide a general and practical means to predict the thermodynamic conditions for crystallizing IgG antibodies in the solution environments of interest.
Collapse
Affiliation(s)
- Jacob B Rowe
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina
| | - Rachel A Cancel
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina
| | - Tyler D Evangelous
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina
| | - Rhiannon P Flynn
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina
| | | | | | | | - Ying Wang
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina.
| |
Collapse
|
10
|
Kozlova E, Chernysh A, Moroz V, Sergunova V, Gudkova O, Manchenko E. Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci Rep 2017; 7:7846. [PMID: 28798476 PMCID: PMC5552796 DOI: 10.1038/s41598-017-08255-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
Transfusion of packed red blood cells (PRBC) to patients in critical states is often accompanied by post-transfusion complications. This may be related with disturbance of properties of PRBC and their membranes during long-term storage in the hemopreservative solution. The purpose of our work is the study of transformation of morphology, membranes stiffness and nanostructure for assessment of PRBC quality, in vitro. By atomic force microscopy we studied the transformation of cell morphology, the appearance of topological nanodefects of membranes and by atomic force spectroscopy studied the change of membrane stiffness during 40 days of storage of PRBC. It was shown that there is a transition period (20–26 days), in which we observed an increase in the Young’s modulus of the membranes 1.6–2 times and transition of cells into irreversible forms. This process was preceded by the appearance of topological nanodefects of membranes. These parameters can be used for quality assessment of PRBC and for improvement of transfusion rules.
Collapse
Affiliation(s)
- E Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation. .,Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow StateMedical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation.
| | - A Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation.,Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow StateMedical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - V Moroz
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - V Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - O Gudkova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - E Manchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| |
Collapse
|
11
|
Qiu SR, Orme CA. Dynamics of Biomineral Formation at the Near-Molecular Level. Chem Rev 2008; 108:4784-822. [DOI: 10.1021/cr800322u] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S. Roger Qiu
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Mailstop L-367, Livermore, California 94550
| | - Christine A. Orme
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Mailstop L-367, Livermore, California 94550
| |
Collapse
|
12
|
Affiliation(s)
- Michael D Ward
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|