1
|
Meikle TG, Keizer DW, Babon JJ, Drummond CJ, Separovic F, Conn CE, Yao S. Chemical Exchange of Hydroxyl Groups in Lipidic Cubic Phases Characterized by NMR. J Phys Chem B 2021; 125:571-580. [PMID: 33251799 DOI: 10.1021/acs.jpcb.0c08699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proton transportation in proximity to the lipid bilayer membrane surface, where chemical exchange represents a primary pathway, is of significant interest in many applications including cellular energy turnover underlying ATP synthesis, transmembrane mobility, and transport. Lipidic inverse bicontinuous cubic phases (LCPs) are unique membrane structures formed via the spontaneous self-assembly of certain lipids in an aqueous environment. They feature two networks of water channels, separated by a single lipid bilayer which approximates the geometry of a triply periodic minimal surface. When composed of monoolein, the LCP bilayer features two glycerol hydroxyl groups at the lipid-water interface which undergo exchange with water. Depending on the conditions of the aqueous solution used in the formation of LCPs, both resonances of the glycerol hydroxyl groups may be observed by solution 1H NMR. In this study, PFG-NMR and 1D EXSY were employed to gain insight into chemical exchange between the monoolein hydroxyl groups and water in LCPs. Results including the relative population of hydroxyl protons in exchange with water for a number of LCPs at different hydration levels and the exchange rate constants at 35 wt % hydration are reported. Several technical aspects of PFG-NMR and EXSY-NMR for the characterization of chemical exchange in LCPs are discussed, including an alternative way to analyze PFG-NMR data of exchange systems which overcomes the inherent low sensitivity at high diffusion encoding.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia.,School of Chemistry, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Rose M, Hirmiz N, Moran-Mirabal JM, Fradin C. Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking. MEMBRANES 2015; 5:702-21. [PMID: 26610279 PMCID: PMC4704007 DOI: 10.3390/membranes5040702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/06/2015] [Indexed: 11/16/2022]
Abstract
Diffusion in lipid membranes is an essential component of many cellular process and fluorescence a method of choice to study membrane dynamics. The goal of this work was to directly compare two common fluorescence methods, line-scanning fluorescence correlation spectroscopy and single-particle tracking, to observe the diffusion of a fluorescent lipophilic dye, DiD, in a complex five-component mitochondria-like solid-supported lipid bilayer. We measured diffusion coefficients of DFCS ~ 3 um2 * s-1 and DSPT ~ 2 um2 * s-1, respectively. These comparable, yet statistically different values are used to highlight the main message of the paper, namely that the two considered methods give access to distinctly different dynamic ranges: D sup or approximatively 1um2 * s-1 for FCS and D inf or approximatively 5 um2 s-1 for SPT (with standard imaging conditions). In the context of membrane diffusion, this means that FCS allows studying lipid diffusion in fluid membranes, as well as the diffusion of loosely-bound proteins hovering above the membrane. SPT, on the other hand, is ideal to study the motions of membrane-inserted proteins, especially those presenting different conformations, but only allows studying lipid diffusion in relatively viscous membranes, such as supported lipid bilayers and cell membranes.
Collapse
Affiliation(s)
- Markus Rose
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
| | - Nehad Hirmiz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
3
|
Wang J, Wang Y, Zhu X, Lu X. Some Insight into Stability of Amorphous Poly(ethylene glycol) Dimethyl Ether Polymers Based on Molecular Dynamics Simulations. J Phys Chem Lett 2013; 4:1718-1722. [PMID: 26282983 DOI: 10.1021/jz4008855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly(ethylene glycol) dimethyl ether (PEGDME) polymers are widely used as drug solid dispersion reagents. They can cause the amorphization of drugs and improve their solubility, stability, and bioavailability. However, the mechanism about why amorphous PEGDME 2000 polymer is highly stable is unclear so far. Molecular dynamics (MD) simulation is a unique key technique to solve it. In the current work, we systematically investigate structure, aggregate state, and thermodynamic and kinetic behaviors during the phase-transition processes of the PEGDME polymers with different polymerization degree in terms of MD simulations. The melting and glass-transition temperatures of the polymers are in good agreement with experimental values. The amorphous PEGDME2000 exhibits high stability, which is consistent with the recent experiment results and can be ascribed to a combination of two factors, that is, a high thermodynamic driving force for amorphization and a relatively low molecular mobility.
Collapse
Affiliation(s)
- Jinjian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Yin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Xiaolei Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| |
Collapse
|
4
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
5
|
NMR methods for measuring lateral diffusion in membranes. Chem Phys Lipids 2013; 166:31-44. [DOI: 10.1016/j.chemphyslip.2012.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
|
6
|
Lateral diffusion of bilayer lipids measured via 31P CODEX NMR. Chem Phys Lipids 2012; 165:721-30. [DOI: 10.1016/j.chemphyslip.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 11/18/2022]
|
7
|
Barbosa-Barros L, Rodríguez G, Barba C, Cócera M, Rubio L, Estelrich J, López-Iglesias C, de la Maza A, López O. Bicelles: lipid nanostructured platforms with potential dermal applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:807-818. [PMID: 22114051 DOI: 10.1002/smll.201101545] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/26/2011] [Indexed: 05/31/2023]
Abstract
Bicelles emerge as promising membrane models, and because of their attractive combination of lipid composition, small size and morphological versatility, they become new targets in skin research. Bicelles are able to modify skin biophysical parameters and modulate the skin's barrier function, acting to enhance drug penetration. Because of their nanostructured assemblies, bicelles have the ability to penetrate through the narrow intercellular spaces of the stratum corneum of the skin to reinforce its lipid lamellae. The bicelle structure also allows for the incorporation of different molecules that can be carried through the skin layers. All of these characteristics can be modulated by varying the lipid composition and experimental conditions. The remarkable versatility of bicelles is their most important characteristic, which makes their use possible in various fields. This system represents a platform for dermal applications. In this review, an overview of the main properties of bicelles and their effects on the skin are presented.
Collapse
Affiliation(s)
- Lucyanna Barbosa-Barros
- Dept. of Chemical Technology and Surfactants, Institut de Química Avançada de Catalunya-I.Q.A.C., Consejo Superior de Investigaciones Científicas-C.S.I.C., C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Flynn A, Ducey M, Yethiraj A, Morrow MR. Dynamic properties of bicellar lipid mixtures observed by rheometry and quadrupole echo decay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2782-2790. [PMID: 22196024 DOI: 10.1021/la204111z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In bicellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), the transition from isotropic reorientation to partial orientational order, on warming, is known to coincide with a sharp increase in viscosity. In this work, cone-and-plate rheometry, (2)H NMR spectroscopy, and quadrupole echo decay observations have been used to obtain new insights into the dynamics of phases observed in bicellar DMPC/DHPC mixtures. Samples with 25% of the DMPC component deuterated were used to correlate rheological measurements with phase behavior observed by (2)H NMR spectroscopy. Mixtures containing only normal DMPC (DMPC/DHPC) or only chain perdeuterated DMPC (DMPC-d(54)/DHPC) were used to refine rheology and quadrupole echo decay measurements respectively. The viscosity peaked at 4-9 Pa·s, just above the isotropic-to-nematic transition, and then dropped as samples were warmed through the nematic-to-lamellar transition. Quadrupole echo decay times above the nematic-to-lamellar transition were significantly longer than typically observed in the liquid crystalline phase of saturated lipid multilamellar vesicles. This may indicate a damping of slow bilayer undulations resulting from the coupling of opposite bilayer surfaces by DHPC-lined pores.
Collapse
Affiliation(s)
- Alanna Flynn
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada, A1B 3X7
| | | | | | | |
Collapse
|
9
|
Structural Versatility of Bicellar Systems and Their Possibilities as Colloidal Carriers. Pharmaceutics 2011; 3:636-64. [PMID: 24310601 PMCID: PMC3857087 DOI: 10.3390/pharmaceutics3030636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/21/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022] Open
Abstract
Bicellar systems are lipid nanostructures formed by long- and short-chained phospholipids dispersed in aqueous solution. The morphological transitions of bicellar aggregates due to temperature, composition and time variations have been revised in this work. To this end, two bicellar systems have been considered; one formed by dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl- phosphatidylcholine (DHPC) and another formed by dipalmitoyl-phosphatidylcholine (DPPC) and DHPC. The relationship between the magnetic alignment, the morphology of the aggregates and the phase transition temperature (Tm) of lipids is discussed. In general terms, the non-alignable samples present rounded objects at temperature below the Tm. Above this temperature, an increase of viscosity is followed by the formation of large elongated aggregates. Alignable samples presented discoidal objects below the Tm. The best alignment was achieved above this temperature with large areas of lamellar stacked bilayers and some multilamellar vesicles. The effect of the inclusion of ceramides with different chain lengths in the structure of bicelles is also revised in the present article. A number of physical techniques show that the bicellar structures are affected by both the concentration and the type of ceramide. Systems are able to incorporate 10% mol of ceramides that probably are organized forming domains. The addition of 20% mol of ceramides promotes destabilization of bicelles, promoting the formation of mixed systems that include large structures. Bicellar systems have demonstrated to be morphologically stable with time, able to encapsulate different actives and to induce specific effects on the skin. These facts make bicellar systems good candidates as colloidal carriers for dermal delivery. However, water dilution induces structural changes and formation of vesicular structures in the systems; stabilization strategies have been been explored in recent works and are also updated here.
Collapse
|
10
|
Abstract
This minireview focuses on diffusion NMR studies in bicelles. Following a discourse on diffusion fundamentals, and a comparative overview of fluorescence and NMR-based techniques for measuring diffusion, the pulsed field gradient (PFG) NMR diffusion method is introduced, emphasizing its specific advantages and limitations when applied to diffusion measurements in macroscopically oriented lamellar systems such as magnetically aligned bicelles. The utility of PFG NMR diffusion measurements in bicellar model membrane systems for examining lateral diffusion of membrane-bound molecular species is demonstrated, along with certain features of lateral diffusion that such studies illuminate. Further, those aspects of bicelle morphology that have been resolved using PFG NMR diffusion studies of various molecular weight soluble polymeric species are reviewed. The discussion concludes with an outline of future prospects for diffusion NMR studies in bicelles.
Collapse
Affiliation(s)
- Peter M. Macdonald
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | - Ronald Soong
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
11
|
Zhang HY, Hill RJ. Concentration dependence of lipopolymer self-diffusion in supported bilayer membranes. J R Soc Interface 2011; 8:127-43. [PMID: 20504804 PMCID: PMC3024821 DOI: 10.1098/rsif.2010.0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/05/2010] [Indexed: 12/23/2022] Open
Abstract
Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction-diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient D(s) at concentrations in the range c ≈ 0.5-5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation D(s) = D(0)/(1 + αc), where D(0) ≈ 3.36 µm(2) s(-1) and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar-Abney-Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius a(e) ≈ 2.41 nm. On the other hand, the Bussell-Koch-Hammer theory, which includes hydrodynamic interactions, yields a(e) ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, R(F) ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, a(l) ≈ 0.46 nm. The diffusion coefficient at infinite dilution D(0) was interpreted using the Evans-Sackmann theory, furnishing an inter-leaflet frictional drag coefficient b(s) ≈ 1.33 × 10(8) N s m(-3). Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics.
Collapse
Affiliation(s)
| | - Reghan J. Hill
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| |
Collapse
|
12
|
Litvinov VM, Persyn O, Miri V, Lefebvre JM. Morphology, Phase Composition, and Molecular Mobility in Polyamide Films in Relation to Oxygen Permeability. Macromolecules 2010. [DOI: 10.1021/ma1014403] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. M. Litvinov
- DSM Resolve, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - O. Persyn
- Université de Lille Nord de France, Centre National de la Recherche Scientifique, Université de Lille 1, Unité Matériaux et Transformations, Batiment C6, Cité Scientifique, 59655 Villeneuve d′Ascq, France
| | - V. Miri
- Université de Lille Nord de France, Centre National de la Recherche Scientifique, Université de Lille 1, Unité Matériaux et Transformations, Batiment C6, Cité Scientifique, 59655 Villeneuve d′Ascq, France
| | - J. M. Lefebvre
- Université de Lille Nord de France, Centre National de la Recherche Scientifique, Université de Lille 1, Unité Matériaux et Transformations, Batiment C6, Cité Scientifique, 59655 Villeneuve d′Ascq, France
| |
Collapse
|
13
|
Soong R, Nieh MP, Nicholson E, Katsaras J, Macdonald PM. Bicellar mixtures containing pluronic F68: morphology and lateral diffusion from combined SANS and PFG NMR studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:2630-2638. [PMID: 20141207 DOI: 10.1021/la902795h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Small angle neutron scattering (SANS) and pulsed field gradient (PFG) nuclear magnetic resonance (NMR) diffusion measurements were applied to examine morphology and diffusion in dimyristoyl- plus dihexanoyl-phosphatidylcholine bicellar mixtures, either neutral or negatively charged, incorporating a Pluronic triblock copolymer (F68). Negatively charged bicellar mixtures, doped with dimyristoylphosphatidylglycerol (DMPG), exhibited SANS profiles consistent with a perforated lamellar morphology for the magnetically alignable phase. Correspondingly, F68 diffusion in this magnetically aligned phase was normal Gaussian, in that the mean square displacements increased linearly with the experimental diffusion time, with a lateral diffusion coefficient of 1.9 x 10(-11) m(2) s(-1) consistent with a lipid bilayer inserted configuration. Neutral bicellar mixtures, that is, lacking DMPG, in contrast, displayed SANS profiles characteristic of ribbons arranged in such a fashion as to produce extended lamellae. Within the lamellae, the ribbons exhibited an in-plane periodicity (interribbon) of between 120 and 140 A. Correspondingly, F68 diffusion was non-Gaussian, exhibiting a square root diffusion time dependence of the mean square displacement indicative of one-dimensional curvilinear diffusion. The presence or absence of DMPG, rather than of F68, dictated the ribbon versus lamellar morphology, with F68 reflecting this difference via its lateral diffusion behavior. Although ribbons have been reported previously, this is the first study to show that they aggregate, most likely into extended lamellar sheets, and eventually fold into multilamellar vesicles.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | | | | | | | | |
Collapse
|
14
|
Soong R, Majonis D, Macdonald PM. Size of bicelle defects probed via diffusion nuclear magnetic resonance of PEG. Biophys J 2009; 97:796-805. [PMID: 19651038 DOI: 10.1016/j.bpj.2009.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/16/2022] Open
Abstract
Diffusion of various poly(ethylene glycol) (PEG) tracers of well-defined molecular weight and narrow polydispersity confined within the aqueous interstices between positively magnetically aligned bicelles was measured using pulsed-field-gradient (1)H nuclear magnetic resonance. The bicelles consisted of mixtures of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG), and dihexanoylphosphatidylcholine (DHPC) in the molar ratios q = [100 DMPC +5 DMPG]/[DHPC] = 3.5, 4.5, and 5.5, to which Yb(3+) had been added in the ratio 1:75 Yb(3+)/phospholipid. The field gradients were applied such that diffusion was measured in the direction parallel to the normal to the bicelles' planar regions, thereby rendering the experiment sensitive to the ability of PEG to traverse lamellar defects within the bicelles. The pulsed-field-gradient nuclear magnetic resonance diffusive intensity decays were diffusion-time-independent in all cases, with diffusive displacements corresponding to many hundreds of bicellar lamellae. This permitted a description of such diffusive decays in terms of a mean behavior involving a combination of straight obstruction effects common to all PEG, with hindrance to diffusion proportional to the relative size of a given PEG with respect to the size of the lamellar defects. Across the range of PEG molecular weights (200-4600) and bicelle compositions examined, the apparent radial dimension of the lamellar defects decreased from 165 A with q = 3.5 to 125 A with q = 5.5. This is opposite to the trend predicted from static geometric models of either bicelle disks or perforated lamellae. Qualitatively, the observed trend suggests that mobility of the obstructions to diffusion will need to be considered to reconcile these differences.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
15
|
Yamamoto K, Soong R, Ramamoorthy A. Comprehensive analysis of lipid dynamics variation with lipid composition and hydration of bicelles using nuclear magnetic resonance (NMR) spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7010-7018. [PMID: 19397253 PMCID: PMC2794801 DOI: 10.1021/la900200s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bicelles of various lipid/detergent ratios are commonly used in nuclear magnetic resonance (NMR) studies of membrane-associated molecules without the need to freeze the sample. While a decrease in the size (defined at a low temperature or by the q value) of a bicelle decreases its overall order parameter, the variation of lipid dynamics with a change in the lipid/detergent ratio is unknown. In this study, we report a thorough atomistic level analysis on the variation of lipid dynamics with the size and hydration level of bicelles composed of a phospholipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and a detergent, 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). Two-dimensional (2D) separated-local-field NMR experiments were performed on magnetically aligned bicelles to measure (1)H-(13)C dipolar couplings, which were used to determine order parameters at various (head-group, glycerol, and acyl chain) regions of lipids in the bilayer. From our analysis, we uncover the extreme sensitivity of the glycerol region to the motion of the bicelle, which can be attributed to the effect of viscosity because of an extensive network of hydrogen bonds. As such, the water-membrane interface region exhibits the highest order parameter values among all three regions of a lipid molecule. Our experimental results demonstrate that the laboratory-frame 2D proton-detected-local-field pulse sequence is well-suited for the accurate measurement of motionally averaged (or long-range) weak and multiple (1)H-(13)C dipolar couplings associated with a single carbon site at the natural abundance of (13)C nuclei.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
16
|
Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, Grélard A, Opella SJ, Marassi FM, Dufourc EJ. Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes. Biochimie 2009; 91:744-51. [PMID: 19248817 PMCID: PMC2899883 DOI: 10.1016/j.biochi.2009.02.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Major biological processes occur at the biological membrane. One of the great challenges is to understand the function of chemical or biological molecules inside the membrane; as well of those involved in membrane trafficking. This requires obtaining a complete picture of the in situ structure and dynamics as well as the topology and orientation of these molecules in the membrane lipid bilayer. These led to the creation of several innovative models of biological membranes in order to investigate the structure and dynamics of amphiphilic molecules, as well as integral membrane proteins having single or multiple transmembrane segments. Because the determination of the structure, dynamics and topology of molecules in membranes requires a macroscopic alignment of the system, a new membrane model called 'bicelles' that represents a crossover between lipid vesicles and classical micelles has become very popular due to its property of spontaneous self-orientation in magnetic fields. In addition, crucial factors involved in mimicking natural membranes, such as sample hydration, pH and salinity limits, are easy to control in bicelle systems. Bicelles are composed of mixtures of long chain (14-18 carbons) and short chain phospholipids (6-8 carbons) hydrated up to 98% with buffers and may adopt various morphologies depending on lipid composition, temperature and hydration. We have been developing bicelle systems under the form of nano-discs made of lipids with saturated or biphenyl-containing fatty acyl chains. Depending on the lipid nature, these membranous nano-discs may be macroscopically oriented with their normal perpendicular or parallel to the magnetic field, providing a natural 'molecular goniometer' for structural and topological studies, especially in the field of NMR. Bicelles can also be spun at the magic angle and lead to the 3D structural determination of molecules in membranes.
Collapse
Affiliation(s)
- Anna Diller
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Cécile Loudet
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Gérard Raffard
- RMSB UMR 5536, CNRS, Université Bordeaux, Bordeaux, France
| | - Sylvie Fournier
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Michel Laguerre
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Axelle Grélard
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | | | - Erick J. Dufourc
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
17
|
Leal C, Rögnvaldsson S, Fossheim S, Nilssen EA, Topgaard D. Dynamic and structural aspects of PEGylated liposomes monitored by NMR. J Colloid Interface Sci 2008; 325:485-93. [DOI: 10.1016/j.jcis.2008.05.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/23/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
|
18
|
Lüdtke K, Jordan R, Furr N, Garg S, Forsythe K, Naumann CA. Two-dimensional center-of-mass diffusion of lipid-tethered poly(2-methyl-2-oxazoline) at the air-water interface studied at the single molecule level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5580-5584. [PMID: 18393536 DOI: 10.1021/la8001493] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The two-dimensional (2D) center-of-mass diffusion, D, of end-tethered poly(2-methyl-2-oxazoline) (PMOx) lipopolymer chains was studied in a Langmuir monolayer at the air-water interface using wide-field single molecule fluorescence microscopy. In this case, tethering and stabilization of hydrophilic PMOx chains at the air-water interface is accomplished via end-tethering to lipid molecules forming a hydrophobic anchor. To explore the influence of molecular weight, M n, and surface concentration, c s, on lateral mobility, two different PMOx chain lengths of n = 30 and 50 ( n, number of monomer units) were analyzed over a wide range of c s. Using multiparticle tracking analysis of TRITC-labeled PMOx lipopolymers, we found two regimes of lipopolymer lateral mobility. At low c s, D is independent of surface concentration but increases with decreasing n. Here diffusion properties are well described by the Rouse model. In contrast, at more elevated c s, the data do not follow Rouse scaling but are in good agreement with a free area-area model of diffusion. The current study provides for the first time experimental insight into the 2D center-of-mass diffusion of end-tethered polymers at the air-water interface. The obtained results will be of importance for the understanding of diffusion processes in polymer-tethered phospholipid bilayers mimicking biomembranes at low and high tethering concentrations.
Collapse
Affiliation(s)
- Karin Lüdtke
- Department Chemie, Technische Universität München, Garching, Germany
| | | | | | | | | | | |
Collapse
|
19
|
BARBOSA-BARROS L, DE LA MAZA A, WALTHER P, ESTELRICH J, LÓPEZ O. Morphological effects of ceramide on DMPC/DHPC bicelles. J Microsc 2008; 230:16-26. [DOI: 10.1111/j.1365-2818.2008.01950.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Barbosa-Barros L, de la Maza A, López-Iglesias C, López O. Ceramide effects in the bicelle structure. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2007.11.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Effects on interactions of oppositely charged phospholipid vesicles of covalent attachment of polyethylene glycol oligomers to their surfaces: adhesion, hemifusion, full fusion and "endocytosis". J Membr Biol 2008; 221:97-106. [PMID: 18202882 DOI: 10.1007/s00232-007-9089-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 11/26/2007] [Indexed: 12/31/2022]
Abstract
Oppositely charged giant vesicles are known to adhere, hemifuse and fuse, all of which depend upon the nature of surface contacts. To further understand such interactions, vesicles were surface-modified with polyethylene glycol (PEG), a moiety that reduces surface-surface interactions. Positively charged vesicles were composed of O-ethyldioleoylphosphocholine (EDOPC), dioleoylphosphatidylcholine (DOPC) and a carbocyanine dye (DiO), with and without DPPE-PEG (dipalmitoylphosphatidylethanolamine-N-PEG MW of the PEG portion = 2000). Negatively charged vesicles were composed of dioleoylphosphatidylglycerol (DOPG), DOPC and a rhodamine B dye (Rh-PE), with as well as without DPPE-PEG (MW 2,000). A microscope-mounted electrophoresis chamber allowed selected pairs of vesicles to be brought into contact while color images were collected at video rates (30 frames/s). Data collection focused on effects of PEG on vesicle interactions as a function of the surface charge density. Relative to PEG-free preparations, vesicles containing DPPE-PEG (1) formed larger contact zones, (2) underwent adhesion and fusion processes more slowly (by two to four times) and (3) at high charge density were less susceptible to rupture upon contact. Unexpectedly, PEG-containing vesicles exhibited engulfment of a smaller by a larger vesicle, a process topologically similar to cellular endocytosis. These observations are interpreted to mean that, although initial surface-surface interactions are weakened by the intervening layer of PEG chains, eventual and strong bilayer-bilayer contact is still possible, evidently because the lipid anchors of these chains can diffuse away from the contact zone.
Collapse
|
22
|
Soong R, Macdonald PM. Diffusion of PEG confined between lamellae of negatively magnetically aligned bicelles: pulsed field gradient 1H NMR measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:518-527. [PMID: 18095720 DOI: 10.1021/la7022264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The diffusion of various molecular weight poly(ethyleneglycol)s (PEG) confined between the lamellae of magnetically aligned bicelles has been measured using stimulated echo (STE) pulsed field gradient (PFG) 1H nuclear magnetic resonance (NMR) spectroscopy. Bicelles were formulated to contain dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG), and dihexanoylphosphatidylcholine (DHPC) in the proportion DMPG/DMPC = 0.05 and q = (DMPC + DMPG)/DHPC = 4.5. PEG diffusion within the interlamellar spaces between such bicelles was found to be unrestricted over diffusion distances of tens of microns. Two confinement regimes could be differentiated according to the dependence of the reduced PEG diffusivity D/D0, where D0 is the unconfined PEG diffusion coefficient, on the relative confinement Rh/H, where Rh is the unperturbed hydration radius of the particular PEG and H approximately 60 A is the separation between apposing lamellae of the magnetically aligned bicelles. In the regime Rh/H < 0.4, the reduced PEG diffusivity was altered only in proportion to the viscosity increase associated with the bicelle dispersion relative to bulk solution. In the regime Rh/H > 0.4, the reduced PEG diffusivity scaled as (Rh/H)-2/3, in agreement with scaling theories for confined polymers.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Toronto, Ontario, Canada L5L 1C6
| | | |
Collapse
|
23
|
Albertorio F, Daniel S, Cremer. PS. Supported lipopolymer membranes as nanoscale filters: simultaneous protein recognition and size-selection assays. J Am Chem Soc 2007; 128:7168-9. [PMID: 16734463 PMCID: PMC2548332 DOI: 10.1021/ja062010r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A technique for size-selective discrimination of protein analytes was developed by incorporating poly(ethylene glycol) (PEG) lipopolymers into supported lipid bilayers. The membranes also contained biotinylated lipids, which recognized both streptavidin and anti-biotin IgG. By employing various PEG lipopolymer concentrations, clear discrimination against anti-biotin (Mw = 150 000 Da) binding could be observed, which became more pronounced at higher polymer densities. On the other hand, streptavidin (Mw = 52 800) binding to the membrane remained unaffected even at PEG concentrations that were well into the mushroom-to-brush phase transition. These observations were exploited to create an on-chip ligand-receptor binding assay that favored streptavidin binding over anti-biotin by several orders of magnitude in the presence of the lipopolymer. Control experiments revealed that the two proteins are bound to similar extents from a multi-protein analyte solution in the absence of PEG.
Collapse
|
24
|
Soong R, Macdonald PM. PEG molecular weight and lateral diffusion of PEG-ylated lipids in magnetically aligned bicelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1805-14. [PMID: 17524353 DOI: 10.1016/j.bbamem.2007.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/07/2007] [Accepted: 03/27/2007] [Indexed: 11/30/2022]
Abstract
Lateral diffusion coefficients of PEG-ylated lipids with three different molecular weight PEG groups (1000, 2000 and 5000) were measured in magnetically-aligned bicelles using the stimulated echo (STE) pulsed field gradient (PEG) (1)H nuclear magnetic resonance (NMR) method. At concentrations below the PEG "mushroom-to-brush" transition, all three PEG-ylated lipids exhibited unrestricted lateral diffusion, with lateral diffusion coefficients comparable to those of corresponding non-PEG-ylated lipids and independent of PEG molecular weight. At concentrations above this transition, lateral diffusion slowed progressively with increasing concentration of PEG-ylated lipid as a result of surface crowding. As well, the lateral diffusion coefficients exhibited a pronounced decrease with increasing PEG group molecular weight and a diffusion-time dependence indicative of obstructed diffusion. We conclude that, while lateral diffusion of PEG-ylated lipids within lipid bilayers is determined primarily by the hydrophobic anchoring group, when crowding at the lipid bilayer surface becomes significant, the size of the extra-membranous domain, in this case the PEG group, can influence lateral diffusion, leading to decreased diffusivity with increasing size and producing obstructed diffusion at high crowding. These findings imply that similar considerations will pertain to lateral diffusion of membrane proteins with large extra-membranous domains.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Toronto, 3359 Mississauga Road North, Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
25
|
Loudet C, Manet S, Gineste S, Oda R, Achard MF, Dufourc EJ. Biphenyl bicelle disks align perpendicular to magnetic fields on large temperature scales: a study combining synthesis, solid-state NMR, TEM, and SAXS. Biophys J 2007; 92:3949-59. [PMID: 17307824 PMCID: PMC1868983 DOI: 10.1529/biophysj.106.097758] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A phosphatidylcholine lipid (PC) containing a biphenyl group in one of its acyl chains (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC, TBBPC) was successfully synthesized with high yield. Water mixtures of TBBPC with a short-chain C(6) lipid, dicaproyl-PC (DCPC), lead to bicelle systems formation. Freeze-fracture electron microscopy evidenced the presence of flat bilayered disks of 800 A diameter for adequate composition, hydration, and temperature conditions. Because of the presence of the biphenyl group, which confers to the molecule a positive magnetic anisotropy Delta chi, the disks align with their normal, n, parallel to the magnetic field B(0), as directly detected by (31)P, (14)N, (2)H solid-state NMR and also using small-angle x-ray scattering after annealing in the field. Temperature-composition and temperature-hydration diagrams were established. Domains where disks of TBBPC/DCPC align with their normal parallel to the field were compared to chain-saturated lipid bicelles made of DMPC(dimyristoylPC)/DCPC, which orient with their normal perpendicular to B(0). TBBPC/DCPC bicelles exist on a narrow range of long- versus short-chain lipid ratios (3%) but over a large temperature span around room temperature (10-75 degrees C), whereas DMPC/DCPC bicelles exhibit the reverse situation, i.e., large compositional range (22%) and narrow temperature span (25-45 degrees C). The two types of bicelles present orienting properties up to 95% dilution but with the peculiarity that water trapped in biphenyl bicelles exhibits ordering properties twice as large as those observed in the saturated-chains analog, which offers very interesting properties for structural studies on hydrophilic or hydrophobic embedded biomolecules.
Collapse
Affiliation(s)
- Cécile Loudet
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | | | | | | | |
Collapse
|
26
|
Yamamoto S, Ichishima K, Ehara T. Regulation of extracellular UTP-activated Cl- current by P2Y-PLC-PKC signaling and ATP hydrolysis in mouse ventricular myocytes. J Physiol Sci 2007; 57:85-94. [PMID: 17291397 DOI: 10.2170/physiolsci.rp011406] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 02/08/2007] [Indexed: 11/05/2022]
Abstract
The intracellular signaling pathways responsible for extracellualr uridine-5'-triphosphate (UTPo)-induced chloride (Cl-) currents (I(Cl.UTP)) were studied in mouse ventricular myocytes with the whole-cell clamp technique. UTPo (0.1 to 100 microM) activated a whole-cell current that showed a time-independent activation, a linear current-voltage relationship in symmetrical Cl- solutions, an anion selectivity of Cl- > iodide > aspartate, and an inhibition by a thiazolidinone-derived specific inhibitor (CFTR(inh)-172, 10 microM) of cystic fibrosis transmembrane conductance regulator (CFTR), but not by a disulfonic stilbene derivative (DIDS, 100 microM), these properties matching those of CFTR Cl- channels. The potency order of nucleotides for an activation of the Cl- current was UTP = ATP > uridine-5'-diphosphate (UDP) = ADP. Suramin (100 microM), a P2Y receptor antagonist, strongly inhibited the UTPo -activation of the Cl- current, whereas pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 100 microM), another P2Y receptor antagonist, induced little inhibition of I(Cl.UTP). The activation of I(Cl.UTP) was sensitive to protein kinase C (PKC) inhibitor, phospholipase C (PLC) inhibitor, intracellular GDPbetaS (nonhydrolyzable GDP analogue) or anti-Gq/11 antibody. UTPo failed to activate the Cl- current when the cells were dialyzed with nonhydrolyzable ATP analogues (ATPS or AMP-PNP) without ATP, suggesting that ATP hydrolysis is a prerequisite for the current activation. I(Cl.UTP) was persistently activated with a mixture of ATPgammaS + ATP in the pipette, suggesting the involvement of phosphorylation reaction in the current activation process. Our results strongly suggest that I(Cl.UTP) is due to the activation of CFTR Cl- channels through Gq/11-coupled P2Y2 receptor-PLC-PKC signaling and ATP hydrolysis in mouse heart.
Collapse
Affiliation(s)
- Shintaro Yamamoto
- Department of Physiology, Saga University Faculty of Medicine, Saga, 849-8501 Japan.
| | | | | |
Collapse
|
27
|
Prosser RS, Evanics F, Kitevski JL, Al-Abdul-Wahid MS. Current Applications of Bicelles in NMR Studies of Membrane-Associated Amphiphiles and Proteins,. Biochemistry 2006; 45:8453-65. [PMID: 16834319 DOI: 10.1021/bi060615u] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review covers current trends in studies of membrane amphiphiles and membrane proteins using both fast tumbling bicelles and magnetically aligned bicelle media for both solution state and solid state NMR. The fast tumbling bicelles provide a versatile biologically mimetic membrane model, which in many cases is preferable to micelles, both because of the range of lipids and amphiphiles that may be combined and because radius of curvature effects and strain effects common with micelles may be avoided. Drug and small molecule binding and partitioning studies should benefit from their application in fast tumbling bicelles, tailored to mimic specific membranes. A wide range of topology and immersion depth studies have been shown to be effective in fast tumbling bicelles, while residual dipolar couplings add another dimension to structure refinement possibilities, particularly for situations in which the peptide is uniformly labeled with 15N and 13C. Solid state NMR studies of polytopic transmembrane proteins demonstrate that it is possible to express, purify, and reconstitute membrane proteins, ranging in size from single transmembrane domains to seven-transmembrane GPCRs, into bicelles. The line widths and quality of the resulting 15NH dipole-15N chemical shift spectra demonstrate that there are no insurmountable obstacles to the study of large membrane proteins in magnetically aligned media.
Collapse
Affiliation(s)
- R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road, North Mississauga, ON, Canada L5L 1C6.
| | | | | | | |
Collapse
|
28
|
Triba MN, Devaux PF, Warschawski DE. Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 2006; 91:1357-67. [PMID: 16731559 PMCID: PMC1518622 DOI: 10.1529/biophysj.106.085118] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most studies reported until now on the magnetically alignable system formed by the binary mixtures of long- and short-chain lipids were based on the mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (D14PC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (D6PC) lipids. We have recently shown that a large part of the phase diagrams of this lipid mixture could be understood by taking into account the partial miscibility between the long-chain lipids and the short-chain lipids when the sample was heated above the melting transition temperature (Tm) of the long-chain lipids. In this work, we show by modifying the chain length of either one of the two lipids that it is possible to control their miscibility and thus the intervals of temperature and composition where spontaneous alignment is observed in a magnetic field. By using 31P NMR, we demonstrate that the very special properties of such binary lipid mixtures are correlated with the propensity for short-chain lipids to diffuse into the bilayer regions. We also show that lipid mixtures with comparable properties can be formed with unsaturated lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).
Collapse
Affiliation(s)
- Mohamed N Triba
- Unité Mixte de Recherche No. 7099, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | | | | |
Collapse
|
29
|
van Dam L, Karlsson G, Edwards K. Morphology of magnetically aligning DMPC/DHPC aggregates-perforated sheets, not disks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:3280-5. [PMID: 16548589 DOI: 10.1021/la052988m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The morphology of DMPC/DHPC mixtures at total lipid concentration cL = 5% (w/w) and DMPC/DHPC ratio q approximately 3, doped with small amounts of DMPG or CTAB, was investigated. 31P NMR was used to identify the magnetically aligning phase, and cryo-transmission electron microscopy (cryo-TEM) was employed for structural characterization. Magnetic alignment was found to occur between approximately 30 and approximately 45 degrees C, and cryo-TEM showed that the magnetically aligning phase consisted of extended sheets with a lacelike structure. The aggregates are best described as intermediates between two-dimensional networks of flattened, highly branched, cylindrical micelles and lamellar sheets perforated by large irregular holes. DHPC most likely covers the edges of the holes, while DMPC makes up the bilayer bulk of the aggregates. However, 20-43% of the DHPC takes part in the bilayer, corresponding to 6-12% of the bilayer being made up of DHPC. This fraction increases with increasing temperature. At temperatures above 45 degrees C, the aligning phase collapses.
Collapse
Affiliation(s)
- Lorens van Dam
- Department of Physical and Analytical Chemistry, Uppsala University, Box 579, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
30
|
de Joannis J, Jiang FY, Kindt JT. Coarse-grained model simulations of mixed-lipid systems: composition and line tension of a stabilized bilayer edge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:998-1005. [PMID: 16430259 DOI: 10.1021/la051278d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bilayer disks and ribbons composed of a mixture of short- and long-tail phospholipids have been studied by molecular dynamics with a coarse-grained model. The effects of system composition on the edge structure, composition, and line tension were analyzed. Increases in the fraction of short-tail lipids tend to decrease the line tension (i.e., stabilize the edge) but not eliminate it. The short-tail lipid is generally enriched at the curved rim forming the bilayer edge, with an excess of 3 to 4 molecules per nanometer (relative to the bulk), but complete segregation was not observed. In all mixtures, a region depleted in the short-tail component occurs just before the edge, corresponding to a bulge in the bilayer thickness. The bulge and depletion are more prominent as the bilayer composition shifts toward a majority of short-tail lipids. In one case, a net excess of long-tail lipids at the edge was demonstrated, suggesting that certain circumstances give rise to a "segregation inversion" in which the long-tail lipid behaves as an edge stabilizer.
Collapse
Affiliation(s)
- Jason de Joannis
- Department of Chemistry and Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
31
|
Georgiev GA, Georgiev GD, Lalchev Z. Thin liquid films and monolayers of DMPC mixed with PEG and phospholipid linked PEG. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:352-62. [PMID: 16447038 DOI: 10.1007/s00249-006-0043-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/30/2005] [Accepted: 01/06/2006] [Indexed: 11/26/2022]
Abstract
In this work thin liquid films (TLFs) and monolayers at the air/water interface formed by dimyristoylphosphatidylcholine (DMPC) and by DMPC mixed with poly ethylene glycols (PEGs) and dimyristoylphosphatidylethanolamine (DMPE) linked PEGs were studied. Film forming dispersions were composed of two types of particles: liposomes and micelles. TLFs stability, threshold concentration C(t) (i.e., the minimum one for stable film formation), and hydrodynamic behavior were measured. At equivalent conditions, DMPC films were Newton black films (real bilayers), while DMPE-PEGs films were much thicker with free water between the monolayers. DMPE-PEG addition to DMPC films caused both C(t) decrease (depending on PEG moiety length and Mw) and change of TLF formation mechanism. TLFs' hydrodynamic behavior also strongly depended on DMPE-PEG content and Mw. It was observed that thinning of the DMPC and DMPE-PEGs films continued to different film types and thickness, being much thicker for the latter films. Addition of free PEGs (PEG-200/6000) did not alter TLF type or stability, but changed TLF thinning time, confirming that free PEGs with Mw<8000 could not penetrate in the membrane and alter "near-membrane" water layer viscosity. Monolayer studies showed improved formation kinetics of both adsorbed and spread films, decrease of surface tension (equilibrium and dynamic), and of film compression/decompression histeresis area in DMPE-PEGs monolayers compared with DMPC pure films. Our study shows that combining the models of phospholipid TLFs and monolayers provide the opportunity to investigate the properties of membrane surface and to clarify some mechanisms of its interactions with membrane-active agents.
Collapse
Affiliation(s)
- Georgi As Georgiev
- Faculty of Biology, Department of Biochemistry, University of Sofia "St. Kliment Ohridski", 8 Dragan Tsankov Street, 1164 Sofia, Bulgaria
| | | | | |
Collapse
|
32
|
Albertorio F, Diaz AJ, Yang T, Chapa VA, Kataoka S, Castellana ET, Cremer PS. Fluid and air-stable lipopolymer membranes for biosensor applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7476-82. [PMID: 16042482 DOI: 10.1021/la050871s] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The behavior of poly(ethylene glycol) (PEG) conjugated lipids was investigated in planar supported egg phosphatidylcholine bilayers as a function of lipopolymer density, chain length of the PEG moiety, and type of alkyl chains on the PEG lipid. Fluorescence recovery after photobleaching measurements verified that dye-labeled lipids in the membrane as well as the lipopolymer itself maintained a substantial degree of fluidity under most conditions that were investigated. PEG densities exceeding the onset of the mushroom-to-brush phase transition were found to confer air stability to the supported membrane. On the other hand, substantial damage or complete delamination of the lipid bilayer was observed at lower polymer densities. The presence of PEG in the membrane did not substantially hinder the binding of streptavidin to biotinylated lipids present in the bilayer. Furthermore, above the onset of the transition into the brush phase, the protein binding properties of these membranes were found to be very resilient upon removal of the system from water, rigorous drying, and rehydration. These results indicate that supported phospholipid bilayers containing lipopolymers show promise as rugged sensor platforms for ligand-receptor binding.
Collapse
Affiliation(s)
- Fernando Albertorio
- Department of Chemistry, 3255 TAMU, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Aussenac F, Lavigne B, Dufourc EJ. Toward bicelle stability with ether-linked phospholipids: temperature, composition, and hydration diagrams by 2H and 31P solid-state NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7129-35. [PMID: 16042433 DOI: 10.1021/la050243a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus and deuterium wide line NMR was used to determine diagrams of binary mixtures of 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DIOMPC) and 1,2-di-O-hexyl-sn-glycero-3-phosphocholine (DIOHPC) ether-phospholipids. By varying the hydration, h, the temperature, T, and the mole fraction, X, of long-chain ether-phospholipids, we delineated the conditions for which such systems are oriented by the magnetic field, in the presence of 100 mM KCl. The 3D domain is found for X = 62-90%, T = 27-50 degrees C, and h = 70-98%. At 80% hydration, the domain shape (X = 70-90% and T = 27-42 degrees C) is close to that already observed for ester-phospholipids mixtures (Raffard, G.; Steinbruckner, S.; Arnold, A.; Davis, J. H.; Dufourc, E. J. Langmuir 2000, 16, 7655-7662) where disc-shaped bicelles of 300-600 A have been found by electron microscopy (Arnold, A.; Labrot, T.; Oda, R.; Dufourc, E. J. Biophys. J. 2002, 83, 2667-2680). Systems made of ether-linked lipids are much more stable on time and acidic conditions than those made of ester lipids. Assuming that the disc-shaped species are also found with ether lipids, their diameter as determined from integration of phosphorus NMR lines ranges from 240 to 440 A +/- 10%; it is generally independent of hydration and temperature but decreases with decreasing long-chain lipid content, X. The structure and the dynamics of water in the DIOMPC-DIOHPC were characterized by (2)H NMR. Water exchanges between the membrane surface where it is bound and a bulk isotropic pool lead to an average ordered state for temperatures in the bicelle region and above, thus offering a larger thermal span for structural studies of dissolved molecules.
Collapse
Affiliation(s)
- Fabien Aussenac
- Bruker Biospin, Laboratoire d'applications, Wissembourg, France, and UMR5144 CNRS-UBx1, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | |
Collapse
|
34
|
Katsaras J, Harroun TA, Pencer J, Nieh MP. “Bicellar” Lipid Mixtures as used in Biochemical and Biophysical Studies. Naturwissenschaften 2005; 92:355-66. [PMID: 16021408 DOI: 10.1007/s00114-005-0641-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade "bicellar" lipid mixtures composed of the long-chain dimyristoyl phosphatidylcholine (DMPC) and the short-chain dihexanoyl PC (DHPC) molecules have emerged as a powerful medium for studying membrane associated, biologically relevant macromolecules and assemblies. Depending on temperature, lipid concentration and composition these lipid mixtures can assume a variety of morphologies, some of them alignable in the presence of a magnetic field. This article will examine the biophysical studies that have elucidated the various morphologies assumed by these lipid mixtures, and their use in the biochemical studies of biomolecules.
Collapse
Affiliation(s)
- John Katsaras
- National Research Council, Chalk River Laboratories, Chalk River, Ontario, Canada.
| | | | | | | |
Collapse
|
35
|
Wattraint O, Sarazin C. Diffusion measurements of water, ubiquinone and lipid bilayer inside a cylindrical nanoporous support: A stimulated echo pulsed-field gradient MAS-NMR investigation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1713:65-72. [PMID: 15975548 DOI: 10.1016/j.bbamem.2005.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Stimulated echo pulsed-field gradient 1H magic angle spinning NMR has been used to investigate the mobility of water, ubiquinone and tethered phospholipids, components of a biomimetic model membrane. The diffusion constant of water corresponds to an isotropic motion in a cylinder. When the lipid bilayer is obtained after the fusion of small unilamellar vesicles, the extracted value of lipid diffusion indicates unrestricted motion. The cylindrical arrangement of the lipids permits a simplification of data analysis since the normal bilayer is perpendicular to the gradient axis. This feature leads to a linear relation between the logarithm of the attenuation of the signal intensity and a factor depending on the gradient strength, for lipids covering the inner wall of aluminium oxide nanopores as well as for lipids adsorbed on a polymer sheet rolled into a cylinder. The effect of the bilayer formation on water diffusion has also been observed. The lateral diffusion coefficient of ubiquinone is in the same order of magnitude as the lipid lateral diffusion coefficient, in agreement with its localization within the bilayer.
Collapse
Affiliation(s)
- Olivier Wattraint
- Unité de Génie Enzymatique et Cellulaire, UMR 6022 du CNRS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens cedex, France.
| | | |
Collapse
|
36
|
Soong R, Macdonald PM. Influence of the long-chain/short-chain amphiphile ratio on lateral diffusion of PEG-lipid in magnetically aligned lipid bilayers as measured via pulsed-field-gradient NMR. Biophys J 2005; 89:1850-60. [PMID: 15994903 PMCID: PMC1366688 DOI: 10.1529/biophysj.105.064725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lateral diffusion measurements of polyethylene glycol(PEG)-lipid incorporated into magnetically aligned lipid bilayers, composed of dimyristoyl phosphatidylcholine (DMPC) plus dihexanoyl phosphatidylcholine (DHPC) plus 1 mol % (relative to DMPC) dimyristoyl phosphatidylethanolamine-n-[methoxy(polyethylene glycol)-2000] (DMPE-PEG 2000), were performed using stimulated-echo pulsed-field-gradient proton ((1)H) nuclear magnetic resonance spectroscopy. The DMPE-PEG 2000 (1 mol %, 35 degrees C) lateral diffusion coefficient D varied directly with the mole fraction of DMPC, X(DMPC) = q/(1+q) where q = DMPC/DHPC molar ratio, decreasing progressively from D = 1.65 x 10(-11) m(2) s(-1) at q approximately 4.7 to D = 0.65 x 10(-11) m(2) s(-1) at q approximately 2.5. Possible sources of this dependence, including orientational disorder, obstruction, and PEG-lipid sequestration, were simulated using, respectively, a diffusion-in-a-cone model, percolation theory, and a two-phase PEG distribution model. Orientational disorder alone was not capable of reproducing the observations, but in combination with either obstruction or PEG-lipid two-phase distribution models did so satisfactorily. A combination of all three models yielded the most reasonable fit to the observed dependence of lateral diffusion on q. These same effects would be expected to influence lateral diffusion of any bilayer-associating species in such systems.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Toronto, and Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Canada
| | | |
Collapse
|
37
|
Triba MN, Warschawski DE, Devaux PF. Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys J 2004; 88:1887-901. [PMID: 15626702 PMCID: PMC1305242 DOI: 10.1529/biophysj.104.055061] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mixtures of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl-phosphatidylcholine (DHPC) in water form disks also called bicelles and different bilayer organizations when the mol ratio of the two lipids and the temperature are varied. The spontaneous alignment in a magnetic field of these bilayers above the transition temperature T(m) of DMPC is an attractive property that was successfully used to investigate protein structure by NMR. In this article, we have attempted to give an overview of all structural transformations of DMPC/DHPC mixtures that can be inferred from broad band (31)P-NMR spectroscopy between 5 and 60 degrees C. We show that above a critical temperature, T(v), perforated vesicles progressively replace alignable structures. The holes in these vesicles disappear above a new temperature threshold, T(h). The driving force for these temperature-dependent transformations that has been overlooked in previous studies is the increase of DHPC miscibility in the bilayer domain above T(m). Accordingly, we propose a new model (the "mixed bicelle" model) that emphasizes the consequence of the mixing. This investigation shows that the various structures of DMPC in the presence of increasing mol ratios of the short-chain DHPC is reminiscent of the observation put forward by several laboratories investigating solubilization and reconstitution of biological membranes.
Collapse
Affiliation(s)
- Mohamed N Triba
- Unité Mixte de Recherche No. 7099, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|