1
|
Pekel H, Guzel M, Sensoy O. Mechanistic insight into impact of phosphorylation on the enzymatic steps of farnesyltransferase. Protein Sci 2022; 31:e4414. [PMID: 36173156 PMCID: PMC9601885 DOI: 10.1002/pro.4414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Farnesyltransferase (FTase) is a heterodimeric enzyme, which catalyzes covalent attachment of the farnesyl group to target proteins, thus coordinating their trafficking in the cell. FTase has been demonstrated to be highly expressed in cancer and neurological diseases; hence considered as a hot target for therapeutic purposes. However, due to the nonspecific inhibition, there has been only one inhibitor that could be translated into the clinic. Importantly, it has been shown that phosphorylation of the α-subunit of FTase increases the activity of the enzyme in certain diseases. As such, understanding the impact of phosphorylation on dynamics of FTase provides a basis for targeting a specific state of the enzyme that emerges under pathological conditions. To this end, we performed 18 μs molecular dynamics (MD) simulations using complexes of (non)-phosphorylated FTase that are representatives of the farnesylation reaction. We demonstrated that phosphorylation modulated the catalytic site by rearranging interactions between farnesyl pyrophosphate (FPP)/peptide substrate, catalytic Zn2+ ion/coordinating residues and hot-spot residues at the interface of the subunits, all of which led to the stabilization of the substrate and facilitation of the release of the product, thus collectively expediting the reaction rate. Importantly, we also identified a likely allosteric pocket on the phosphorylated FTase, which might be used for specific targeting of the enzyme. To the best of our knowledge, this is the first study that systematically examines the impact of phosphorylation on the enzymatic reaction steps, hence opens up new avenues for drug discovery studies that focus on targeting phosphorylated FTase.
Collapse
Affiliation(s)
- Hanife Pekel
- Department of Pharmacy ServicesVocational School of Health Services, Istanbul Medipol UniversityIstanbulTurkey
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Mustafa Guzel
- Department of Medical Pharmacology/International School of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Center of Drug Discovery and DevelopmentResearch Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Ozge Sensoy
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
- Department of Computer Engineering/School of Engineering and Natural SciencesIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
2
|
Yang W, Wang K, Wu H, Shao H, Chen H, Zhu J. Peptide scaffold‐derived peptidomimetic farnesyltransferase inhibitors. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Yang
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| | - Kuifeng Wang
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| | - Hongwei Wu
- Department of Infectious Diseases Affiliated Taizhou Hospital of Wenzhou Medical University Taizhou China
| | - Hui Shao
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| | - Huazhong Chen
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| | - Jiansheng Zhu
- Department of Infectious Diseases, Taizhou Hospital Zhejiang University Taizhou China
| |
Collapse
|
3
|
Enzymatic N N bond formation: Mechanism for the N-nitroso synthesis catalyzed by non-heme iron SznF enzyme. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Magalhães RP, Fernandes HS, Sousa SF. Modelling Enzymatic Mechanisms with QM/MM Approaches: Current Status and Future Challenges. Isr J Chem 2020. [DOI: 10.1002/ijch.202000014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rita P. Magalhães
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| | - Henriques S. Fernandes
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| |
Collapse
|
5
|
Theoretical Studies on Catalysis Mechanisms of Serum Paraoxonase 1 and Phosphotriesterase Diisopropyl Fluorophosphatase Suggest the Alteration of Substrate Preference from Paraoxonase to DFP. Molecules 2018; 23:molecules23071660. [PMID: 29986514 PMCID: PMC6100192 DOI: 10.3390/molecules23071660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
The calcium-dependent β-propeller proteins mammalian serum paraoxonase 1 (PON1) and phosphotriesterase diisopropyl fluorophosphatase (DFPase) catalyze the hydrolysis of organophosphorus compounds and enhance hydrolysis of various nerve agents. In the present work, the phosphotriesterase activity development between PON1 and DFPase was investigated by using the hybrid density functional theory method B3LYP. Based on the active-site difference between PON1 and DFPase, both the wild type and the mutant (a water molecule replacing Asn270 in PON1) models were designed. The results indicated that the substitution of a water molecule for Asn270 in PON1 had little effect on the enzyme activity in kinetics, while being more efficient in thermodynamics, which is essential for DFP hydrolysis. Structure comparisons of evolutionarily related enzymes show that the mutation of Asn270 leads to the catalytic Ca2+ ion indirectly connecting the buried structural Ca2+ ion via hydrogen bonds in DFPase. It can reduce the plasticity of enzymatic structure, and possibly change the substrate preference from paraoxon to DFP, which implies an evolutionary transition from mono- to dinuclear catalytic centers. Our studies shed light on the investigation of enzyme catalysis mechanism from an evolutionary perspective.
Collapse
|
6
|
Sousa SF, Ribeiro AJM, Neves RPP, Brás NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1281] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sérgio Filipe Sousa
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - António J. M. Ribeiro
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Rui P. P. Neves
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Natércia F. Brás
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Nuno M. F. S. A. Cerqueira
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Pedro A. Fernandes
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Maria João Ramos
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| |
Collapse
|
7
|
Moorthy NSHN, Sousa SF, Ramos MJ, Fernandes PA. Binding mode of conformations and structure-based pharmacophore development for farnesyltransferase inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Moorthy NSHN, Sousa SF, Ramos MJ, Fernandes PA. Molecular dynamic simulations and structure-based pharmacophore development for farnesyltransferase inhibitors discovery. J Enzyme Inhib Med Chem 2016; 31:1428-42. [PMID: 26887913 DOI: 10.3109/14756366.2016.1144593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Farnesyltransferase is one of the enzyme targets for the development of drugs for diseases, including cancer, malaria, progeria, etc. In the present study, the structure-based pharmacophore models have been developed from five complex structures (1LD7, 1NI1, 2IEJ, 2ZIR and 2ZIS) obtained from the protein data bank. Initially, molecular dynamic (MD) simulations were performed for the complexes for 10 ns using AMBER 12 software. The conformers of the complexes (75) generated from the equilibrated protein were undergone protein-ligand interaction fingerprint (PLIF) analysis. The results showed that some important residues, such as LeuB96, TrpB102, TrpB106, ArgB202, TyrB300, AspB359 and TyrB361, are predominantly present in most of the complexes for interactions. These residues form side chain acceptor and surface (hydrophobic or π-π) kind of interactions with the ligands present in the complexes. The structure-based pharmacophore models were generated from the fingerprint bits obtained from PLIF analysis. The pharmacophore models have 3-4 pharmacophore contours consist of acceptor and metal ligation (Acc & ML), hydrophobic (HydA) and extended acceptor (Acc2) features with the radius ranging between 1-3 Å for Acc & ML and 1-2 Å for HydA. The excluded volumes of the pharmacophore contours radius are between 1-2 Å. Further, the distance between the interacting groups, root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radial distribution function (RDF) analysis were performed for the MD-simulated proteins using PTRAJ module. The generated pharmacophore models were used to screen a set of natural compounds and database compounds to select significant HITs. We conclude that the developed pharmacophore model can be a significant model for the identification of HITs as FTase inhibitors.
Collapse
Affiliation(s)
- N S Hari Narayana Moorthy
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Sergio F Sousa
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Maria J Ramos
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Pedro A Fernandes
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| |
Collapse
|
9
|
Gong W, Wu R, Zhang Y. Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study. J Comput Chem 2015; 36:2228-35. [PMID: 26452222 DOI: 10.1002/jcc.24203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 08/30/2015] [Indexed: 12/21/2022]
Abstract
Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding toward class IIa HDACs.
Collapse
Affiliation(s)
- Wenjing Gong
- Department of Chemistry, New York University, New York, New York, 10003
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York, 10003.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
10
|
Dalle KE, Meyer F. Modelling Binuclear Metallobiosites: Insights from Pyrazole-Supported Biomimetic and Bioinspired Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Janssen FFBJ, Peters LCJM, Schlebos PPJ, Smits JMM, de Gelder R, Rowan AE. Uncorrelated Dynamical Processes in Tetranuclear Carboxylate Clusters Studied by Variable-Temperature 1H NMR Spectroscopy. Inorg Chem 2013; 52:13004-13. [DOI: 10.1021/ic401522v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Femke F. B. J. Janssen
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Laurens C. J. M. Peters
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul P. J. Schlebos
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jan M. M. Smits
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - René de Gelder
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alan E. Rowan
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Virtual lead identification of farnesyltransferase inhibitors based on ligand and structure-based pharmacophore techniques. Pharmaceuticals (Basel) 2013; 6:700-15. [PMID: 24276257 PMCID: PMC3816728 DOI: 10.3390/ph6060700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/05/2013] [Accepted: 05/06/2013] [Indexed: 11/27/2022] Open
Abstract
Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.
Collapse
|
13
|
Kumar U, Singh M, Thirupathi N. Mole ratio dependent formation of mononuclear versus pentanuclear zinc(II) pivalate complexes and the ‘carboxylate shift’ process. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.02.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Tian BX, Erdtman E, Eriksson LA. Catalytic mechanism of porphobilinogen synthase: the chemical step revisited by QM/MM calculations. J Phys Chem B 2012; 116:12105-12. [PMID: 22974111 DOI: 10.1021/jp304743c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation and cyclization of two 5-aminolevulinic acid (5-ALA) substrate molecules to give porphobilinogen (PBG). The chemical step of PBGS is herein revisited using QM/MM (ONIOM) calculations. Two different protonation states and several different mechanisms are considered. Previous mechanisms based on DFT-only calculations are shown unlikely to occur. According to these new calculations, the deprotonation step rather than ring closure is rate-limiting. Both the C-C bond formation first mechanism and the C-N bond formation first mechanism are possible, depending on how the A-site ALA binds to the enzyme. We furthermore propose that future work should focus on the substrate binding step rather than the enzymatic mechanism.
Collapse
Affiliation(s)
- Bo-Xue Tian
- School of Chemistry, National University of Ireland-Galway, Galway, Ireland
| | | | | |
Collapse
|
15
|
Molecular dynamics analysis of a series of 22 potential farnesyltransferase substrates containing a CaaX-motif. J Mol Model 2012; 19:673-88. [DOI: 10.1007/s00894-012-1590-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
16
|
Rooklin DW, Lu M, Zhang Y. Revelation of a catalytic calcium-binding site elucidates unusual metal dependence of a human apyrase. J Am Chem Soc 2012; 134:15595-603. [PMID: 22928549 PMCID: PMC3461190 DOI: 10.1021/ja307267y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human soluble calcium-activated nucleotidase 1 (hSCAN-1) represents a new family of apyrase enzymes that catalyze the hydrolysis of nucleotide di- and triphosphates, thereby modulating extracellular purinergic and pyrimidinergic signaling. Among well-characterized phosphoryl transfer enzymes, hSCAN-1 is unique not only in its unusual calcium-dependent activation, but also in its novel phosphate-binding motif. Its catalytic site does not utilize backbone amide groups to bind phosphate, as in the common P-loop, but contains a large cluster of acidic ionizable side chains. By employing a state-of-the-art computational approach, we have revealed a previously uncharacterized catalytic calcium-binding site in hSCAN-1, which elucidates the unusual calcium-dependence of its apyrase activity. In a high-order coordination shell, the newly identified calcium ion organizes the active site residues to mediate nucleotide binding, to orient the nucleophilic water, and to facilitate the phosphoryl transfer reaction. From ab initio QM/MM molecular dynamics simulations with umbrella sampling, we have characterized a reverse protonation catalytic mechanism for hSCAN-1 and determined its free energy reaction profile. Our results are consistent with available experimental studies and provide new detailed insight into the structure-function relationship of this novel calcium-activated phosphoryl transfer enzyme.
Collapse
Affiliation(s)
- David W. Rooklin
- Department of Chemistry, New York University, New York, NY 10003
| | - Min Lu
- Public Health Research Institute Center, Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
| |
Collapse
|
17
|
Yang L, Liao RZ, Ding WJ, Liu K, Yu JG, Liu RZ. Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Sousa SF, Fernandes PA, Ramos MJ. Computational enzymatic catalysis – clarifying enzymatic mechanisms with the help of computers. Phys Chem Chem Phys 2012; 14:12431-41. [DOI: 10.1039/c2cp41180f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Perez MAS, Sousa SF, Oliveira EFT, Fernandes PA, Ramos MJ. Detection of Farnesyltransferase Interface Hot Spots through Computational Alanine Scanning Mutagenesis. J Phys Chem B 2011; 115:15339-54. [DOI: 10.1021/jp205481y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marta A. S. Perez
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Sérgio F. Sousa
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Eduardo F. T. Oliveira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Wu R, Lu Z, Cao Z, Zhang Y. Zinc chelation with hydroxamate in histone deacetylases modulated by water access to the linker binding channel. J Am Chem Soc 2011; 133:6110-3. [PMID: 21456530 PMCID: PMC3086135 DOI: 10.1021/ja111104p] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is of significant biological interest and medical importance to develop class- and isoform-selective histone deacetylase (HDAC) modulators. The impact of the linker component on HDAC inhibition specificity has been revealed but is not understood. Using Born-Oppenheimer ab initio QM/MM MD simulations, a state-of-the-art approach to simulating metallo-enzymes, we have found that the hydroxamic acid remains to be protonated upon its binding to HDAC8, and thus disproved the mechanistic hypothesis that the distinct zinc-hydroxamate chelation modes between two HDAC subclasses come from different protonation states of the hydroxamic acid. Instead, our simulations suggest a novel mechanism in which the chelation mode of hydroxamate with the zinc ion in HDACs is modulated by water access to the linker binding channel. This new insight into the interplay between the linker binding and the zinc chelation emphasizes its importance and gives guidance regarding linker design for the development of new class-IIa-specific HDAC inhibitors.
Collapse
Affiliation(s)
- Ruibo Wu
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | | | | | | |
Collapse
|
21
|
Hari Narayana Moorthy NS, Sousa SF, Ramos MJ, Fernandes PA. Structural feature study of benzofuran derivatives as farnesyltransferase inhibitors. J Enzyme Inhib Med Chem 2011; 26:777-91. [DOI: 10.3109/14756366.2011.552885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- N. S. Hari Narayana Moorthy
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Sergio F. Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| |
Collapse
|
22
|
Wu R, Lu Z, Cao Z, Zhang Y. A Transferable Non-bonded Pairwise Force Field to Model Zinc Interactions in Metalloproteins. J Chem Theory Comput 2011; 7:433-443. [PMID: 21552372 PMCID: PMC3087386 DOI: 10.1021/ct100525r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein we introduce a novel practical strategy to overcome the well-known challenge of modeling the divalent zinc cation in metalloproteins. The main idea is to design short-long effective functions (SLEF) to describe charge interactions between the zinc ion and all other atoms. This SLEF approach has the following desired features: (1). It is pairwise, additive and compatible with widely used atomic pair-wise force fields for modeling biomolecules; (2). It only changes interactions between the zinc ion and other atoms, and does not affect force field parameters that model other interactions in the system; (3). It is a non-bonded model that is inherently capable to describe different zinc ligands and coordination modes. By optimizing two SLEF parameters as well as zinc vdW parameters through force matching based on Born-Oppenheimer ab initio QM/MM molecular dynamics simulations, we have successfully developed the first SLEF force field (SLEF1) to describe zinc interactions. Extensive molecular dynamics simulations of seven zinc enzyme systems with different coordination ligands and distinct chelation modes (4-,5-,6-fold), including the binuclear zinc active site, yielded zinc coordination numbers and binding distances in good agreement with the corresponding crystal structures as well as ab initio QM/MM MD results. This not only demonstrates the transferability and adequacy of the new SLEF1 force field in describing a variety of zinc proteins, but also indicates that this novel SLEF approach is a promising direction to explore for improving force field description of metal ion interactions.
Collapse
Affiliation(s)
- Ruibo Wu
- Department of Chemistry, New York University, New York, NY 10003 USA
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhenyu Lu
- Department of Chemistry, New York University, New York, NY 10003 USA
| | - Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003 USA
| |
Collapse
|
23
|
Herbst RW, Perovic I, Martin-Diaconescu V, O'Brien K, Chivers PT, Pochapsky SS, Pochapsky TC, Maroney MJ. Communication between the zinc and nickel sites in dimeric HypA: metal recognition and pH sensing. J Am Chem Soc 2010; 132:10338-51. [PMID: 20662514 DOI: 10.1021/ja1005724] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Helicobacter pylori , a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys)(4) site to a Zn(His)(2)(Cys)(2) site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the beta-CH(2) protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys)(4)) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model wherein HypA controls the flow of nickel traffic in the cell in response to nickel availability and pH.
Collapse
Affiliation(s)
- Robert W Herbst
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu R, Wang S, Zhou N, Cao Z, Zhang Y. A proton-shuttle reaction mechanism for histone deacetylase 8 and the catalytic role of metal ions. J Am Chem Soc 2010; 132:9471-9. [PMID: 20568751 PMCID: PMC2908479 DOI: 10.1021/ja103932d] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zinc-dependent histone deacetylase 8 (HDAC8) catalyzes the removal of acetyl moieties from histone tails, and is critically involved in regulating chromatin structure and gene expression. The detailed knowledge of its catalytic process is of high importance since it has been established as a most promising target for the development of new antitumor drugs. By employing Born-Oppenheimer ab initio QM/MM molecular dynamics simulations and umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have provided further evidence against the originally proposed general acid-base catalytic pair mechanism for Zinc-dependent histone deacetylases. Instead, our results indicated that HDAC8 employs a proton-shuttle catalytic mechanism, in which a neutral His143 first serves as the general base to accept a proton from the zinc-bound water molecule in the initial rate-determining nucleophilic attack step, and then shuttles it to the amide nitrogen atom to facilitate the cleavage of the amide bond. During the deacetylation process, the Zn(2+) ion changes its coordination mode and plays multiple catalytic roles. For the K(+) ion, which is located about 7 A from the catalytic Zn(2+) ion and conserved in class I and II HDACs, our simulations indicated that its removal would lead to the different transition state structure and a higher free energy reaction barrier for the rate-determining step. It is found that the existence of this conserved K(+) ion would enhance the substrate binding, increase the basicity of His143, strengthen the catalytic role of zinc ion, and improve the transition state stabilization by the enzyme environment.
Collapse
Affiliation(s)
- Ruibo Wu
- Department of Chemistry, New York University, New York, NY 10003 USA
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shenglong Wang
- Department of Chemistry, New York University, New York, NY 10003 USA
| | - Nengjie Zhou
- Department of Chemistry, New York University, New York, NY 10003 USA
| | - Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003 USA
| |
Collapse
|
25
|
Lin F, Wang R. Systematic Derivation of AMBER Force Field Parameters Applicable to Zinc-Containing Systems. J Chem Theory Comput 2010; 6:1852-70. [PMID: 26615845 DOI: 10.1021/ct900454q] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal ions are indispensable for maintaining the structural stability and catalytic activity of metalloproteins. Molecular modeling studies of such proteins with force fields, however, are often hampered by the "missing parameter" problem. In this study, we have derived bond-stretching and angle-bending parameters applicable to zinc-containing systems which are compatible with the AMBER force field. A total of 18 model systems were used to mimic the common coordination configurations observed in the complexes formed by zinc-containing metalloproteins. The Hessian matrix of each model system computed at the B3LYP/6-311++G(2d,2p) level was then analyzed by Seminario's method to derive the desired force constants. These parameters were validated extensively in structural optimizations and molecular dynamics simulations of four selected model systems as well as one protein-ligand complex formed by carbonic anhydrase II. The best performance was achieved by a bonded model in combination with the atomic partial charges derived by the restrained electrostatic potential method. After some minor optimizations, this model was also able to reproduce the vibrational frequencies computed by quantum mechanics. This study provides a comprehensive set of force field parameters applicable to a variety of zinc-containing molecular systems. In principle, our approach can be applied to other molecular systems with missing force field parameters.
Collapse
Affiliation(s)
- Fu Lin
- State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Sousa SF, Carvalho ES, Ferreira DM, Tavares IS, Fernandes PA, Ramos MJ, Gomes JANF. Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes. J Comput Chem 2010; 30:2752-63. [PMID: 19399915 DOI: 10.1002/jcc.21304] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A set of 44 Zinc-ligand bond-lengths and of 60 ligand-metal-ligand bond angles from 10 diverse transition-metal complexes, representative of the coordination spheres of typical biological Zn systems, were used to evaluate the performance of a total of 18 commonly available density functionals in geometry determination. Five different basis sets were considered for each density functional, namely two all-electron basis sets (a double-zeta and triple-zeta formulation) and three basis sets including popular types of effective-core potentials: Los Alamos, Steven-Basch-Krauss, and Stuttgart-Dresden. The results show that there are presently several better alternatives to the popular B3LYP density functional for the determination of Zn-ligand bond-lengths and angles. BB1K, MPWB1K, MPW1K, B97-2 and TPSS are suggested as the strongest alternatives for this effect presently available in most computational chemistry software packages. In addition, the results show that the use of effective-core potentials (in particular Stuttgart-Dresden) has a very limited impact, in terms of accuracy, in the determination of metal-ligand bond-lengths and angles in Zinc-complexes, and is a good and safe alternative to the use of an all-electron basis set such as 6-31G(d) or 6-311G(d,p).
Collapse
Affiliation(s)
- Sérgio F Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciõncias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
27
|
Molecular Dynamics Simulations: Difficulties, Solutions and Strategies for Treating Metalloenzymes. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-90-481-3034-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Wu R, Hu P, Wang S, Cao Z, Zhang Y. Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born-Oppenheimer ab initio QM/MM Molecular Dynamics Study. J Chem Theory Comput 2009; 6:337. [PMID: 20161624 PMCID: PMC2812930 DOI: 10.1021/ct9005322] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The different coordination modes and fast ligand exchange of zinc coordination has been suggested to be one key catalytic feature of the zinc ion which makes it an invaluable metal in biological catalysis. However, partly due to the well known difficulties for zinc to be characterized by spectroscopy methods, evidence for dynamic nature of the catalytic zinc coordination has so far mainly been indirect. In this work, Born-Oppenheimer ab initio QM/MM molecular dynamics simulation has been employed, which allows for a first-principle description of the dynamics of the metal active site while properly including effects of the heterogeneous and fluctuating protein environment. Our simulations have provided direct evidence regarding inherent flexibility of the catalytic zinc coordination shell in Thermolysin (TLN) and Histone Deacetylase 8 (HDAC8). We have observed different coordination modes and fast ligand exchange during the picosecond's time-scale. For TLN, the coordination of the carboxylate group of Glu166 to Zinc is found to continuously change between monodentate and bidentate manner dynamically; while for HDAC8, the flexibility mainly comes from the coordination to a non-amino-acid ligand. Such distinct dynamics in the zinc coordination shell between two enzymes suggests that the catalytic role of Zinc in TLN and HDAC8 is likely to be different in spite of the fact that both catalyze the hydrolysis of amide bond. Meanwhile, considering that such Born-Oppenheimer ab initio QM/MM MD simulations are very much desired but are widely considered to be too computationally expensive to be feasible, our current study demonstrates the viability and powerfulness of this state-of-the-art approach in simulating metalloenzymes.
Collapse
Affiliation(s)
- Ruibo Wu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Po Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Shenglong Wang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
29
|
Sousa SF, Fernandes PA, Ramos MJ. Gas-Phase Geometry Optimization of Biological Molecules as a Reasonable Alternative to a Continuum Environment Description: Fact, Myth, or Fiction? J Phys Chem A 2009; 113:14231-6. [DOI: 10.1021/jp902213t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro Alexandrino Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria João Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
30
|
Novel zinc complexes with acetyloacetonate, imidazole and thiolate ligands: Crystal structure of a zinc complex of relevance to farnesyl transferase. INORG CHEM COMMUN 2009. [DOI: 10.1016/j.inoche.2009.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Sousa SF, Fernandes PA, Ramos MJ. Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme. Bioorg Med Chem 2009; 17:3369-78. [DOI: 10.1016/j.bmc.2009.03.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
|
32
|
Sousa S, Fernandes P, Ramos M. The Search for the Mechanism of the Reaction Catalyzed by Farnesyltransferase. Chemistry 2009; 15:4243-7. [DOI: 10.1002/chem.200802745] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Nie FM, Leibeling G, Demeshko S, Dechert S, Meyer F. Magnetostructural correlations in μ-pyrazolato-μ-acetato dinickel(II) complexes: Subtle effects of acetate tilting. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.03.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Sousa SF, Lopes AB, Fernandes PA, Ramos MJ. The Zinc proteome: a tale of stability and functionality. Dalton Trans 2009:7946-56. [DOI: 10.1039/b904404c] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Sousa SF, Fernandes PA, Ramos MJ. Enzyme Flexibility and the Catalytic Mechanism of Farnesyltransferase: Targeting the Relation. J Phys Chem B 2008; 112:8681-91. [DOI: 10.1021/jp711214j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sérgio F. Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria João Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
36
|
Abstract
Computational methodologies are playing increasingly important roles in elucidating and presenting the complete and detailed mechanisms of enzymatic reactions because of their capacity to determine and characterize intermediates and transition states from both structural and energetics points of view, independent of their reduced lifetimes and without interfering with the natural reactional flux. These features are turning the field into an active and interesting area of research, involving a diverse range of studies, mostly directed at understanding the ways in which enzymes function under certain circumstances and predicting how they will behave under others. The accuracy of the computational data obtained for a given mechanistic hypothesis depends essentially on three mutually exclusive factors: the accuracy of the Hamiltonian of the reaction mechanism, consideration of the modulating aspect of the enzyme's structure in the energetics of the active center, and consideration of the enzyme's conformational fluctuations and dynamics. Although, unfortunately, it is impossible at present to optimize these crucial factors simultaneously, the success of any enzymatic mechanistic study depends on the level of equilibrium achieved among them. Different authors adopt different solutions, and this Account summarizes the most favored, with emphasis placed on our own preferences. Another crucial aspect in computational enzymatic catalysis is the model used in the calculations. Our aim is to build the simplest model that captures the essence of the catalytic power of an enzyme, allowing us to apply the highest possible theoretical level and minimize accidental errors. The choice is, however, far from obvious, ranging from simple models containing tens of atoms up to models of full enzymes plus solvent. Many factors underlie the choice of an appropriate model; here, examples are presented of very different modeling strategies that have been employed to obtain meaningful results. One particular case study, that of enzyme ribonucleotide reductase (RNR), a radical enzyme that catalyzes the reduction of ribonucleotides into deoxyribonucleotides, is one of the examples illustrating how the successive increase of the system's size does not dramatically change the thermodynamics and kinetics of the reaction. The values obtained and presented speak for themselves in that the only ones that are distinctly different are those calculated using an exceedingly small model, which omitted the amino acids that establish hydrogen bonds with the reactive unit of the substrate. This Account also describes our computational analysis of the mechanism of farnesyltransferase, a heterodimeric zinc metalloenzyme that is currently one of the most fascinating targets in cancer research. We focus on the present methodologies that we have been using, our models and understanding of the problem, and the accuracy of results and associated problems within this area of research.
Collapse
Affiliation(s)
- Maria J. Ramos
- Requimte, Faculdade de Ciências do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- Requimte, Faculdade de Ciências do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
37
|
Metal active site elasticity linked to activation of homocysteine in methionine synthases. Proc Natl Acad Sci U S A 2008; 105:3286-91. [PMID: 18296644 DOI: 10.1073/pnas.0709960105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.
Collapse
|
38
|
Gil MA, Maringgele W, Dechert S, Meyer F. Structural Flexibility of Carboxylate Bridging Exemplified by a Series of μ-Acetato Dizinc Complexes. Z Anorg Allg Chem 2007. [DOI: 10.1002/zaac.200700200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Tamames B, Sousa SF, Tamames J, Fernandes PA, Ramos MJ. Analysis of zinc-ligand bond lengths in metalloproteins: Trends and patterns. Proteins 2007; 69:466-75. [PMID: 17623850 DOI: 10.1002/prot.21536] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Zinc is one of the biologically most abundant and important metal elements, present in a plethora of enzymes from a broad array of species of all phyla. In this study we report a thorough analysis of the geometrical properties of Zinc coordination spheres performed on a dataset of 994 high quality protein crystal structures from the Protein Data Bank, and complemented with Quantum mechanical calculations at the DFT level of theory (B3LYP/SDD) on mononuclear model systems. The results allowed us to draw interesting conclusions on the structural characteristics of Zn centres and to evaluate the importance of such effects as the resolution of X-ray crystallographic structures, the enzyme class in which the Zn centre is included, and the identity of the ligands at the Zn coordination sphere. Altogether, the set of results obtained provides useful data for the enhancement of the atomic models normally applied to the theoretical and computational study of zinc enzymes at the quantum mechanical level (in particular enzymatic mechanisms), and for the development of molecular mechanical parameters for the treatment of zinc coordination spheres with molecular mechanics or molecular dynamics in studies with the full enzyme.
Collapse
Affiliation(s)
- Bruno Tamames
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | | | | | | | | |
Collapse
|
40
|
Sousa SF, Fernandes PA, Ramos MJ. Comparative assessment of theoretical methods for the determination of geometrical properties in biological zinc complexes. J Phys Chem B 2007; 111:9146-52. [PMID: 17602523 DOI: 10.1021/jp072538y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study, we have compared the performance of the density functional theory (DFT) functionals B1B95, B3LYP, B97-2, BP86, and BPW91 with MP2 for geometry determination in biological mononuclear Zn complexes. A total of 15 different basis sets, of rather diverse complexity, were tested, several which included also three different types of common effective-core potentials: Los Alamos, Steven-Basch-Krauss, and Stuttgart-Dresden. In addition, the ability to describe mononuclear Zn biological systems using relatively simple models of the metal coordination sphere, comprising only the metal atom and a simplified representation of the ligands at the first coordination sphere, starting from a set of high-resolution X-ray crystallographic structures, is evaluated for 90 combinations of method/basis set. The results show that the use of such models allows for a relatively accurate description of the Zn-ligand bond lengths, although failing to correctly represent the topology of the metal coordination sphere (namely, the angles involving the metal atom) if constraints at the Calpha atoms are not considered. Globally, B3LYP had the best average performance in the test, closely followed by MP2, whereas B1B95 was the least accurate method. The study also points out B3LYP/CEP-121G and B3LYP/SDD, which use, respectively, the Steven-Basch-Krauss and the Stuttgart-Dresden effective-core potentials, as the best compromise between accuracy and CPU time for the geometrical characterization of metal-ligand bond lengths in Zn biological systems.
Collapse
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
41
|
Penner-Hahn J. Zinc-promoted alkyl transfer: a new role for zinc. Curr Opin Chem Biol 2007; 11:166-71. [PMID: 17376731 DOI: 10.1016/j.cbpa.2007.02.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
The roles of zinc in biology are often thought to be limited to activating water, as in hydrolytic enzymes, and conferring structure, as in the zinc finger proteins. Over the past 15 years, it has been shown that there are many zinc-containing proteins that have 'structural-like' zinc sites with multiple cysteine ligands but in which the site promotes the alkylation of a zinc-bound thiolate. Recent work continues to extend the range of proteins showing zinc-promoted alkytransfer activity, and has refined the structural details of these sites. Of particular interest are recent crystal structures suggesting that in most cases the endogenous ligand that is displaced when the substrate thiol bind is an endogenous amino acid and not water, as had been previously thought. Despite extensive study, it remains unclear whether these enzymes function via an associative mechanism (direct alkylation of a zinc-bound thiolate) or a dissociate mechanism (nucleophilic attack by a free thiolate that has dissociated from the zinc).
Collapse
Affiliation(s)
- James Penner-Hahn
- Department of Chemistry and Biophysics Research Division, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055 USA.
| |
Collapse
|
42
|
Sousa SF, Fernandes PA, Ramos MJ. The Carboxylate Shift in Zinc Enzymes: A Computational Study. J Am Chem Soc 2007; 129:1378-85. [PMID: 17263422 DOI: 10.1021/ja067103n] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zinc is the second most abundant transition element in biology and the only metal known to be represented in enzymes from each one of the six classes established by the International Union of Biochemistry. The flexible coordination geometry, the fast ligand exchange, the lack of redox activity, and its role as Lewis acid are just some of the features that make zinc an invaluable element in biological catalysis. In this study, we have analyzed the importance in mononuclear Zn enzymes of an interesting mechanistic phenomenon known as carboxylate shift, which is characterized by a change in the coordination mode of a carboxylate group (mono to bidentate or vice versa) with both ligand entrance or exit from the metal coordination sphere. Using B3LYP calculations, we were able to unveil in detail patterns relating the intrinsic characteristics of a given Zn coordination sphere with the existence or not of a carboxylate-shift mechanism and the additional energy stabilization arising from it. In particular, a specific Zn coordination sphere containing a carboxylate ligand (Asp or Glu), a cysteine, and a histidine has been shown to have the most favorable combination of amino acid residues that ensures a fast ligand exchange.
Collapse
Affiliation(s)
- Sérgio F Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
43
|
Sousa SF, Fernandes PA, Ramos MJ. Theoretical studies on farnesyl transferase: Evidence for thioether product coordination to the active-site zinc sphere. J Comput Chem 2007; 28:1160-8. [PMID: 17342704 DOI: 10.1002/jcc.20577] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Farnesyltransferase (FTase), an interesting zinc metaloenzyme, has been the subject of great attention in anticancer research over the last decade. However, despite the major accomplishments in the field, some very pungent questions on the farnesylation mechanism still persist. In this study, the authors have analyzed a mechanistic paradox that arises from the existence of several contradicting and inconclusive experimental evidence regarding the existence of direct coordination between the active-site zinc cation and the thioether from the farnesylated peptide product, which include UV-vis spectroscopy data on a Co(2+)-substituted FTase, two X-ray crystallographic structures of the FTase-product complex, and extended X-ray absorption fine structure results. Using high-level theoretical calculations on two models of different sizes, and QM/MM calculations on the full enzyme, the authors have shown that the farnesylated product is Zn coordinated, and that a subsequent step where this Zn bond is broken is coherent with the available kinetic results. Furthermore, an explanation for the contradicting experimental evidence is suggested.
Collapse
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
44
|
Stork CJ, Li YV. Intracellular zinc elevation measured with a "calcium-specific" indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J Neurosci 2006; 26:10430-7. [PMID: 17035527 PMCID: PMC6674692 DOI: 10.1523/jneurosci.1588-06.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Much of our current evidence concerning of the role of calcium (Ca2+) as a second messenger comes from its interaction with fluorescent probes; however, many Ca2+ probes also have a higher affinity for another divalent cation: zinc (Zn2+). In this study, using a selective Zn2+ probe (Newport Green), we investigated the accumulation of intracellular Zn2+ transients in acute rat hippocampal slices during ischemia, simulated by oxygen and glucose deprivation (OGD). Subsequent reperfusion with glucose-containing oxygenated medium resulted in an additional increase in intracellular Zn2+. Such observations compelled us to investigate the contribution of Zn2+ to the alleged intracellular Ca2+ overload occurring in ischemia and reperfusion. Using confocal fluorescent microscopy of Calcium Green-1, a widely used Ca2+ indicator, we detected increases in fluorescence intensity during OGD and reperfusion. However, application of a Zn2+ chelator, at the peak of the fluorescence elevation (interpreted as Ca2+ overload), resulted in a significant drop in intensity, suggesting that rising Zn2+ is the primary source of the increasing Calcium Green-1 fluorescence. Finally, staining with the cell viability indicator propidium iodide revealed that Zn2+ is responsible for the ischemic neuronal cell death, because Zn2+ chelation prevented cells from sustaining ischemic damage. Current cellular models of ischemic injury center on Ca2+-mediated excitotoxicity. Our results indicate that Zn2+ elevation contributes to conventionally recognized Ca2+ overload and also suggest that the role of Ca2+ in neurotoxicity described previously using Ca2+ probes may need to be re-examined to determine whether effect previously attributed to Ca2+ could, in part, be attributable to Zn2+.
Collapse
Affiliation(s)
- Christian J. Stork
- Department of Biomedical Science, Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio 45701
| | - Yang V. Li
- Department of Biomedical Science, Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio 45701
| |
Collapse
|
45
|
Sousa SF, Fernandes PA, Ramos MJ. Theoretical studies on farnesyltransferase: The distances paradox explained. Proteins 2006; 66:205-18. [PMID: 17068802 DOI: 10.1002/prot.21219] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In spite of the enormous interest that has been devoted to its study, the mechanism of the enzyme farnesyltransferase (FTase) remains the subject of several crucial doubts. In this article, we shed a new light in one of the most fundamental dilemmas that characterize the mechanism of this puzzling enzyme commonly referred to as the "distances paradox", which arises from the existence of a large 8-A distance between the two reactive atoms in the reaction catalyzed by this enzyme: a Zn-bound cysteine sulphur atom from a peptidic substrate and the farnesyldiphosphate (FPP) carbon 1. This distance must be overcome for the reaction to occur. In this study, the two possible alternatives were evaluated by combining molecular mechanics (AMBER) and quantum chemical calculations (B3LYP). Basically, our results have shown that an activation of the Zn-bound cysteine thiolate with subsequent displacement from the zinc coordination sphere towards the FPP carbon 1 is not a realistic hypothesis of overcoming the large distance reported in the crystallographic structures of the ternary complexes between the two reactive atoms, but that a rotation involving the FPP molecule can bring the two atoms closer with moderate energetic cost, coherent with previous experimental data. This conclusion opens the door to an understanding of the chemical step in the farnesylation reaction.
Collapse
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
46
|
Sousa SF, Fernandes PA, Ramos MJ. Effective tailor-made force field parameterization of the several Zn coordination environments in the puzzling FTase enzyme: opening the door to the full understanding of its elusive catalytic mechanism. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0170-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Polfer NC, Oomens J, Moore DT, von Helden G, Meijer G, Dunbar RC. Infrared Spectroscopy of Phenylalanine Ag(I) and Zn(II) Complexes in the Gas Phase. J Am Chem Soc 2006; 128:517-25. [PMID: 16402839 DOI: 10.1021/ja0549291] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infrared multiple-photon dissociation (IR-MPD) spectroscopy has been applied to singly-charged complexes involving the transition metals Ag(+) and Zn(2+) with the aromatic amino acid phenylalanine. These studies are complemented by DFT calculations. For [Phe+Ag](+) the calculations favor a tridentate charge solvation N/O/ring structure. The experimental spectrum strongly supports this as the predominant binding geometry and, in particular, rules out a significant presence of the salt-bridge conformation. Zn(2+) forms a deprotonated dimer complex with Phe, [Zn+Phe(2)-H](+), in which the +2 oxidation state serves as a useful biomimetic model for zinc protein sites. A number of low-energy conformations were located, of which the lowest-energy conformer predicted by the calculations involves a Phe ligand deprotonated on the carboxylic acid, while the other Phe ligand is in the tridentate charge solvation conformation. The calculated IR spectrum of this conformer gives a close fit to the experimental spectrum, strongly supporting this as the predominant binding geometry. This most stable calculated complex is characterized by N/ O/ring metal chelation with a tetrahedral-type coordination core of Zn(2+) to N and O of both ligands. Another similar tightly chelated structure shows a square-planar-type coordination core, but this structure is computed to be less stable and gives a less satisfactory match to the experimental spectrum. This preference for the tetrahedral geometry of the Lewis-basic atomic ligands parallels the common Zn(II) coordination geometry in proteins. The number of clearly identifiable peaks resolved in the IR-MPD spectra as well as the much-improved matches between the observed spectra and the DFT-calculated spectra of the most stable geometries compared to previous studies are noteworthy for systems of this size and complexity. These results demonstrate that IR spectroscopy of transition metal-amino acid complexes in combination with DFT calculations is a very powerful structural tool, readily applicable to biomimetic systems that model, for example, the reaction centers of proteins in the solvent-free environment. In addition, we present a novel ion-capturing method for Fourier transform ion cyclotron resonance mass spectrometry which removes the necessity of a buffer gas pulse, while allowing ion trapping at moderate voltages with apparently reduced collisional excitation of the ions.
Collapse
Affiliation(s)
- Nick C Polfer
- FOM-Institute for Plasmaphysics Rijnhuizen, MN Nieuwegein, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Farnesyltransferase: Theoretical studies on peptide substrate entrance—thiol or thiolate coordination? ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|