1
|
Huh H, Shen J, Ajjugal Y, Ramachandran A, Patel SS, Lee SH. Sequence-specific dynamic DNA bending explains mitochondrial TFAM's dual role in DNA packaging and transcription initiation. Nat Commun 2024; 15:5446. [PMID: 38937458 PMCID: PMC11211510 DOI: 10.1038/s41467-024-49728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Mitochondrial transcription factor A (TFAM) employs DNA bending to package mitochondrial DNA (mtDNA) into nucleoids and recruit mitochondrial RNA polymerase (POLRMT) at specific promoter sites, light strand promoter (LSP) and heavy strand promoter (HSP). Herein, we characterize the conformational dynamics of TFAM on promoter and non-promoter sequences using single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule protein-induced fluorescence enhancement (smPIFE) methods. The DNA-TFAM complexes dynamically transition between partially and fully bent DNA conformational states. The bending/unbending transition rates and bending stability are DNA sequence-dependent-LSP forms the most stable fully bent complex and the non-specific sequence the least, which correlates with the lifetimes and affinities of TFAM with these DNA sequences. By quantifying the dynamic nature of the DNA-TFAM complexes, our study provides insights into how TFAM acts as a multifunctional protein through the DNA bending states to achieve sequence specificity and fidelity in mitochondrial transcription while performing mtDNA packaging.
Collapse
Affiliation(s)
- Hyun Huh
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jiayu Shen
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yogeeshwar Ajjugal
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Sang-Hyuk Lee
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. Int J Mol Sci 2023; 24:ijms24098334. [PMID: 37176041 PMCID: PMC10179549 DOI: 10.3390/ijms24098334] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.
Collapse
Affiliation(s)
- Tatiana Starkova
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexey N Tomilin
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Elena Chikhirzhina
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
3
|
Chen K, Zhang J, Liang F, Zhu Q, Cai S, Tong X, He Z, Liu X, Chen Y, Mo D. HMGB2 orchestrates mitotic clonal expansion by binding to the promoter of C/EBPβ to facilitate adipogenesis. Cell Death Dis 2021; 12:666. [PMID: 34215724 PMCID: PMC8253743 DOI: 10.1038/s41419-021-03959-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022]
Abstract
High-mobility group box 2 (HMGB2) is an abundant, chromatin-associated protein that plays an essential role in the regulation of transcription, cell proliferation, differentiation, and tumorigenesis. However, the underlying mechanism of HMGB2 in adipogenesis remains poorly known. Here, we provide evidence that HMGB2 deficiency in preadipocytes impedes adipogenesis, while overexpression of HMGB2 increases the potential for adipogenic differentiation. Besides, depletion of HMGB2 in vivo caused the decrease in body weight, white adipose tissue (WAT) mass, and adipocyte size. Consistently, the stromal vascular fraction (SVF) of adipose tissue derived from hmgb2-/- mice presented impaired adipogenesis. When hmgb2-/- mice were fed with high-fat diet (HFD), the body size, and WAT mass were increased, but at a lower rate. Mechanistically, HMGB2 mediates adipogenesis via enhancing expression of C/EBPβ by binding to its promoter at "GGGTCTCAC" specifically during mitotic clonal expansion (MCE) stage, and exogenous expression of C/EBPβ can rescue adipogenic abilities of preadipocytes in response to HMGB2 inhibition. In general, our findings provide a novel mechanism of HMGB2-C/EBPβ axis in adipogenesis and a potential therapeutic target for obesity.
Collapse
MESH Headings
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Binding Sites
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Female
- Gene Expression Regulation
- HMGB2 Protein/genetics
- HMGB2 Protein/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitosis
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Promoter Regions, Genetic
- Signal Transduction
- Weight Gain
- Mice
Collapse
Affiliation(s)
- Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junyan Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Freeland J, Zhang L, Wang ST, Ruiz M, Wang Y. Bent DNA Bows as Sensing Amplifiers for Detecting DNA-Interacting Salts and Molecules. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3112. [PMID: 32486417 PMCID: PMC7309149 DOI: 10.3390/s20113112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 01/20/2023]
Abstract
Due to the central role of DNA, its interactions with inorganic salts and small organic molecules are important. For example, such interactions play important roles in various fundamental cellular processes in living systems and are involved in many DNA-damage related diseases. Strategies to improve the sensitivity of existing techniques for studying DNA interactions with other molecules would be appreciated in situations where the interactions are too weak. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as screening DNA-interacting molecules and drugs.
Collapse
Affiliation(s)
- Jack Freeland
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (L.Z.); (S.-T.W.)
| | - Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (L.Z.); (S.-T.W.)
| | - Mason Ruiz
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Department of Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Microelectronics-Photonics Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
5
|
Sarangi MK, Zvoda V, Holte MN, Becker NA, Peters JP, Maher LJ, Ansari A. Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A. Nucleic Acids Res 2019; 47:2871-2883. [PMID: 30698746 PMCID: PMC6451137 DOI: 10.1093/nar/gkz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
The yeast Nhp6A protein (yNhp6A) is a member of the eukaryotic HMGB family of chromatin factors that enhance apparent DNA flexibility. yNhp6A binds DNA nonspecifically with nM affinity, sharply bending DNA by >60°. It is not known whether the protein binds to unbent DNA and then deforms it, or if bent DNA conformations are ‘captured’ by protein binding. The former mechanism would be supported by discovery of conditions where unbent DNA is bound by yNhp6A. Here, we employed an array of conformational probes (FRET, fluorescence anisotropy, and circular dichroism) to reveal solution conditions in which an 18-base-pair DNA oligomer indeed remains bound to yNhp6A while unbent. In 100 mM NaCl, yNhp6A-bound DNA unbends as the temperature is raised, with no significant dissociation of the complex detected up to ∼45°C. In 200 mM NaCl, DNA unbending in the intact yNhp6A complex is again detected up to ∼35°C. Microseconds-resolved laser temperature-jump perturbation of the yNhp6a–DNA complex revealed relaxation kinetics that yielded unimolecular DNA bending/unbending rates on timescales of 500 μs−1 ms. These data provide the first direct observation of bending/unbending dynamics of DNA in complex with yNhp6A, suggesting a bind-then-bend mechanism for this protein.
Collapse
Affiliation(s)
- Manas Kumar Sarangi
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viktoriya Zvoda
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
6
|
Dahlke K, Zhao J, Sing CE, Banigan EJ. Force-Dependent Facilitated Dissociation Can Generate Protein-DNA Catch Bonds. Biophys J 2019; 117:1085-1100. [PMID: 31427067 DOI: 10.1016/j.bpj.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
7
|
Abstract
Nucleoid-associated proteins (NAPs) are important factors in shaping bacterial nucleoid and regulating global gene expression. A great deal of insights into NAPs can be obtained through studies using single DNA molecule, which has been made possible owing to recent rapid development of single-DNA manipulation techniques. These studies provide information on modes of binding to DNA, which shed light on the mechanism underlying the regulatory function of NAPs. In addition, how NAPs organize DNA and thus their contribution to chromosomal DNA packaging can be determined. In this chapter, we introduce transverse magnetic tweezers that allows for convenient manipulation of long DNA molecules, and its applications in studies of NAPs as exemplified by the E. coli H-NS protein. We describe how transverse magnetic tweezers is a powerful tool that can be used to characterize the DNA binding and organization modes of NAPs and how such information leads to better understanding of its roles in DNA packaging of bacterial nucleoid and transcription regulation.
Collapse
|
8
|
Murugesapillai D, Bouaziz S, Maher LJ, Israeloff NE, Cameron CE, Williams MC. Accurate nanoscale flexibility measurement of DNA and DNA-protein complexes by atomic force microscopy in liquid. NANOSCALE 2017; 9:11327-11337. [PMID: 28762410 PMCID: PMC5597049 DOI: 10.1039/c7nr04231k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The elasticity of double-stranded DNA (dsDNA), as described by its persistence length, is critical for many biological processes, including genomic regulation. A persistence length value can be obtained using atomic force microscopy (AFM) imaging. However, most AFM studies have been done by depositing the sample on a surface using adhesive ligands and fitting the contour to a two-dimensional (2D) wormlike chain (WLC) model. This often results in a persistence length measurement that is different from the value determined using bulk and single molecule methods. We describe a method for obtaining accurate three-dimensional (3D) persistence length measurements for DNA and DNA-protein complexes by using a previously developed liquid AFM imaging method and then applying the 3D WLC model. To demonstrate the method, we image in both air and liquid several different dsDNA constructs and DNA-protein complexes that both increase (HIV-1 Vpr) and decrease (yeast HMO1) dsDNA persistence length. Fitting the liquid AFM-imaging contour to the 3D WLC model results in a value in agreement with measurements obtained in optical tweezers experiments. Because AFM also allows characterization of local DNA properties, the ability to correctly measure global flexibility will strongly increase the impact of measurements that use AFM imaging.
Collapse
Affiliation(s)
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - L James Maher
- Mayo Clinic College of Medicine and Science, Department of Biochemistry and Molecular Biology, Rochester, MN 55905, USA
| | | | - Craig E Cameron
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, PA 16802, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA, USA.
| |
Collapse
|
9
|
Vlijm R, Kim SH, De Zwart PL, Dalal Y, Dekker C. The supercoiling state of DNA determines the handedness of both H3 and CENP-A nucleosomes. NANOSCALE 2017; 9:1862-1870. [PMID: 28094382 PMCID: PMC7959483 DOI: 10.1039/c6nr06245h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nucleosomes form the unit structure of the genome in eukaryotes, thereby constituting a fundamental tenet of chromatin biology. In canonical nucleosomes, DNA wraps around the histone octamer in a left-handed toroidal ramp. Here, in single-molecule magnetic tweezers studies of chaperone-assisted nucleosome assembly, we show that the handedness of the DNA wrapping around the nucleosome core is intrinsically ambidextrous, and depends on the pre-assembly supercoiling state of the DNA, i.e., it is not uniquely determined by the octameric histone core. Nucleosomes assembled onto negatively supercoiled DNA are found to exhibit a left-handed conformation, whereas assembly onto positively supercoiled DNA results in right-handed nucleosomes. This intrinsic flexibility to adopt both chiralities is observed both for canonical H3 nucleosomes, and for centromere-specific variant CENP-A nucleosomes. These data support recent advances suggesting an intrinsic adaptability of the nucleosome, and provide insights into how nucleosomes might rapidly re-assemble after cellular processes that generate positive supercoiling in vivo.
Collapse
Affiliation(s)
- R Vlijm
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - S H Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - P L De Zwart
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - Y Dalal
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - C Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2628CJ, The Netherlands
| |
Collapse
|
10
|
Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophys Rev 2016; 9:17-40. [PMID: 28303166 PMCID: PMC5331113 DOI: 10.1007/s12551-016-0236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022] Open
Abstract
Protein–DNA interactions can be characterized and quantified using single molecule methods such as optical tweezers, magnetic tweezers, atomic force microscopy, and fluorescence imaging. In this review, we discuss studies that characterize the binding of high-mobility group B (HMGB) architectural proteins to single DNA molecules. We show how these studies are able to extract quantitative information regarding equilibrium binding as well as non-equilibrium binding kinetics. HMGB proteins play critical but poorly understood roles in cellular function. These roles vary from the maintenance of chromatin structure and facilitation of ribosomal RNA transcription (yeast high-mobility group 1 protein) to regulatory and packaging roles (human mitochondrial transcription factor A). We describe how these HMGB proteins bind, bend, bridge, loop and compact DNA to perform these functions. We also describe how single molecule experiments observe multiple rates for dissociation of HMGB proteins from DNA, while only one rate is observed in bulk experiments. The measured single-molecule kinetics reveals a local, microscopic mechanism by which HMGB proteins alter DNA flexibility, along with a second, much slower macroscopic rate that describes the complete dissociation of the protein from DNA.
Collapse
|
11
|
Zhou X, Li M, Huang H, Chen K, Yuan Z, Zhang Y, Nie Y, Chen H, Zhang X, Chen L, Chen Y, Mo D. HMGB2 regulates satellite cell-mediated skeletal muscle regeneration via IGF2BP2. J Cell Sci 2016; 129:4305-4316. [DOI: 10.1242/jcs.189944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/17/2016] [Indexed: 12/23/2022] Open
Abstract
Although the mechanism underlying modulation of transcription factors in myogenesis has been well elucidated, the function of the transcription cofactors involved in this process remains poorly understood. Here, we identified HMGB2 as an essential nuclear transcriptional co-regulator in myogenesis. HMGB2 was highly expressed in undifferentiated myoblasts and regenerating muscle. Knockdown of HMGB2 inhibited myoblast proliferation and stimulated its differentiation. HMGB2 depletion down-regulated Myf5 and Cyclin A2 on the protein but not mRNA level. In contrast, overexpression of HMGB2 promoted Myf5 and Cyclin A2 protein upregulation. Furthermore, we found that the RNA-binding protein IGF2BP2 is a downstream target of HMGB2, as previously shown for HMGA2. IGF2BP2 binds to mRNAs of Myf5 or Cyclin A2, resulting in translation enhancement or mRNA stabilization, respectively. Notably, overexpression of IGF2BP2 could partially rescue protein levels of Myf5 and Cyclin A2, in response to HMGB2 decrease. Moreover, depletion of HMGB2 in vivo severely attenuated muscle repair; this was due to a decrease in satellite cells. Together, these results highlight the previously undiscovered and critical role of HMGB2-IGF2BP2 axis in myogenesis and muscle regeneration.
Collapse
Affiliation(s)
- Xingyu Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huaxing Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuning Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Melikishvili M, Fried MG. Resolving the contributions of two cooperative mechanisms to the DNA binding of AGT. Biopolymers 2015; 103:509-16. [PMID: 26017689 PMCID: PMC5016775 DOI: 10.1002/bip.22684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/16/2015] [Accepted: 05/17/2015] [Indexed: 11/25/2022]
Abstract
The O(6)-alkylguanine DNA alkyltransferase (AGT) is a DNA repair enzyme that binds DNA with moderate cooperativity. This cooperativity is important for its search for alkylated bases. A structural model of the cooperative complex of AGT with DNA predicts short-range interactions between nearest protein neighbors and long-range interactions between proteins separated in the array. DNA substrates ranging from 11bp to 30bp allowed us to use differences in binding stoichiometry to resolve short- and long-range protein contributions to the stability of AGT complexes. We found that the short-range component of ΔG°(coop) was nearly independent of DNA length and protein packing density. In contrast the long-range component oscillated with DNA length, with a period equal to the occluded binding site size (4bp). The amplitude of the long-range component decayed from ∼-4 kcal/mole of interaction to ∼-1.2 kcal/mol of interaction as the size of cooperative unit increased from 4 to 7 proteins, suggesting a mechanism to limit the size of cooperative clusters. These features allow us to make testable predictions about AGT distributions and interactions with chromatin structures in vivo.
Collapse
Affiliation(s)
- Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY, 40536
| | - Michael G Fried
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY, 40536
| |
Collapse
|
13
|
DNA-Segment-Facilitated Dissociation of Fis and NHP6A from DNA Detected via Single-Molecule Mechanical Response. J Mol Biol 2015. [PMID: 26220077 DOI: 10.1016/j.jmb.2015.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate of dissociation of a DNA-protein complex is often considered to be a property of that complex, without dependence on other nearby molecules in solution. We study the kinetics of dissociation of the abundant Escherichia coli nucleoid protein Fis from DNA, using a single-molecule mechanics assay. The rate of Fis dissociation from DNA is strongly dependent on the solution concentration of DNA. The off-rate (k(off)) of Fis from DNA shows an initially linear dependence on solution DNA concentration, characterized by an exchange rate of k(ex)≈9×10(-4) (ng/μl)(-1) s(-1) for 100 mM univalent salt buffer, with a very small off-rate at zero DNA concentration. The off-rate saturates at approximately k(off,max)≈8×10(-3) s(-1) for DNA concentrations above ≈20 ng/μl. This exchange reaction depends mainly on DNA concentration with little dependence on the length of the DNA molecules in solution or on binding affinity, but this does increase with increasing salt concentration. We also show data for the yeast HMGB protein NHP6A showing a similar DNA-concentration-dependent dissociation effect, with faster rates suggesting generally weaker DNA binding by NHP6A relative to Fis. Our results are well described by a model with an intermediate partially dissociated state where the protein is susceptible to being captured by a second DNA segment, in the manner of "direct transfer" reactions studied for other DNA-binding proteins. This type of dissociation pathway may be important to protein-DNA binding kinetics in vivo where DNA concentrations are large.
Collapse
|
14
|
Driessen RPC, Sitters G, Laurens N, Moolenaar GF, Wuite GJL, Goosen N, Dame RT. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 2014; 53:6430-8. [PMID: 25291500 PMCID: PMC5451147 DOI: 10.1021/bi500344j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
helical structure of double-stranded DNA is destabilized by
increasing temperature. Above a critical temperature (the melting
temperature), the two strands in duplex DNA become fully separated.
Below this temperature, the structural effects are localized. Using
tethered particle motion in a temperature-controlled sample chamber,
we systematically investigated the effect of increasing temperature
on DNA structure and the interplay between this effect and protein
binding. Our measurements revealed that (1) increasing temperature
enhances DNA flexibility, effectively leading to more compact folding
of the double-stranded DNA chain, and (2) temperature differentially
affects different types of DNA-bending chromatin proteins from mesophilic
and thermophilic organisms. Thus, our findings aid in understanding
genome organization in organisms thriving at moderate as well as extreme
temperatures. Moreover, our results underscore the importance of carefully
controlling and measuring temperature in single-molecule DNA (micromanipulation)
experiments.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Leiden University , 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Murugesapillai D, McCauley MJ, Huo R, Nelson Holte MH, Stepanyants A, Maher LJ, Israeloff NE, Williams MC. DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin. Nucleic Acids Res 2014; 42:8996-9004. [PMID: 25063301 PMCID: PMC4132745 DOI: 10.1093/nar/gku635] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein–protein interactions.
Collapse
Affiliation(s)
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ran Huo
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Molly H Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Armen Stepanyants
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
16
|
Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL. Optical tweezers analysis of DNA-protein complexes. Chem Rev 2014; 114:3087-119. [PMID: 24443844 DOI: 10.1021/cr4003006] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University Amsterdam , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Sing CE, Olvera de la Cruz M, Marko JF. Multiple-binding-site mechanism explains concentration-dependent unbinding rates of DNA-binding proteins. Nucleic Acids Res 2014; 42:3783-91. [PMID: 24393773 PMCID: PMC3973338 DOI: 10.1093/nar/gkt1327] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent work has demonstrated concentration-dependent unbinding rates of proteins from DNA, using fluorescence visualization of the bacterial nucleoid protein Fis [Graham et al. (2011) (Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res., 39:2249)]. The physical origin of this concentration-dependence is unexplained. We use a combination of coarse-grained simulation and theory to demonstrate that this behavior can be explained by taking into account the dimeric nature of the protein, which permits partial dissociation and exchange with other proteins in solution. Concentration-dependent unbinding is generated by this simple model, quantitatively explaining experimental data. This effect is likely to play a major role in determining binding lifetimes of proteins in vivo where there are very high concentrations of solvated molecules.
Collapse
Affiliation(s)
- Charles E Sing
- Department of Materials Science, Northwestern University, 2220 Cook Dr. Evanston, IL 60208, USA, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
18
|
Role of the acidic tail of high mobility group protein B1 (HMGB1) in protein stability and DNA bending. PLoS One 2013; 8:e79572. [PMID: 24255708 PMCID: PMC3821859 DOI: 10.1371/journal.pone.0079572] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022] Open
Abstract
High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of human HMGB1 in protein stability and DNA interactions. For this purpose, we cloned, expressed and purified HMGB1 and its tailless form, HMGB1ΔC, in E. coli strain. Tryptophan fluorescence spectroscopy and circular dichroism (CD) experiments clearly showed an increase in protein stability promoted by the acidic tail under different conditions, such as the presence of the chemical denaturant guanidine hydrochloride (Gdn.HCl), high temperature and low pH. Folding intermediates found at low pH for both proteins were denatured only in the presence of chemical denaturant, thus showing a relatively high stability. The acidic tail did not alter the DNA-binding properties of the protein, although it enhanced the DNA bending capability from 76° (HMGB1ΔC) to 91° (HMGB1), as measured using the fluorescence resonance energy transfer technique. A model of DNA bending in vivo was proposed, which might help to explain the interaction of HMGB1 with DNA and other proteins, i.e., histones, and the role of that protein in chromatin remodeling.
Collapse
|
19
|
Abstract
Crenarchaeal genomes are organized into a compact nucleoid by a set of small chromatin proteins. Although there is little knowledge of chromatin structure in Archaea, similarities between crenarchaeal and bacterial chromatin proteins suggest that organization and regulation could be achieved by similar mechanisms. In the present review, we describe the molecular properties of crenarchaeal chromatin proteins and discuss the possible role of these architectural proteins in organizing the crenarchaeal chromatin and in gene regulation.
Collapse
|
20
|
Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A. Nat Commun 2013; 3:1013. [PMID: 22910359 DOI: 10.1038/ncomms2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 11/08/2022] Open
Abstract
Mitochondria organize their genome in protein-DNA complexes called nucleoids. The mitochondrial transcription factor A (TFAM), a protein that regulates mitochondrial transcription, is abundant in these nucleoids. TFAM is believed to be essential for mitochondrial DNA compaction, yet the exact mechanism has not been resolved. Here we use a combination of single-molecule manipulation and fluorescence microscopy to show the nonspecific DNA-binding dynamics and compaction by TFAM. We observe that single TFAM proteins diffuse extensively over DNA (sliding) and, by collisions, form patches on DNA in a cooperative manner. Moreover, we demonstrate that TFAM induces compaction by changing the flexibility of the DNA, which can be explained by local denaturation of the DNA (melting). Both sliding of TFAM and DNA melting are also necessary characteristics for effective, specific transcription regulation by TFAM. This apparent connection between transcription and DNA organization clarifies how TFAM can accomplish two complementary roles in the mitochondrial nucleoid at the same time.
Collapse
|
21
|
Coats JE, Lin Y, Rueter E, Maher LJ, Rasnik I. Single-molecule FRET analysis of DNA binding and bending by yeast HMGB protein Nhp6A. Nucleic Acids Res 2013; 41:1372-81. [PMID: 23221634 PMCID: PMC3554232 DOI: 10.1093/nar/gks1208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/02/2012] [Accepted: 10/30/2012] [Indexed: 02/06/2023] Open
Abstract
High-mobility group B (HMGB) proteins bind duplex DNA without sequence specificity, facilitating the formation of compact nucleoprotein structures by increasing the apparent flexibility of DNA through the introduction of DNA kinks. It has remained unclear whether HMGB binding and DNA kinking are simultaneous and whether the induced kink is rigid (static) or flexible. The detailed molecular mechanism of HMGB-induced DNA 'softening' is explored here by single-molecule fluorescence resonance energy transfer studies of single yeast Nhp6A (yNhp6A) proteins binding to short DNA duplexes. We show that the local effect of yNhp6A protein binding to DNA is consistent with formation of a single static kink that is short lived (lifetimes of a few seconds) under physiological buffer conditions. Within the time resolution of our experiments, this static kink occurs at the instant the protein binds to the DNA, and the DNA straightens at the instant the protein dissociates from the DNA. Our observations support a model in which HMGB proteins soften DNA through random dynamic binding and dissociation, accompanied by DNA kinking and straightening, respectively.
Collapse
Affiliation(s)
- Julie E. Coats
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| | - Yuyen Lin
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| | - Emily Rueter
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| | - L. James Maher
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| | - Ivan Rasnik
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| |
Collapse
|
22
|
Lim CJ, Lee SY, Teramoto J, Ishihama A, Yan J. The nucleoid-associated protein Dan organizes chromosomal DNA through rigid nucleoprotein filament formation in E. coli during anoxia. Nucleic Acids Res 2012. [PMID: 23180762 PMCID: PMC3553945 DOI: 10.1093/nar/gks1126] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dan is a transcription factor that regulates the ttd operon encoding tartrate dehydratase. During anaerobic conditions, its copy number increases by 100-fold, making Dan an abundant nucleoid-associated protein. However, little is known about the mode of Dan–DNA interaction. To understand its cellular functions, we used single-molecule manipulation and imaging techniques to show that Dan binds cooperatively along DNA, resulting in formation of a rigid periodic nucleoprotein filament that strongly restricts accessibility to DNA. Furthermore, in the presence of physiologic levels of magnesium, these filaments interact with each other to cause global DNA condensation. Overall, these results shed light on the architectural role of Dan in the compaction of Escherichia coli chromosomal DNA under anaerobic conditions. Formation of the nucleoprotein filament provides a basis in understanding how Dan may play roles in both chromosomal DNA protection and gene regulation.
Collapse
Affiliation(s)
- Ci Ji Lim
- National University of Singapore, Graduate School for Integrative Sciences and Engineering, Singapore
| | | | | | | | | |
Collapse
|
23
|
Driessen RPC, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar UD, White MF, Schiessel H, van Noort J, Dame RT. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Res 2012; 41:196-205. [PMID: 23155062 PMCID: PMC3592393 DOI: 10.1093/nar/gks1053] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein–DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Physics of Life Processes, Leiden Institute of Physics and Cell Observatory, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin J, Chen H, Dröge P, Yan J. Physical organization of DNA by multiple non-specific DNA-binding modes of integration host factor (IHF). PLoS One 2012; 7:e49885. [PMID: 23166787 PMCID: PMC3498176 DOI: 10.1371/journal.pone.0049885] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
The integration host factor (IHF) is an abundant nucleoid-associated protein and an essential co-factor for phage λ site-specific recombination and gene regulation in E. coli. Introduction of a sharp DNA kink at specific cognate sites is critical for these functions. Interestingly, the intracellular concentration of IHF is much higher than the concentration needed for site-specific interactions, suggesting that non-specific binding of IHF to DNA plays a role in the physical organization of bacterial chromatin. However, it is unclear how non-specific DNA association contributes to DNA organization. By using a combination of single DNA manipulation and atomic force microscopy imaging methods, we show here that distinct modes of non-specific DNA binding of IHF result in complex global DNA conformations. Changes in KCl and IHF concentrations, as well as tension applied to DNA, dramatically influence the degree of DNA-bending. In addition, IHF can crosslink DNA into a highly compact DNA meshwork that is observed in the presence of magnesium at low concentration of monovalent ions and high IHF-DNA stoichiometries. Our findings provide important insights into how IHF contributes to bacterial chromatin organization, gene regulation, and biofilm formation.
Collapse
Affiliation(s)
- Jie Lin
- Department of Physics, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Hu Chen
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Peter Dröge
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (PD); (JY)
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PD); (JY)
| |
Collapse
|
25
|
McCauley MJ, Rueter EM, Rouzina I, Maher LJ, Williams MC. Single-molecule kinetics reveal microscopic mechanism by which High-Mobility Group B proteins alter DNA flexibility. Nucleic Acids Res 2012; 41:167-81. [PMID: 23143110 PMCID: PMC3592474 DOI: 10.1093/nar/gks1031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic High-Mobility Group B (HMGB) proteins alter DNA elasticity while facilitating transcription, replication and DNA repair. We developed a new single-molecule method to probe non-specific DNA interactions for two HMGB homologs: the human HMGB2 box A domain and yeast Nhp6Ap, along with chimeric mutants replacing neutral N-terminal residues of the HMGB2 protein with cationic sequences from Nhp6Ap. Surprisingly, HMGB proteins constrain DNA winding, and this torsional constraint is released over short timescales. These measurements reveal the microscopic dissociation rates of HMGB from DNA. Separate microscopic and macroscopic (or local and non-local) unbinding rates have been previously proposed, but never independently observed. Microscopic dissociation rates for the chimeric mutants (∼10 s−1) are higher than those observed for wild-type proteins (∼0.1–1.0 s−1), reflecting their reduced ability to bend DNA through short-range interactions, despite their increased DNA-binding affinity. Therefore, transient local HMGB–DNA contacts dominate the DNA-bending mechanism used by these important architectural proteins to increase DNA flexibility.
Collapse
Affiliation(s)
- Micah J McCauley
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Ndifon W, Gal H, Shifrut E, Aharoni R, Yissachar N, Waysbort N, Reich-Zeliger S, Arnon R, Friedman N. Chromatin conformation governs T-cell receptor Jβ gene segment usage. Proc Natl Acad Sci U S A 2012; 109:15865-70. [PMID: 22984176 PMCID: PMC3465372 DOI: 10.1073/pnas.1203916109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cells play fundamental roles in adaptive immunity, relying on a diverse repertoire of T-cell receptor (TCR) α and β chains. Diversity of the TCR β chain is generated in part by a random yet intrinsically biased combinatorial rearrangement of variable (Vβ), diversity (Dβ), and joining (Jβ) gene segments. The mechanisms that determine biases in gene segment use remain unclear. Here we show, using a high-throughput TCR sequencing approach, that a physical model of chromatin conformation at the DJβ genomic locus explains more than 80% of the biases in Jβ use that we measured in murine T cells. This model also predicts correctly how differences in intersegment genomic distances between humans and mice translate into differences in Jβ bias between TCR repertoires of these two species. As a consequence of these structural and other biases, TCR sequences are produced with different a priori frequencies, thus affecting their probability of becoming public TCRs that are shared among individuals. Surprisingly, we find that many more TCR sequences are shared among all five mice we studied than among only subgroups of three or four mice. We derive a necessary mathematical condition explaining this finding, which indicates that the TCR repertoire contains a core set of receptor sequences that are highly abundant among individuals, if their a priori probability of being produced by the recombination process is higher than a defined threshold. Our results provide evidence for an expanded role of chromatin conformation in VDJ rearrangement, from control of gene accessibility to precise determination of gene segment use.
Collapse
Affiliation(s)
| | | | - Eric Shifrut
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Rina Aharoni
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Nissan Yissachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Nir Waysbort
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | - Ruth Arnon
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
27
|
Li W, Sun ZQ, Xie P, Dou SX, Wang WC, Wang PY. Elastic response and length change of single DNA molecules induced by a combination of cisplatin and transplatin. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021918. [PMID: 22463255 DOI: 10.1103/physreve.85.021918] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/30/2011] [Indexed: 05/11/2023]
Abstract
Magnetic tweezers were employed to investigate the interactions between DNA and cisplatin (transplatin). Cisplatin shortened DNA and reduced its persistence length more significantly than transplatin due to the formation of many more diadducts than those formed by transplatin. Interestingly, the presence of transplatin could enhance the ability of cisplatin in shortening DNA. An optimal concentration ratio of transplatin to cisplatin existed at which cisplatin showed the highest ability in shortening DNA. Moreover, abrupt length changes were also observed when DNA was treated with a mixture of cisplatin and transplatin at high concentrations. A model was proposed to qualitatively explain well these results.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
28
|
Zhang J, McCauley MJ, Maher LJ, Williams MC, Israeloff NE. Basic N-terminus of yeast Nhp6A regulates the mechanism of its DNA flexibility enhancement. J Mol Biol 2011; 416:10-20. [PMID: 22197373 DOI: 10.1016/j.jmb.2011.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
HMGB (high-mobility group box) proteins are members of a class of small proteins that are ubiquitous in eukaryotic cells and nonspecifically bind to DNA, inducing large-angle DNA bends, enhancing the flexibility of DNA, and likely facilitating numerous important biological interactions. To determine the nature of this behavior for different HMGB proteins, we used atomic force microscopy to quantitatively characterize the bend angle distributions of DNA complexes with human HMGB2(Box A), yeast Nhp6A, and two chimeric mutants of these proteins. While all of the HMGB proteins bend DNA to preferred angles, Nhp6A promoted the formation of higher-order oligomer structures and induced a significantly broader distribution of angles, suggesting that the mechanism of Nhp6A is like a flexible hinge more than that of HMGB2(Box A). To determine the structural origins of this behavior, we used portions of the cationic N-terminus of Nhp6A to replace corresponding HMGB2(Box A) sequences. We found that the oligomerization and broader angle distribution correlated directly with the length of the N-terminus incorporated into the HMGB2(Box A) construct. Therefore, the basic N-terminus of Nhp6A is responsible for its ability to act as a flexible hinge and to form high-order structures.
Collapse
Affiliation(s)
- Jingyun Zhang
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Czapla L, Peters JP, Rueter EM, Olson WK, Maher LJ. Understanding apparent DNA flexibility enhancement by HU and HMGB architectural proteins. J Mol Biol 2011; 409:278-89. [PMID: 21459097 DOI: 10.1016/j.jmb.2011.03.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
Abstract
Understanding and predicting the mechanical properties of protein/DNA complexes are challenging problems in biophysics. Certain architectural proteins bind DNA without sequence specificity and strongly distort the double helix. These proteins rapidly bind and unbind, seemingly enhancing the flexibility of DNA as measured by cyclization kinetics. The ability of architectural proteins to overcome DNA stiffness has important biological consequences, but the detailed mechanism of apparent DNA flexibility enhancement by these proteins has not been clear. Here, we apply a novel Monte Carlo approach that incorporates the precise effects of protein on DNA structure to interpret new experimental data for the bacterial histone-like HU protein and two eukaryotic high-mobility group class B (HMGB) proteins binding to ∼200-bp DNA molecules. These data (experimental measurement of protein-induced increase in DNA cyclization) are compared with simulated cyclization propensities to deduce the global structure and binding characteristics of the closed protein/DNA assemblies. The simulations account for all observed (chain length and concentration dependent) effects of protein on DNA behavior, including how the experimental cyclization maxima, observed at DNA lengths that are not an integral helical repeat, reflect the deformation of DNA by the architectural proteins and how random DNA binding by different proteins enhances DNA cyclization to different levels. This combination of experiment and simulation provides a powerful new approach to resolve a long-standing problem in the biophysics of protein/DNA interactions.
Collapse
Affiliation(s)
- Luke Czapla
- (1)Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
30
|
Candelli A, Wuite GJL, Peterman EJG. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. Phys Chem Chem Phys 2011; 13:7263-72. [PMID: 21416086 DOI: 10.1039/c0cp02844d] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexity and heterogeneity are common denominators of the many molecular events taking place inside the cell. Single-molecule techniques are important tools to quantify the actions of biomolecules. Heterogeneous interactions between multiple proteins, however, are difficult to study with these technologies. One solution is to integrate optical trapping with micro-fluidics and single-molecule fluorescence microscopy. This combination opens the possibility to study heterogeneous/complex protein interactions with unprecedented levels of precision and control. It is particularly powerful for the study of DNA-protein interactions as it allows manipulating the DNA while at the same time, individual proteins binding to it can be visualized. In this work, we aim to illustrate several published and unpublished key results employing the combination of fluorescence microscopy and optical tweezers. Examples are recent studies of the structural properties of DNA and DNA-protein complexes, the molecular mechanisms of nucleo-protein filament assembly on DNA and the motion of DNA-bound proteins. In addition, we present new results demonstrating that single, fluorescently labeled proteins bound to individual, optically trapped DNA molecules can already be tracked with localization accuracy in the sub-10 nm range at tensions above 1 pN. These experiments by us and others demonstrate the enormous potential of this combination of single-molecule techniques for the investigation of complex DNA-protein interactions.
Collapse
Affiliation(s)
- Andrea Candelli
- Institute for Lasers, Life and Biophotonics Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
McCauley MJ, Williams MC. Measuring DNA-protein binding affinity on a single molecule using optical tweezers. Methods Mol Biol 2011; 749:305-315. [PMID: 21674381 DOI: 10.1007/978-1-61779-142-0_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA-protein interactions may be observed on single molecules with a variety of techniques. However, quantifying the binding affinity is difficult and often requires many (∼100) individual events to characterize the interaction. We use a single λ DNA molecule that provides a lattice of binding sites for proteins. Extending and relaxing the tethered molecule reversibly melts DNA, allowing it to be converted between double-stranded (ds) and single-stranded (ss) forms. By monitoring changes in the properties of the DNA as a function of added protein concentration and fitting to binding models, the DNA-protein interaction may be characterized and quantified. As an example, the high mobility group protein HMGB1(box A + B) is observed to stabilize dsDNA. Measuring the strength of this effect allows us to determine the equilibrium association constant for HMGB1(box A + B) binding to dsDNA.
Collapse
|
32
|
Bond LM, Peters JP, Becker NA, Kahn JD, Maher LJ. Gene repression by minimal lac loops in vivo. Nucleic Acids Res 2010; 38:8072-82. [PMID: 21149272 PMCID: PMC3001091 DOI: 10.1093/nar/gkq755] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 01/25/2023] Open
Abstract
The inflexibility of double-stranded DNA with respect to bending and twisting is well established in vitro. Understanding apparent DNA physical properties in vivo is a greater challenge. Here, we exploit repression looping with components of the Escherichia coli lac operon to monitor DNA flexibility in living cells. We create a minimal system for testing the shortest possible DNA repression loops that contain an E. coli promoter, and compare the results to prior experiments. Our data reveal that loop-independent repression occurs for certain tight operator/promoter spacings. When only loop-dependent repression is considered, fits to a thermodynamic model show that DNA twisting limits looping in vivo, although the apparent DNA twist flexibility is 2- to 4-fold higher than in vitro. In contrast, length-dependent resistance to DNA bending is not observed in these experiments, even for the shortest loops constraining <0.4 persistence lengths of DNA. As observed previously for other looping configurations, loss of the nucleoid protein heat unstable (HU) markedly disables DNA looping in vivo. Length-independent DNA bending energy may reflect the activities of architectural proteins and the structure of the DNA topological domain. We suggest that the shortest loops are formed in apical loops rather than along the DNA plectonemic superhelix.
Collapse
Affiliation(s)
- Laura M. Bond
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Jason D. Kahn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| |
Collapse
|
33
|
Graham JS, Johnson RC, Marko JF. Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res 2010; 39:2249-59. [PMID: 21097894 PMCID: PMC3064784 DOI: 10.1093/nar/gkq1140] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The multistep kinetics through which DNA-binding proteins bind their targets are heavily studied, but relatively little attention has been paid to proteins leaving the double helix. Using single-DNA stretching and fluorescence detection, we find that sequence-neutral DNA-binding proteins Fis, HU and NHP6A readily exchange with themselves and with each other. In experiments focused on the Escherichia coli nucleoid-associated protein Fis, only a small fraction of protein bound to DNA spontaneously dissociates into protein-free solution. However, if Fis is present in solution, we find that a concentration-dependent exchange reaction occurs which turns over the bound protein, with a rate of kexch = 6 × 104 M−1s−1. The bacterial DNA-binding protein HU and the yeast HMGB protein NHP6A display the same phenomenon of protein in solution accelerating dissociation of previously bound labeled proteins as exchange occurs. Thus, solvated proteins can play a key role in facilitating removal and renewal of proteins bound to the double helix, an effect that likely plays a major role in promoting the turnover of proteins bound to DNA in vivo and, therefore, in controlling the dynamics of gene regulation.
Collapse
Affiliation(s)
- John S Graham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, USA.
| | | | | |
Collapse
|
34
|
Liebesny P, Goyal S, Dunlap D, Family F, Finzi L. Determination of the number of proteins bound non-specifically to DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:414104. [PMID: 21386587 PMCID: PMC3653182 DOI: 10.1088/0953-8984/22/41/414104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have determined the change in the number of proteins bound non-specifically to DNA as a function of applied force using force-extension measurements on tethered DNA. Using magnetic tweezers, single molecules of λ DNA were repeatedly stretched and relaxed in the absence and presence of 170 nM λ repressor protein (CI). CI binds to six specific sites of λ DNA with nanomolar affinity and also binds non-specifically with micromolar affinity. The force versus extension data were analyzed using a recently developed theoretical framework for quantitative determination of protein binding to the DNA. The results indicate that the non-specific binding of CI changes the force-extension relation significantly in comparison to that of naked DNA. The DNA tether used in our experiment would have about 640 bound repressors, if it was completely saturated with bound proteins. We find that as the pulling force on DNA is reduced from 4.81 to 0.13 pN, approximately 138 proteins bind to DNA, which is about 22% of the length of the tethered DNA. Our results show that 0.13 pN is not low enough to cause saturation of DNA by repressor and 4.81 pN is also not high enough to eliminate all the repressors bound to DNA. This demonstrates that the force-extension relation provides an effective approach for estimating the number of proteins bound non-specifically to a DNA molecule.
Collapse
Affiliation(s)
- Paul Liebesny
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Sachin Goyal
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - David Dunlap
- Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | | | - Laura Finzi
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Atomic force microscopy study of DNA conformation in the presence of drugs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:59-68. [PMID: 20882274 DOI: 10.1007/s00249-010-0627-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/27/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Binding of ligands to DNA gives rise to several relevant biological and biomedical effects. Here, through the use of atomic force microscopy (AFM), we studied the consequences of drug binding on the morphology of single DNA molecules. In particular, we quantitatively analyzed the effects of three different DNA-binding molecules (doxorubicin, ethidium bromide, and netropsin) that exert various pharmacologic and therapeutic effects. The results of this study show the consequences of intercalation and groove molecular binding on DNA conformation. These single-molecule measurements demonstrate morphological features that reflect the specific modes of drug-DNA interaction. This experimental approach may have implications in the design of therapeutically effective agents.
Collapse
|
36
|
Churchill MEA, Klass J, Zoetewey DL. Structural analysis of HMGD-DNA complexes reveals influence of intercalation on sequence selectivity and DNA bending. J Mol Biol 2010; 403:88-102. [PMID: 20800069 DOI: 10.1016/j.jmb.2010.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/03/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
The ubiquitous, eukaryotic, high-mobility group box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor-groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity, and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and 50 bp of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1 box A-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending.
Collapse
Affiliation(s)
- Mair E A Churchill
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; Molecular Biology Program, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | - Janet Klass
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - David L Zoetewey
- Molecular Biology Program, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
37
|
Lipfert J, Klijnhout S, Dekker NH. Torsional sensing of small-molecule binding using magnetic tweezers. Nucleic Acids Res 2010; 38:7122-32. [PMID: 20624816 PMCID: PMC2978369 DOI: 10.1093/nar/gkq598] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3 ± 1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment.
Collapse
Affiliation(s)
- Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | |
Collapse
|
38
|
Salerno D, Brogioli D, Cassina V, Turchi D, Beretta GL, Seruggia D, Ziano R, Zunino F, Mantegazza F. Magnetic tweezers measurements of the nanomechanical properties of DNA in the presence of drugs. Nucleic Acids Res 2010; 38:7089-99. [PMID: 20601682 PMCID: PMC2978368 DOI: 10.1093/nar/gkq597] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Herein, we study the nanomechanical characteristics of single DNA molecules in the presence of DNA binders, including intercalating agents (ethidium bromide and doxorubicin), a minor groove binder (netropsin) and a typical alkylating damaging agent (cisplatin). We have used magnetic tweezers manipulation techniques, which allow us to measure the contour and persistence lengths together with the bending and torsional properties of DNA. For each drug, the specific variations of the nanomechanical properties induced in the DNA have been compared. We observed that the presence of drugs causes a specific variation in the DNA extension, a shift in the natural twist and a modification of bending dependence on the imposed twist. By introducing a naive model, we have justified an anomalous correlation of torsion data observed in the presence of intercalators. Finally, a data analysis criterion for discriminating between different molecular interactions among DNA and drugs has been suggested.
Collapse
Affiliation(s)
- Domenico Salerno
- Dipartimento di Medicina Sperimentale, Universita' di Milano-Bicocca, via Cadore 48, Monza (MI) 20052, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R Chaurasiya
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
40
|
Abstract
It has been more than 50 years since the elucidation of the structure of double-helical DNA. Despite active research and progress in DNA biology and biochemistry, much remains to be learned in the field of DNA biophysics. Predicting the sequence-dependent curvature and flexibility of DNA is difficult. Applicability of the conventional worm-like chain polymer model of DNA has been challenged. The fundamental forces responsible for the remarkable resistance of DNA to bending and twisting remain controversial. The apparent 'softening' of DNA measured in vivo in the presence of kinking proteins and superhelical strain is incompletely understood. New methods and insights are being applied to these problems. This review places current work on DNA biophysics in historical context and illustrates the ongoing interplay between theory and experiment in this exciting field.
Collapse
|
41
|
Sebastian NT, Bystry EM, Becker NA, Maher LJ. Enhancement of DNA flexibility in vitro and in vivo by HMGB box A proteins carrying box B residues. Biochemistry 2009; 48:2125-34. [PMID: 19236006 DOI: 10.1021/bi802269f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HMGB proteins are abundant non-histone components of eukaryotic chromatin. The biological function of DNA sequence-nonspecific HMGB proteins is obscure. These proteins are composed of one or two conserved HMG box domains, each forming three alpha-helices that fold into a sequence-nonspecific DNA-binding module recognizing the DNA minor groove. Box A and box B homology domains have subtle sequence differences such that box B domains bend DNA strongly while DNA bending by isolated box A domains is weaker. Both box A and box B domains preferentially bind to distorted DNA structures. Here we show using DNA cyclization kinetics assays in vitro and Escherichia coli DNA looping assays in vivo that an isolated HMG box A domain derived from human HMGB2 folds poorly and does not enhance apparent DNA flexibility. Surprisingly, substitution of a small number of cationic residues from the N-terminal leader of a functional yeast box B protein, Nhp6Ap, confers the ability to enhance DNA flexibility. These results demonstrate important roles for cationic leader amino acids in HMGB folding, DNA interaction, and DNA bending.
Collapse
Affiliation(s)
- Nadia T Sebastian
- Department of Chemistry, Creighton University, 2500 California Place, Omaha, Nebraska 68178, USA
| | | | | | | |
Collapse
|
42
|
McCauley MJ, Williams MC. Optical tweezers experiments resolve distinct modes of DNA-protein binding. Biopolymers 2009; 91:265-82. [PMID: 19173290 DOI: 10.1002/bip.21123] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Optical tweezers are ideally suited to perform force microscopy experiments that isolate a single biomolecule, which then provides multiple binding sites for ligands. The captured complex may be subjected to a spectrum of forces, inhibiting or facilitating ligand activity. In the following experiments, we utilize optical tweezers to characterize and quantify DNA binding of various ligands. High mobility group type B (HMGB) proteins, which bind to double-stranded DNA, are shown to serve the dual purpose of stabilizing and enhancing the flexibility of double stranded DNA. Unusual intercalating ligands are observed to thread into and lengthen the double-stranded structure. Proteins binding to both double- and single-stranded DNA, such as the alpha polymerase subunit of E. coli Pol III, are characterized, and the subdomains containing the distinct sites responsible for binding are isolated. Finally, DNA binding of bacteriophage T4 and T7 single-stranded DNA (ssDNA) binding proteins is measured for a range of salt concentrations, illustrating a binding model for proteins that slide along double-stranded DNA, ultimately binding tightly to ssDNA. These recently developed methods quantify both the binding activity of the ligand as well as the mode of binding.
Collapse
Affiliation(s)
- Micah J McCauley
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Hou XM, Zhang XH, Wei KJ, Ji C, Dou SX, Wang WC, Li M, Wang PY. Cisplatin induces loop structures and condensation of single DNA molecules. Nucleic Acids Res 2009; 37:1400-10. [PMID: 19129234 PMCID: PMC2655688 DOI: 10.1093/nar/gkn933] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Structural properties of single λ DNA treated with anti-cancer drug cisplatin were studied with magnetic tweezers and AFM. Under the effect of low-concentration cisplatin, the DNA became more flexible, with the persistence length decreased significantly from ∼52 to 15 nm. At a high drug concentration, a DNA condensation phenomenon was observed. Based on experimental results from both single-molecule and AFM studies, we propose a model to explain this kind of DNA condensation by cisplatin: first, di-adducts induce local distortions of DNA. Next, micro-loops of ∼20 nm appear through distant crosslinks. Then, large aggregates are formed through further crosslinks. Finally, DNA is condensed into a compact globule. Experiments with Pt(dach)Cl2 indicate that oxaliplatin may modify the DNA structures in the same way as cisplatin. The observed loop structure formation of DNA may be an important feature of the effect of platinum anti-cancer drugs that are analogous to cisplatin in structure.
Collapse
Affiliation(s)
- Xi-Miao Hou
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang J, McCauley MJ, Maher LJ, Williams MC, Israeloff NE. Mechanism of DNA flexibility enhancement by HMGB proteins. Nucleic Acids Res 2009; 37:1107-14. [PMID: 19129233 PMCID: PMC2651801 DOI: 10.1093/nar/gkn1011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanism by which sequence non-specific DNA-binding proteins enhance DNA flexibility is studied by examining complexes of double-stranded DNA with the high mobility group type B proteins HMGB2 (Box A) and HMGB1 (Box A+B) using atomic force microscopy. DNA end-to-end distances and local DNA bend angle distributions are analyzed for protein complexes deposited on a mica surface. For HMGB2 (Box A) binding we find a mean induced DNA bend angle of 78°, with a standard error of 1.3° and a SD of 23°, while HMGB1 (Box A+B) binding gives a mean bend angle of 67°, with a standard error of 1.3° and a SD of 21°. These results are consistent with analysis of the observed global persistence length changes derived from end-to-end distance measurements, and with results of DNA-stretching experiments. The moderately broad distributions of bend angles induced by both proteins are inconsistent with either a static kink model, or a purely flexible hinge model for DNA distortion by protein binding. Therefore, the mechanism by which HMGB proteins enhance the flexibility of DNA must differ from that of the Escherichia coli HU protein, which in previous studies showed a flat angle distribution consistent with a flexible hinge model.
Collapse
Affiliation(s)
- Jingyun Zhang
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
45
|
McCauley MJ, Shokri L, Sefcikova J, Venclovas Č, Beuning PJ, Williams MC. Distinct double- and single-stranded DNA binding of E. coli replicative DNA polymerase III alpha subunit. ACS Chem Biol 2008; 3:577-87. [PMID: 18652472 PMCID: PMC2665888 DOI: 10.1021/cb8001107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The α subunit of the replicative DNA polymerase III of Escherichia coli is the active polymerase of the 10-subunit bacterial replicase. The C-terminal region of the α subunit is predicted to contain an oligonucleotide binding (OB-fold) domain. In a series of optical tweezers experiments, the α subunit is shown to have an affinity for both double- and single-stranded DNA, in distinct subdomains of the protein. The portion of the protein that binds to double-stranded DNA stabilizes the DNA helix, because protein binding must be at least partially disrupted with increasing force to melt DNA. Upon relaxation, the DNA fails to fully reanneal, because bound protein interferes with the reformation of the double helix. In addition, the single-stranded DNA binding component appears to be passive, as the protein does not facilitate melting but instead binds to single-stranded regions already separated by force. From DNA stretching measurements we determine equilibrium association constants for the binding of α and several fragments to dsDNA and ssDNA. The results demonstrate that ssDNA binding is localized to the C-terminal region that contains the OB-fold domain, while a tandem helix-hairpin-helix (HhH)2 motif contributes significantly to dsDNA binding.
Collapse
Affiliation(s)
- Micah J. McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| | - Leila Shokri
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Jana Sefcikova
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Česlovas Venclovas
- Laboratory of Bioinformatics, Institute of Biotechnology, Vilnius LT-02241, Lithuania
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
46
|
Becker NA, Kahn JD, Maher LJ. Eukaryotic HMGB proteins as replacements for HU in E. coli repression loop formation. Nucleic Acids Res 2008; 36:4009-21. [PMID: 18515834 PMCID: PMC2475640 DOI: 10.1093/nar/gkn353] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 01/18/2023] Open
Abstract
DNA looping is important for gene repression and activation in Escherichia coli and is necessary for some kinds of gene regulation and recombination in eukaryotes. We are interested in sequence-nonspecific architectural DNA-binding proteins that alter the apparent flexibility of DNA by producing transient bends or kinks in DNA. The bacterial heat unstable (HU) and eukaryotic high-mobility group B (HMGB) proteins fall into this category. We have exploited a sensitive genetic assay of DNA looping in living E. coli cells to explore the extent to which HMGB proteins and derivatives can complement a DNA looping defect in E. coli lacking HU protein. Here, we show that derivatives of the yeast HMGB protein Nhp6A rescue DNA looping in E. coli lacking HU, in some cases facilitating looping to a greater extent than is observed in E. coli expressing normal levels of HU protein. Nhp6A-induced changes in the DNA length-dependence of repression efficiency suggest that Nhp6A alters DNA twist in vivo. In contrast, human HMGB2-box A derivatives did not rescue looping.
Collapse
Affiliation(s)
- Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Jason D. Kahn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| |
Collapse
|
47
|
Pant K, Shokri L, Karpel RL, Morrical SW, Williams MC. Modulation of T4 gene 32 protein DNA binding activity by the recombination mediator protein UvsY. J Mol Biol 2008; 380:799-811. [PMID: 18565541 DOI: 10.1016/j.jmb.2008.05.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/16/2022]
Abstract
Bacteriophage T4 UvsY is a recombination mediator protein that promotes assembly of the UvsX-ssDNA presynaptic filament. UvsY helps UvsX to displace T4 gene 32 protein (gp32) from ssDNA, a reaction necessary for proper formation of the presynaptic filament. Here we use DNA stretching to examine UvsY interactions with single DNA molecules in the presence and absence of gp32 and a gp32 C-terminal truncation (*I), and show that in both cases UvsY is able to destabilize gp32-ssDNA interactions. In these experiments UvsY binds more strongly to dsDNA than ssDNA due to its inability to wrap ssDNA at high forces. To support this hypothesis, we show that ssDNA created by exposure of stretched DNA to glyoxal is strongly wrapped by UvsY, but wrapping occurs only at low forces. Our results demonstrate that UvsY interacts strongly with stretched DNA in the absence of other proteins. In the presence of gp32 and *I, UvsY is capable of strongly destabilizing gp32-DNA complexes in order to facilitate ssDNA wrapping, which in turn prepares the ssDNA for presynaptic filament assembly in the presence of UvsX. Thus, UvsY mediates UvsX binding to ssDNA by converting rigid gp32-DNA filaments into a structure that can be strongly bound by UvsX.
Collapse
Affiliation(s)
- Kiran Pant
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
48
|
DNA overstretching in the presence of glyoxal: structural evidence of force-induced DNA melting. Biophys J 2008; 95:1248-55. [PMID: 18424499 DOI: 10.1529/biophysj.108.132688] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When a long DNA molecule is stretched beyond its B-form contour length, a transition occurs in which its length increases by a factor of 1.7, with very little force increase. A quantitative model was proposed to describe this transition as force-induced melting, where double-stranded DNA is converted into single-stranded DNA. The force-induced melting model accurately describes the thermodynamics of DNA overstretching as a function of solution conditions and in the presence of DNA binding ligands. An alternative explanation suggests a transformation into S-DNA, a double-stranded form which preserves the interstrand base pairing. To determine the extent to which DNA base pairs are exposed to solution during the transition, we held DNA overstretched to different lengths within the transition in the presence of glyoxal. If overstretching involved strand separation, then force-melted basepairs would be glyoxal-modified, thus essentially permanently single-stranded. Subsequent stretches confirm that a significant fraction of the DNA melted by force is permanently melted. This result demonstrates that DNA overstretching is accompanied by a disruption of the DNA helical structure, including a loss of hydrogen bonding.
Collapse
|
49
|
Zimmerman J, Maher LJ. Transient HMGB protein interactions with B-DNA duplexes and complexes. Biochem Biophys Res Commun 2008; 371:79-84. [PMID: 18413230 DOI: 10.1016/j.bbrc.2008.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 04/02/2008] [Indexed: 01/13/2023]
Abstract
HMGB proteins are abundant, non-histone proteins in eukaryotic chromatin. HMGB proteins contain one or two conserved "HMG boxes" and can be sequence-specific or nonspecific in their DNA binding. HMGB proteins cause strong DNA bending and bind preferentially to deformed DNAs. We wish to understand how HMGB proteins increase the apparent flexibility of non-distorted B-form DNA. We test the hypothesis that HMGB proteins bind transiently, creating an ensemble of distorted DNAs with rapidly interconverting conformations. We show that binding of B-form DNA by HMGB proteins is both weak and transient under conditions where DNA cyclization is strongly enhanced. We also detect novel complexes in which HMGB proteins simultaneously bind more than one DNA duplex.
Collapse
Affiliation(s)
- Jeff Zimmerman
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
50
|
Iwatani Y, Chan DSB, Wang F, Stewart-Maynard K, Sugiura W, Gronenborn AM, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG. Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 2007; 35:7096-108. [PMID: 17942420 PMCID: PMC2175344 DOI: 10.1093/nar/gkm750] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
APOBEC3G (A3G), a host protein that inhibits HIV-1 reverse transcription and replication in the absence of Vif, displays cytidine deaminase and single-stranded (ss) nucleic acid binding activities. HIV-1 nucleocapsid protein (NC) also binds nucleic acids and has a unique property, nucleic acid chaperone activity, which is crucial for efficient reverse transcription. Here we report the interplay between A3G, NC and reverse transcriptase (RT) and the effect of highly purified A3G on individual reactions that occur during reverse transcription. We find that A3G did not affect the kinetics of NC-mediated annealing reactions, nor did it inhibit RNase H cleavage. In sharp contrast, A3G significantly inhibited all RT-catalyzed DNA elongation reactions with or without NC. In the case of (−) strong-stop DNA synthesis, the inhibition was independent of A3G's catalytic activity. Fluorescence anisotropy and single molecule DNA stretching analyses indicated that NC has a higher nucleic acid binding affinity than A3G, but more importantly, displays faster association/disassociation kinetics. RT binds to ssDNA with a much lower affinity than either NC or A3G. These data support a novel mechanism for deaminase-independent inhibition of reverse transcription that is determined by critical differences in the nucleic acid binding properties of A3G, NC and RT.
Collapse
Affiliation(s)
- Yasumasa Iwatani
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|