1
|
Bibollet H, Kramer A, Bannister RA, Hernández-Ochoa EO. Advances in Ca V1.1 gating: New insights into permeation and voltage-sensing mechanisms. Channels (Austin) 2023; 17:2167569. [PMID: 36642864 PMCID: PMC9851209 DOI: 10.1080/19336950.2023.2167569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
The CaV1.1 voltage-gated Ca2+ channel carries L-type Ca2+ current and is the voltage-sensor for excitation-contraction (EC) coupling in skeletal muscle. Significant breakthroughs in the EC coupling field have often been close on the heels of technological advancement. In particular, CaV1.1 was the first voltage-gated Ca2+ channel to be cloned, the first ion channel to have its gating current measured and the first ion channel to have an effectively null animal model. Though these innovations have provided invaluable information regarding how CaV1.1 detects changes in membrane potential and transmits intra- and inter-molecular signals which cause opening of the channel pore and support Ca2+ release from the sarcoplasmic reticulum remain elusive. Here, we review current perspectives on this topic including the recent application of functional site-directed fluorometry.
Collapse
Affiliation(s)
- Hugo Bibollet
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Audra Kramer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roger A. Bannister
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Molecules 2020; 25:molecules25184040. [PMID: 32899693 PMCID: PMC7570887 DOI: 10.3390/molecules25184040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrhythmias are serious, life-threatening diseases associated with the dysregulation of Ca2+ influx into the cytoplasm of cardiomyocytes. This dysregulation often arises from dysfunction of ryanodine receptor 2 (RyR2), the principal Ca2+ release channel. Dysfunction of RyR1, the skeletal muscle isoform, also results in less severe, but also potentially life-threatening syndromes. The RYR2 and RYR1 genes have been found to harbor three main mutation “hot spots”, where mutations change the channel structure, its interdomain interface properties, its interactions with its binding partners, or its dynamics. In all cases, the result is a defective release of Ca2+ ions from the sarcoplasmic reticulum into the myocyte cytoplasm. Here, we provide an overview of the most frequent diseases resulting from mutations to RyR1 and RyR2, briefly review some of the recent experimental structural work on these two molecules, detail some of the computational work describing their dynamics, and summarize the known changes to the structure and function of these receptors with particular emphasis on their N-terminal, central, and channel domains.
Collapse
|
3
|
Samsó M. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Protein Sci 2016; 26:52-68. [PMID: 27671094 DOI: 10.1002/pro.3052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023]
Abstract
Signal transduction by the ryanodine receptor (RyR) is essential in many excitable cells including all striated contractile cells and some types of neurons. While its transmembrane domain is a classic tetrameric, six-transmembrane cation channel, the cytoplasmic domain is uniquely large and complex, hosting a multiplicity of specialized domains. The overall outline and substructure readily recognizable by electron microscopy make RyR a geometrically well-behaved specimen. Hence, for the last two decades, the 3D structural study of the RyR has tracked closely the technological advances in electron microscopy, cryo-electron microscopy (cryoEM), and computerized 3D reconstruction. This review summarizes the progress in the structural determination of RyR by cryoEM and, bearing in mind the leap in resolution provided by the recent implementation of direct electron detection, analyzes the first near-atomic structures of RyR. These reveal a complex orchestration of domains controlling the channel's function, and help to understand how this could break down as a consequence of disease-causing mutations.
Collapse
Affiliation(s)
- Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
4
|
Amador FJ, Stathopulos PB, Enomoto M, Ikura M. Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 2013; 280:5456-70. [PMID: 23413940 DOI: 10.1111/febs.12194] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels. They are Ca(2+) release channels found primarily on the sarcoplasmic reticulum of myocytes. Several hundred mutations in RyRs are associated with skeletal or cardiomyocyte disease in humans. Many of these mutations can now be mapped onto the high resolution structures of individual RyR domains and on full-length tetrameric cryo-electron microscopy structures. A closely related Ca(2+) release channel, the inositol 1,4,5-trisphospate receptor (IP3 R), shows a conserved structural architecture at the N-terminus, suggesting that both channels evolved from an ancestral unicellular RyR/IP3 R. The functional insights provided by recent structural studies for both channels will aid in the development of rationale treatments for a myriad of Ca(2+)-signaled malignancies.
Collapse
Affiliation(s)
- Fernando J Amador
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | |
Collapse
|
5
|
Szpyt J, Lorenzon N, Perez CF, Norris E, Allen PD, Beam KG, Samsó M. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel. J Biol Chem 2012; 287:43853-61. [PMID: 23118233 DOI: 10.1074/jbc.m112.419283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L-type Ca(2+) channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α(1s) or Ca(V)1.1, α(2), β(1a), δ1, and γ), we created transgenic mice expressing a recombinant β(1a) subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α(2)-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of Ca(V)1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α(1s) subunit to the membrane and its suggested role in excitation-contraction coupling.
Collapse
Affiliation(s)
- John Szpyt
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
The IQ motif is crucial for Cav1.1 function. J Biomed Biotechnol 2011; 2011:504649. [PMID: 22162637 PMCID: PMC3228397 DOI: 10.1155/2011/504649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 11/17/2022] Open
Abstract
Ca2+-dependent modulation via calmodulin, with consensus CaM-binding IQ motif playing a key role, has been documented for most high-voltage-activated Ca2+ channels. The skeletal muscle Cav1.1 also exhibits Ca2+-/CaM-dependent modulation. Here, whole-cell Ca2+ current, Ca2+ transient, and maximal, immobilization-resistant charge movement (Qmax) recordings were obtained from cultured mouse myotubes, to test a role of IQ motif in function of Cav1.1. The effect of introducing mutation (IQ to AA) of IQ motif into Cav1.1 was examined. In dysgenic myotubes expressing YFP-Cav1.1AA, neither Ca2+ currents nor evoked Ca2+ transients were detectable. The loss of Ca2+ current and excitation-contraction coupling did not appear to be a consequence of defective trafficking to the sarcolemma. The Qmax in dysgenic myotubes expressing YFP-Cav1.1AA was similar to that of normal myotubes. These findings suggest that the IQ motif of the Cav1.1 may be an unrecognized site of structural and functional coupling between DHPR and RyR.
Collapse
|
7
|
Bannister RA, Beam KG. Properties of Na+ currents conducted by a skeletal muscle L-type Ca2+ channel pore mutant (SkEIIIK). Channels (Austin) 2011; 5:262-8. [PMID: 21406961 DOI: 10.4161/chan.5.3.15269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Four glutamate residues residing at corresponding positions within the four conserved membrane-spanning repeats of L-type Ca(2+) channels are important structural determinants for the passage of Ca(2+) across the selectivity filter. Mutation of the critical glutamate in Repeat III in the a 1S subunit of the skeletal L-type channel (Ca(v)1.1) to lysine virtually eliminates passage of Ca(2+) during step depolarizations. In this study, we examined the ability of this mutant Ca(v)1.1 channel (SkEIIIK) to conduct inward Na(+) current. When 150 mM Na(+) was present as the sole monovalent cation in the bath solution, dysgenic (Ca(v)1.1 null) myotubes expressing SkEIIIK displayed slowly-activating, non-inactivating, nifedipine-sensitive inward currents with a reversal potential (45.6 ± 2.5 mV) near that expected for Na(+). Ca(2+) block of SkEIIIK-mediated Na(+) current was revealed by the substantial enhancement of Na(+) current amplitude after reduction of Ca(2+) in the external recording solution from 10 mM to near physiological 1 mM. Inward SkEIIIK-mediated currents were potentiated by either ±Bay K 8644 (10 mM) or 200-ms depolarizing prepulses to +90 mV. In contrast, outward monovalent currents were reduced by ±Bay K 8644 and were unaffected by strong depolarization, indicating a preferential potentiation of inward Na(+) currents through the mutant Ca(v)1.1 channel. Taken together, our results show that SkEIIIK functions as a non-inactivating, junctionally-targeted Na(+) channel when Na(+) is the sole monvalent cation present and urge caution when interpreting the impact of mutations designed to ablate Ca(2+) permeability mediated by Ca(v) channels on physiological processes that extend beyond channel gating and permeability.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| | | |
Collapse
|
8
|
Tae HS, Cui Y, Karunasekara Y, Board PG, Dulhunty AF, Casarotto MG. Cyclization of the intrinsically disordered α1S dihydropyridine receptor II-III loop enhances secondary structure and in vitro function. J Biol Chem 2011; 286:22589-99. [PMID: 21525002 DOI: 10.1074/jbc.m110.205476] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A key component of excitation contraction (EC) coupling in skeletal muscle is the cytoplasmic linker (II-III loop) between the second and third transmembrane repeats of the α(1S) subunit of the dihydropyridine receptor (DHPR). The II-III loop has been previously examined in vitro using a linear II-III loop with unrestrained N- and C-terminal ends. To better reproduce the loop structure in its native environment (tethered to the DHPR transmembrane domains), we have joined the N and C termini using intein-mediated technology. Circular dichroism and NMR spectroscopy revealed a structural shift in the cyclized loop toward a protein with increased α-helical and β-strand structure in a region of the loop implicated in its in vitro function and also in a critical region for EC coupling. The affinity of binding of the II-III loop binding to the SPRY2 domain of the skeletal ryanodine receptor (RyR1) increased 4-fold, and its ability to activate RyR1 channels in lipid bilayers was enhanced 3-fold by cyclization. These functional changes were predicted consequences of the structural enhancement. We suggest that tethering the N and C termini stabilized secondary structural elements in the DHPR II-III loop and may reflect structural and dynamic characteristics of the loop that are inherent in EC coupling.
Collapse
Affiliation(s)
- Han-Shen Tae
- John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Grabner M, Dayal A. Crosstalk via the Sarcoplasmic Gap: The DHPR-RyR Interaction. CURRENT TOPICS IN MEMBRANES 2010; 66:115-38. [PMID: 22353478 DOI: 10.1016/s1063-5823(10)66006-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Bannister RA, Papadopoulos S, Haarmann CS, Beam KG. Effects of inserting fluorescent proteins into the alpha1S II-III loop: insights into excitation-contraction coupling. ACTA ACUST UNITED AC 2009; 134:35-51. [PMID: 19564426 PMCID: PMC2712974 DOI: 10.1085/jgp.200910241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In skeletal muscle, intermolecular communication between the 1,4-dihydropyridine receptor (DHPR) and RYR1 is bidirectional: orthograde coupling (skeletal excitation-contraction coupling) is observed as depolarization-induced Ca(2+) release via RYR1, and retrograde coupling is manifested by increased L-type Ca(2+) current via DHPR. A critical domain (residues 720-765) of the DHPR alpha(1S) II-III loop plays an important but poorly understood role in bidirectional coupling with RYR1. In this study, we examine the consequences of fluorescent protein insertion into different positions within the alpha(1S) II-III loop. In four constructs, a cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) tandem was introduced in place of residues 672-685 (the peptide A region). All four constructs supported efficient bidirectional coupling as determined by the measurement of L-type current and myoplasmic Ca(2+) transients. In contrast, insertion of a CFP-YFP tandem within the N-terminal portion of the critical domain (between residues 726 and 727) abolished bidirectional signaling. Bidirectional coupling was partially preserved when only a single YFP was inserted between residues 726 and 727. However, insertion of YFP near the C-terminal boundary of the critical domain (between residues 760 and 761) or in the conserved C-terminal portion of the alpha(1S) II-III loop (between residues 785 and 786) eliminated bidirectional coupling. None of the fluorescent protein insertions, even those that interfered with signaling, significantly altered membrane expression or targeting. Thus, bidirectional signaling is ablated by insertions at two different sites in the C-terminal portion of the alpha(1S) II-III loop. Significantly, our results indicate that the conserved portion of the alpha(1S) II-III loop C terminal to the critical domain plays an important role in bidirectional coupling either by conveying conformational changes to the critical domain from other regions of the DHPR or by serving as a site of interaction with other junctional proteins such as RYR1.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
11
|
Bannister RA, Beam KG. The cardiac alpha(1C) subunit can support excitation-triggered Ca2+ entry in dysgenic and dyspedic myotubes. Channels (Austin) 2009; 3:268-73. [PMID: 19625771 DOI: 10.4161/chan.3.4.9342] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Depolarization-induced entry of divalent ions into skeletal muscle has been attributed to a process termed Excitation-Coupled Ca(2+) Entry (ECCE), which is hypothesized to require the interaction of the ryanodine receptor (RyR1), the L-type Ca(2+) channel (DHPR) and another unidentified cation channel. Thus, ECCE is absent in myotubes lacking either the DHPR (dysgenic) or RyR1 (dyspedic). Furthermore, ECCE, as measured by Mn(2+) quench of Fura-2, is reconstituted by expression of a mutant DHPR alpha(1S) subunit (SkEIIIK) thought to be impermeable to divalent cations. Previously, we showed that the bulk of depolarization-induced Ca(2+) entry could be explained by the skeletal L-type current. Accordingly, one would predict that any Ca(2+) current similar to the endogenous current would restore such entry and that this entry would not require coupling to either the DHPR or RyR1. Here, we show that expression of the cardiac alpha(1C) subunit in either dysgenic or dyspedic myotubes does result in Ca(2+) entry similar to that ascribed to ECCE. We also demonstrate that, when potentiated by strong depolarization and Bay K 8644, SkEIIIK supports entry of Mn(2+). These results strongly support the idea that the L-type channel is the major route of Ca(2+) entry in response to repetitive or prolonged depolarization of skeletal muscle.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, School of Medicine, University of Colorado-Denver, Aurora, CO, USA
| | | |
Collapse
|
12
|
Bannister RA, Grabner M, Beam KG. The alpha(1S) III-IV loop influences 1,4-dihydropyridine receptor gating but is not directly involved in excitation-contraction coupling interactions with the type 1 ryanodine receptor. J Biol Chem 2008; 283:23217-23. [PMID: 18556650 PMCID: PMC2516988 DOI: 10.1074/jbc.m804312200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/13/2008] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle, coupling between the 1,4-dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) underlies excitation-contraction (EC) coupling. The III-IV loop of the DHPR alpha(1S) subunit binds to a segment of RyR1 in vitro, and mutations in the III-IV loop alter the voltage dependence of EC coupling, raising the possibility that this loop is directly involved in signal transmission from the DHPR to RyR1. To clarify the role of the alpha(1S) III-IV loop in EC coupling, we examined the functional properties of a chimera (GFP-alpha(1S)[III-IVa]) in which the III-IV loop of the divergent alpha(1A) isoform replaced that of alpha(1S). Dysgenic myotubes expressing GFP-alpha(1S)[III-IVa] yielded myoplasmic Ca(2+) transients that activated at approximately 10 mV more hyperpolarized potentials and that were approximately 65% smaller than those of GFP-alpha(1S). A similar reduction was observed in voltage-dependent charge movements for GFP-alpha(1S)[III-IVa], indicating that the chimeric channels trafficked less well to the membrane but that those that were in the membrane functioned as efficiently in EC coupling as GFP-alpha(1S). Relative to GFP-alpha(1S), L-type currents mediated by GFP-alpha(1S)[III-IVa] were approximately 40% smaller and activated at approximately 5 mV more hyperpolarized potentials. The altered gating of GFP-alpha(1S)[III-IVa] was accentuated by exposure to +/-Bay K 8644, which caused a much larger hyperpolarizing shift in activation compared with its effect on GFP-alpha(1S). Taken together, our observations indicate that the alpha(1S) III-IV loop is not directly involved in EC coupling but does influence DHPR gating transitions important both for EC coupling and activation of L-type conductance.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, University of Colorado-Denver, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
13
|
Bannister RA. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation–contraction coupling. J Muscle Res Cell Motil 2007; 28:275-83. [PMID: 17899404 DOI: 10.1007/s10974-007-9118-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/28/2007] [Indexed: 01/17/2023]
Abstract
Conformational coupling between the L-type voltage-gated Ca(2+) channel (or 1,4-dihydropyridine receptor; DHPR) and the ryanodine-sensitive Ca(2+) release channel of the sarcoplasmic reticulum (RyR1) is the mechanistic basis for excitation-contraction (EC) coupling in skeletal muscle. In this article, recent findings regarding the roles of the individual cytoplasmic domains (the amino- and carboxyl-termini, cytoplasmic loops I-II, II-III, and III-IV) of the DHPR alpha(1S) subunit in bi-directional communication with RyR1 will be discussed.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, School of Medicine, University of Colorado at Denver and Health Sciences Center, RC-1, North Tower, P18-7130, Mail Stop F8307, 12800 E. 19th St, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Sheridan DC, Takekura H, Franzini-Armstrong C, Beam KG, Allen PD, Perez CF. Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions. Proc Natl Acad Sci U S A 2006; 103:19760-5. [PMID: 17172444 PMCID: PMC1750873 DOI: 10.1073/pnas.0609473103] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have defined regions of the skeletal muscle ryanodine receptor (RyR1) essential for bidirectional signaling with dihydropyridine receptors (DHPRs) and for the organization of DHPR into tetrad arrays by expressing RyR1-RyR3 chimerae in dyspedic myotubes. RyR1-RyR3 constructs bearing RyR1 residues 1-1681 restored wild-type DHPR tetrad arrays and, in part, skeletal-type excitation-contraction (EC) coupling (orthograde signaling) but failed to enhance DHPR Ca(2+) currents (retrograde signaling) to WT RyR1 levels. Within this region, the D2 domain (amino acids 1272-1455), although ineffective on its own, dramatically enhanced the formation of tetrads and EC coupling rescue by constructs that otherwise are only partially effective. These findings suggest that the orthograde signal and DHPR tetrad formation require the contributions of numerous RyR regions. Surprisingly, we found that RyR3, although incapable of supporting EC coupling or tetrad formation, restored a significant level of Ca(2+) current, revealing a functional interaction with the skeletal muscle DHPR. Thus, our data support the hypotheses that (i) the structural/functional link between RyR1 and the skeletal muscle DHPR requires multiple interacting regions, (ii) the D2 domain of RyR1 plays a key role in stabilizing this interaction, and (iii) a form of retrograde signaling from RyR3 to the DHPR occurs in the absence of direct protein-protein interactions.
Collapse
Affiliation(s)
- David C. Sheridan
- *University of Colorado Health and Sciences Center, Aurora, CO 80045
| | - Hiroaki Takekura
- National Institute of Fitness and Sports, Kanoya, Kagoshima 891-2393, Japan
| | - Clara Franzini-Armstrong
- University of Pennsylvania, Philadelphia, PA 19104; and
- To whom correspondence may be addressed. E-mail:
or
| | - Kurt G. Beam
- *University of Colorado Health and Sciences Center, Aurora, CO 80045
| | - Paul D. Allen
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
| | - Claudio F. Perez
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
15
|
Abstract
The sarcoplasmic reticulum (SR) provides feedback control required to balance the processes of calcium storage, release, and reuptake in skeletal muscle. This balance is achieved through the concerted action of three major classes of SR calcium-regulatory proteins: (1) luminal calcium-binding proteins (calsequestrin, histidine-rich calcium-binding protein, junctate, and sarcalumenin) for calcium storage; (2) SR calcium release channels (type 1 ryanodine receptor or RyR1 and IP3 receptors) for calcium release; and (3) sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) pumps for calcium reuptake. Proper calcium storage, release, and reuptake are essential for normal skeletal muscle function. We review SR structure and function during normal skeletal muscle activity, the proteins that orchestrate calcium storage, release, and reuptake, and how phenotypically distinct muscle diseases (e.g., malignant hyperthermia, central core disease, and Brody disease) can result from subtle alterations in the activity of several key components of the SR calcium-regulatory machinery.
Collapse
Affiliation(s)
- Ann E Rossi
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | | |
Collapse
|
16
|
Cheng W, Altafaj X, Ronjat M, Coronado R. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Proc Natl Acad Sci U S A 2005; 102:19225-30. [PMID: 16357209 PMCID: PMC1323149 DOI: 10.1073/pnas.0504334102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the skeletal dihydropyridine receptor (DHPR) pore subunit Ca(V)1.1 (alpha1S) physically interacts with ryanodine receptor type 1 (RyR1), and a molecular signal is transmitted from alpha1S to RyR1 to trigger excitation-contraction (EC) coupling. We show that the beta-subunit of the skeletal DHPR also binds RyR1 and participates in this signaling process. A novel binding site for the DHPR beta1a-subunit was mapped to the M(3201) to W(3661) region of RyR1. In vitro binding experiments showed that the strength of the interaction is controlled by K(3495)KKRR_ _R(3502), a cluster of positively charged residues. Phenotypic expression of skeletal-type EC coupling by RyR1 with mutations in the K(3495)KKRR_ _R(3502) cluster was evaluated in dyspedic myotubes. The results indicated that charge neutralization or deletion severely depressed the magnitude of RyR1-mediated Ca(2+) transients coupled to voltage-dependent activation of the DHPR. Meantime the Ca(2+) content of the sarcoplasmic reticulum was not affected, and the amplitude and activation kinetics of the DHPR Ca(2+) currents were slightly affected. The data show that the DHPR beta-subunit, like alpha1S, interacts directly with RyR1 and is critical for the generation of high-speed Ca(2+) signals coupled to membrane depolarization. These findings indicate that EC coupling in skeletal muscle involves the interplay of at least two subunits of the DHPR, namely alpha1S and beta1a, interacting with possibly different domains of RyR1.
Collapse
Affiliation(s)
- Weijun Cheng
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
17
|
Goonasekera SA, Chen SRW, Dirksen RT. Reconstitution of local Ca2+ signaling between cardiac L-type Ca2+ channels and ryanodine receptors: insights into regulation by FKBP12.6. Am J Physiol Cell Physiol 2005; 289:C1476-84. [PMID: 16049053 DOI: 10.1152/ajpcell.00250.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca+-induced Ca2+ release (CICR) in the heart involves local Ca2+ signaling between sarcolemmal L-type Ca2+ channels (dihydropyridine receptors, DHPRs) and type 2 ryanodine receptors (RyR2s) in the sarcoplasmic reticulum (SR). We reconstituted cardiac-like CICR by expressing a cardiac dihydropyridine-insensitive (T1066Y/Q1070M) α1-subunit (α1CYM) and RyR2 in myotubes derived from RyR1-knockout (dyspedic) mice. Myotubes expressing α1CYM and RyR2 were vesiculated and exhibited spontaneous Ca2+ oscillations that resulted in chaotic and uncontrolled contractions. Coexpression of FKBP12.6 (but not FKBP12.0) with α1CYM and RyR2 eliminated vesiculations and reduced the percentage of myotubes exhibiting uncontrolled global Ca2+ oscillations (63% and 13% of cells exhibited oscillations in the absence and presence of FKBP12.6, respectively). α1CYM/RyR2/FKBP12.6-expressing myotubes exhibited robust and rapid electrically evoked Ca2+ transients that required extracellular Ca2+. Depolarization-induced Ca2+ release in α1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a bell-shaped voltage dependence that was fourfold larger than that of myotubes expressing α1CYM alone (maximal fluorescence change was 2.10 ± 0.39 and 0.54 ± 0.07, respectively), despite similar Ca2+ current densities. In addition, the gain of CICR in α1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a nonlinear voltage dependence, being considerably larger at threshold potentials. We used this molecular model of local α1C-RyR2 signaling to assess the ability of FKBP12.6 to inhibit spontaneous Ca2+ release via a phosphomimetic mutation in RyR2 (S2808D). Electrically evoked Ca2+ release and the incidence of spontaneous Ca2+ oscillations did not differ in wild-type RyR2- and S2808D-expressing myotubes over a wide range of FKBP12.6 expression. Thus a negative charge at S2808 does not alter in situ regulation of RyR2 by FKBP12.6.
Collapse
Affiliation(s)
- Sanjeewa A Goonasekera
- Dept. of Pharmacology and Physiology, Univ. of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | |
Collapse
|
18
|
Bannister RA, Beam KG. The alpha1S N-terminus is not essential for bi-directional coupling with RyR1. Biochem Biophys Res Commun 2005; 336:134-41. [PMID: 16139246 DOI: 10.1016/j.bbrc.2005.08.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
The dihydropyridine receptor (DHPR) alpha(1S) II-III loop has been shown to be critical for excitation-contraction (EC) coupling in skeletal muscle, but the importance of other cytoplasmic regions, especially the N-terminus (residues 1-51), remains unclear. In this study, we found that deletion of alpha(1S) residues 2-37 (weakly conserved with N-termini of other L-type Ca(2+) channels) had little effect on the ability of alpha(1S) to serve as a Ca(2+) channel or voltage sensor for EC coupling. Strikingly, deletion of 10 additional residues, which are conserved in L-type channels, resulted in ablation of DHPR function. Specifically, confocal microscopy and measurement of charge movement showed that removal of residues 2-47 resulted in a failure of sarcolemmal insertion. Our results indicate that the weakly conserved, distal alpha(1S) N-terminus is not critical for EC coupling or function as a Ca(2+) channel. However, integrity of the proximal alpha(1S) N-terminus is necessary for sarcolemmal expression of the DHPR.
Collapse
Affiliation(s)
- R A Bannister
- Department of Biomedical Sciences, Neurosciences Division, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|