1
|
Sangeeta, Mishra SK, Bhattacherjee A. Role of Shape Deformation of DNA-Binding Sites in Regulating the Efficiency and Specificity in Their Recognition by DNA-Binding Proteins. JACS AU 2024; 4:2640-2655. [PMID: 39055163 PMCID: PMC11267559 DOI: 10.1021/jacsau.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Accurate transcription of genetic information is crucial, involving precise recognition of the binding motifs by DNA-binding proteins. While some proteins rely on short-range hydrophobic and hydrogen bonding interactions at binding sites, others employ a DNA shape readout mechanism for specific recognition. In this mechanism, variations in DNA shape at the binding motif resulted from either inherent flexibility or binding of proteins at adjacent sites are sensed and capitalized by the searching proteins to locate them specifically. Through extensive computer simulations, we investigate both scenarios to uncover the underlying mechanism and origin of specificity in the DNA shape readout mechanism. Our findings reveal that deformation in shape at the binding motif creates an entropy funnel, allowing information about altered shapes to manifest as fluctuations in minor groove widths. This signal enhances the efficiency of nonspecific search of nearby proteins by directing their movement toward the binding site, primarily driven by a gain in entropy. We propose this as a generic mechanism for DNA shape readout, where specificity arises from the alignment between the molecular frustration of the searching protein and the ruggedness of the entropic funnel governed by molecular features of the protein and arrangement of the DNA bases at the binding site, respectively.
Collapse
Affiliation(s)
- Sangeeta
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujeet Kumar Mishra
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Aldag P, Rutkauskas M, Madariaga-Marcos J, Songailiene I, Sinkunas T, Kemmerich F, Kauert D, Siksnys V, Seidel R. Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system. Nat Commun 2023; 14:3654. [PMID: 37339984 PMCID: PMC10281945 DOI: 10.1038/s41467-023-38790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
CRISPR-Cas effector complexes enable the defense against foreign nucleic acids and have recently been exploited as molecular tools for precise genome editing at a target locus. To bind and cleave their target, the CRISPR-Cas effectors have to interrogate the entire genome for the presence of a matching sequence. Here we dissect the target search and recognition process of the Type I CRISPR-Cas complex Cascade by simultaneously monitoring DNA binding and R-loop formation by the complex. We directly quantify the effect of DNA supercoiling on the target recognition probability and demonstrate that Cascade uses facilitated diffusion for its target search. We show that target search and target recognition are tightly linked and that DNA supercoiling and limited 1D diffusion need to be considered when understanding target recognition and target search by CRISPR-Cas enzymes and engineering more efficient and precise variants.
Collapse
Affiliation(s)
- Pierre Aldag
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Marius Rutkauskas
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | | | - Inga Songailiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania
| | - Tomas Sinkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania
| | - Felix Kemmerich
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Dominik Kauert
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania.
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Wang L, Song K, Yu J, Da LT. Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process. Acta Biochim Biophys Sin (Shanghai) 2022; 54:796-806. [PMID: 35593467 PMCID: PMC9828053 DOI: 10.3724/abbs.2022050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylase, as one member of DNA repair machineries, plays an essential role in correcting mismatched/damaged DNA nucleotides by cleaving the N-glycosidic bond between the sugar and target nucleobase through the base excision repair (BER) pathways. Efficient corrections of these DNA lesions are critical for maintaining genome integrity and preventing premature aging and cancers. The target-site searching/recognition mechanisms and the subsequent conformational dynamics of DNA glycosylase, however, remain challenging to be characterized using experimental techniques. In this review, we summarize our recent studies of sequential structural changes of thymine DNA glycosylase (TDG) during the DNA repair process, achieved mostly by molecular dynamics (MD) simulations. Computational simulations allow us to reveal atomic-level structural dynamics of TDG as it approaches the target-site, and pinpoint the key structural elements responsible for regulating the translocation of TDG along DNA. Subsequently, upon locating the lesions, TDG adopts a base-flipping mechanism to extrude the mispaired nucleobase into the enzyme active-site. The constructed kinetic network model elucidates six metastable states during the base-extrusion process and suggests an active role of TDG in flipping the intrahelical nucleobase. Finally, the molecular mechanism of product release dynamics after catalysis is also summarized. Taken together, we highlight to what extent the computational simulations advance our knowledge and understanding of the molecular mechanism underlying the conformational dynamics of TDG, as well as the limitations of current theoretical work.
Collapse
Affiliation(s)
- Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jin Yu
- Department of Physics and AstronomyDepartment of ChemistryNSF-Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCA92697USA
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China,Correspondence address. Tel: +86-21-34207348; E-mail:
| |
Collapse
|
4
|
Wang W, Cherstvy AG, Kantz H, Metzler R, Sokolov IM. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes. Phys Rev E 2021; 104:024105. [PMID: 34525678 DOI: 10.1103/physreve.104.024105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x)=D_{0}|x|^{γ} and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicity-breaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB∼(1/r)-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics.
Collapse
Affiliation(s)
- Wei Wang
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Holger Kantz
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| |
Collapse
|
5
|
Tian J, Wang L, Da LT. Atomic resolution of short-range sliding dynamics of thymine DNA glycosylase along DNA minor-groove for lesion recognition. Nucleic Acids Res 2021; 49:1278-1293. [PMID: 33469643 PMCID: PMC7897493 DOI: 10.1093/nar/gkaa1252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Thymine DNA glycosylase (TDG), as a repair enzyme, plays essential roles in maintaining the genome integrity by correcting several mismatched/damaged nucleobases. TDG acquires an efficient strategy to search for the lesions among a vast number of cognate base pairs. Currently, atomic-level details of how TDG translocates along DNA as it approaches the lesion site and the molecular mechanisms of the interplay between TDG and DNA are still elusive. Here, by constructing the Markov state model based on hundreds of molecular dynamics simulations with an integrated simulation time of ∼25 μs, we reveal the rotation-coupled sliding dynamics of TDG along a 9 bp DNA segment containing one G·T mispair. We find that TDG translocates along DNA at a relatively faster rate when distant from the lesion site, but slows down as it approaches the target, accompanied by deeply penetrating into the minor-groove, opening up the mismatched base pair and significantly sculpturing the DNA shape. Moreover, the electrostatic interactions between TDG and DNA are found to be critical for mediating the TDG translocation. Notably, several uncharacterized TDG residues are identified to take part in regulating the conformational switches of TDG occurred in the site-transfer process, which warrants further experimental validations.
Collapse
Affiliation(s)
- Jiaqi Tian
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Goswami K, Sebastian KL. Exact solution to the first-passage problem for a particle with a dichotomous diffusion coefficient. Phys Rev E 2020; 102:042103. [PMID: 33212715 DOI: 10.1103/physreve.102.042103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 11/07/2022]
Abstract
We consider the problem of first-passage time for reaching a boundary of a particle which diffuses in one dimension and is confined to the region x∈(0,L), with a diffusion coefficient that switches randomly between two states, having diffusivities that are different. Exact analytical expressions are found for the survival probability of the particle as a function of time. The survival probability has a multiexponential decay, and to characterize it, we use the average rate constant k, as well as the instantaneous rate r(t). Our approach can easily be extended to the case where the diffusion coefficient takes n different values. The model should be of interest to biological processes, in which a reactant searches for a target in a heterogeneous environment, making the diffusion coefficient a random function of time. The best example for this is a protein searching for a target site on the DNA.
Collapse
Affiliation(s)
- Koushik Goswami
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - K L Sebastian
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.,Indian Institute of Technology, Kozhippara P.O., Palakkad 678557, Kerala, India
| |
Collapse
|
7
|
Pal A, Castillo IP, Kundu A. Motion of a Brownian particle in the presence of reactive boundaries. Phys Rev E 2019; 100:042128. [PMID: 31770986 DOI: 10.1103/physreve.100.042128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 06/10/2023]
Abstract
We study the one-dimensional motion of a Brownian particle inside a confinement described by two reactive boundaries which can partially reflect or absorb the particle. Understanding the effects of such boundaries is important in physics, chemistry, and biology. We compute the probability density of the particle displacement exactly, from which we derive expressions for the survival probability and the mean absorption time as a function of the reactive coefficients. Furthermore, using the Feynman-Kac formalism, we investigate the local time profile, which is the fluctuating time spent by the particle at a given location, both till a fixed observation time and till the absorption time. Our analytical results are compared to numerical simulations, showing perfect agreement.
Collapse
Affiliation(s)
- Arnab Pal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Center for the Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel; and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Isaac Pérez Castillo
- Department of Quantum Physics and Photonics, Institute of Physics, UNAM, P.O. Box 20-364, 01000 Mexico City, Mexico and London Mathematical Laboratory, 8 Margravine Gardens, London, W6 8RH, United Kingdom
| | - Anupam Kundu
- International Centre for Theoretical Sciences, TIFR, Bangalore 560089, India
| |
Collapse
|
8
|
Leven I, Levy Y. Quantifying the two-state facilitated diffusion model of protein-DNA interactions. Nucleic Acids Res 2019; 47:5530-5538. [PMID: 31045207 PMCID: PMC6582340 DOI: 10.1093/nar/gkz308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/13/2023] Open
Abstract
The current report extends the facilitated diffusion model to account for conflict between the search and recognition binding modes adopted by DNA-binding proteins (DBPs) as they search DNA and subsequently recognize and bind to their specific binding site. The speed of the search dynamics is governed by the energetic ruggedness of the protein-DNA landscape, whereas the rate for the recognition process is mostly dictated by the free energy barrier for the transition between the DBP's search and recognition binding modes. We show that these two modes are negatively coupled, such that fast 1D sliding and rapid target site recognition probabilities are unlikely to coexist. Thus, a tradeoff occurs between optimizing the timescales for finding and binding the target site. We find that these two kinetic properties can be balanced to produce a fast timescale for the total target search and recognition process by optimizing frustration. Quantification of the facilitated diffusion model by including a frustration term enables it to explain several experimental observations concerning search and recognition speeds. The extended model captures experimental estimate of the energetic ruggedness of the protein-DNA landscape and predicts how various molecular properties of protein-DNA binding affect recognition kinetics. Particularly, point mutations may change the frustration and so affect protein association with DNA, thus providing a means to modulate protein-DNA affinity by manipulating the protein's association or dissociation reactions.
Collapse
Affiliation(s)
- Itai Leven
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
Kar P, Cherstvy AG, Metzler R. Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation. Phys Chem Chem Phys 2018; 20:7931-7946. [DOI: 10.1039/c7cp06922g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. We here uncover the implications of colocalisation of protein production and DNA binding sites via computer simulations.
Collapse
Affiliation(s)
- Prathitha Kar
- Dept of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bengaluru
- India
- Institute for Physics & Astronomy
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
10
|
Berezhkovskii AM, Dagdug L, Bezrukov SM. Bulk-mediated surface transport in the presence of bias. J Chem Phys 2017; 147:014103. [PMID: 28688439 PMCID: PMC5500123 DOI: 10.1063/1.4991730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Surface transport, when the particle is allowed to leave the surface, travel in the bulk for some time, and then return to the surface, is referred to as bulk-mediated surface transport. Recently, we proposed a formalism that significantly simplifies analysis of bulk-mediated surface diffusion [A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov, J. Chem. Phys. 143, 084103 (2015)]. Here this formalism is extended to bulk-mediated surface transport in the presence of bias, i.e., when the particle has arbitrary drift velocities on the surface and in the bulk. A key advantage of our approach is that the transport problem reduces to that of a two-state problem of the particle transitions between the surface and the bulk. The latter can be solved with relative ease. The formalism is used to find the Laplace transforms of the first two moments of the particle displacement over the surface in time t at arbitrary values of the particle drift velocities and diffusivities on the surface and in the bulk. This allows us to analyze in detail the time dependence of the effective drift velocity of the particle on the surface, which can be highly nontrivial.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Leonardo Dagdug
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
11
|
Gomez D, Klumpp S. Facilitated diffusion in the presence of obstacles on the DNA. Phys Chem Chem Phys 2017; 18:11184-92. [PMID: 27048915 DOI: 10.1039/c6cp00307a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biological functions of DNA depend on the sequence-specific binding of DNA-binding proteins to their corresponding binding sites. Binding of these proteins to their binding sites occurs through a facilitated diffusion process that combines three-dimensional diffusion in the cytoplasm with one-dimensional diffusion (sliding) along the DNA. In this work, we use a lattice model of facilitated diffusion to study how the dynamics of binding of a protein to a specific site (e.g., binding of an RNA polymerase to a promoter or of a transcription factor to its operator site) is affected by the presence of other proteins bound to the DNA, which act as 'obstacles' in the sliding process. Different types of these obstacles with different dynamics are implemented. While all types impair facilitated diffusion, the extent of the hindrance depends on the type of obstacle. As a consequence of hindrance by obstacles, more excursions into the cytoplasm are required for optimal target binding compared to the case without obstacles.
Collapse
Affiliation(s)
- David Gomez
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany. and Institute for Nonlinear Dynamics, Georg-August University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Liu L, Cherstvy AG, Metzler R. Facilitated Diffusion of Transcription Factor Proteins with Anomalous Bulk Diffusion. J Phys Chem B 2017; 121:1284-1289. [DOI: 10.1021/acs.jpcb.6b12413] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Liu
- CAS
Key Laboratory of Soft Matter Chemistry, Dept. of Polymer Science
and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
13
|
Reiter-Schad M, Werner E, Tegenfeldt JO, Mehlig B, Ambjörnsson T. How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model. J Chem Phys 2015; 143:115101. [DOI: 10.1063/1.4930220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Michaela Reiter-Schad
- Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Erik Werner
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Göteborg, Sweden
| | - Jonas O. Tegenfeldt
- Division of Solid State Physics, Department of Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Bernhard Mehlig
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Göteborg, Sweden
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
14
|
Lange M, Kochugaeva M, Kolomeisky AB. Dynamics of the Protein Search for Targets on DNA in the Presence of Traps. J Phys Chem B 2015; 119:12410-6. [PMID: 26328804 DOI: 10.1021/acs.jpcb.5b07303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein search for specific binding sites on DNA is a fundamental biological phenomenon associated with the beginning of most major biological processes. It is frequently found that proteins find and recognize their specific targets quickly and efficiently despite the complex nature of protein-DNA interactions in living cells. Although significant experimental and theoretical efforts were made in recent years, the mechanisms of these processes remain not well-clarified. We present a theoretical study of the protein target search dynamics in the presence of semispecific binding sites which are viewed as traps. Our theoretical approach employs a discrete-state stochastic method that accounts for the most important physical and chemical processes in the system. It also leads to a full analytical description for all dynamic properties of the protein search. It is found that the presence of traps can significantly modify the protein search dynamics. This effect depends on the spatial positions of the targets and traps, on distances between them, on the average sliding length of the protein along the DNA, and on the total length of DNA. Theoretical predictions are discussed using simple physical-chemical arguments, and they are also validated with extensive Monte Carlo computer simulations.
Collapse
Affiliation(s)
- Martin Lange
- Department of Chemistry, Rice University , Houston, Texas 77005, United States.,Johannes Gutenberg University , Mainz 55122, Germany
| | - Maria Kochugaeva
- Department of Chemistry, Rice University , Houston, Texas 77005, United States.,Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University , Houston, Texas 77005, United States.,Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
15
|
Berezhkovskii AM, Dagdug L, Bezrukov SM. A new approach to the problem of bulk-mediated surface diffusion. J Chem Phys 2015; 143:084103. [PMID: 26328814 DOI: 10.1063/1.4928741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Leonardo Dagdug
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Kekenes-Huskey PM, Gillette AK, McCammon JA. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation. J Chem Phys 2015; 140:174106. [PMID: 24811624 DOI: 10.1063/1.4873382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded cellular environments.
Collapse
Affiliation(s)
- P M Kekenes-Huskey
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636, USA
| | - A K Gillette
- Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089, USA
| | - J A McCammon
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636, USA
| |
Collapse
|
17
|
Tzou JC, Xie S, Kolokolnikov T. First-passage times, mobile traps, and Hopf bifurcations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062138. [PMID: 25615075 DOI: 10.1103/physreve.90.062138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 06/04/2023]
Abstract
For a random walk on a confined one-dimensional domain, we consider mean first-passage times (MFPT) in the presence of a mobile trap. The question we address is whether a mobile trap can improve capture times over a stationary trap. We consider two scenarios: a randomly moving trap and an oscillating trap. In both cases, we find that a stationary trap actually performs better (in terms of reducing expected capture time) than a very slowly moving trap; however, a trap moving sufficiently fast performs better than a stationary trap. We explicitly compute the thresholds that separate the two regimes. In addition, we find a surprising relation between the oscillating trap problem and a moving-sink problem that describes reduced dynamics of a single spike in a certain regime of the Gray-Scott model. Namely, the above-mentioned threshold corresponds precisely to a Hopf bifurcation that induces oscillatory motion in the location of the spike. We use this correspondence to prove the uniqueness of the Hopf bifurcation.
Collapse
Affiliation(s)
- Justin C Tzou
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada B3H 3J5
| | - Shuangquan Xie
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada B3H 3J5
| | - Theodore Kolokolnikov
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada B3H 3J5
| |
Collapse
|
18
|
Schmidt HG, Sewitz S, Andrews SS, Lipkow K. An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding. PLoS One 2014; 9:e108575. [PMID: 25333780 PMCID: PMC4204827 DOI: 10.1371/journal.pone.0108575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/30/2014] [Indexed: 11/30/2022] Open
Abstract
We present a computational model of transcription factor motion that explains both the observed rapid target finding of transcription factors, and how this motion influences protein and genome structure. Using the Smoldyn software, we modelled transcription factor motion arising from a combination of unrestricted 3D diffusion in the nucleoplasm, sliding along the DNA filament, and transferring directly between filament sections by intersegmental transfer. This presents a fine-grain picture of the way in which transcription factors find their targets two orders of magnitude faster than 3D diffusion alone allows. Eukaryotic genomes contain sections of nucleosome free regions (NFRs) around the promoters; our model shows that the presence and size of these NFRs can be explained as their acting as antennas on which transcription factors slide to reach their targets. Additionally, our model shows that intersegmental transfer may have shaped the quaternary structure of transcription factors: sequence specific DNA binding proteins are unusually enriched in dimers and tetramers, perhaps because these allow intersegmental transfer, which accelerates target site finding. Finally, our model shows that a ‘hopping’ motion can emerge from 3D diffusion on small scales. This explains the apparently long sliding lengths that have been observed for some DNA binding proteins observed in vitro. Together, these results suggest that transcription factor diffusion dynamics help drive the evolution of protein and genome structure.
Collapse
Affiliation(s)
- Hugo G. Schmidt
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (HS); (KL)
| | - Sven Sewitz
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Steven S. Andrews
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Karen Lipkow
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
- * E-mail: (HS); (KL)
| |
Collapse
|
19
|
Abstract
Single molecule technologies provide an alternative set of approaches to conventional techniques and promise to deliver fundamentally new information about biological processes at the level of molecular movement, dynamics and function. As several of these mature and become more accessible for routine use in molecular biology laboratories, the potential impact on drug discovery research and development should be significant.:
Collapse
Affiliation(s)
- Jenny E Rooke
- U.S. Genomics, Inc., 12 Gill St Suite 4700, Woburn, MA 01801, USA.
| |
Collapse
|
20
|
Talukder S, Sen S, Chakraborti P, Metzler R, Banik SK, Chaudhury P. Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA. J Chem Phys 2014; 140:125101. [PMID: 24697480 DOI: 10.1063/1.4869112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε(hb)(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stacking interaction ε(st)(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.
Collapse
Affiliation(s)
- Srijeeta Talukder
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| | - Shrabani Sen
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| | - Prantik Chakraborti
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany and Physics Department, Tampere University of Technology, FI-33101 Tampere, Finland
| | - Suman K Banik
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India
| | - Pinaki Chaudhury
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| |
Collapse
|
21
|
Ezer D, Zabet NR, Adryan B. Physical constraints determine the logic of bacterial promoter architectures. Nucleic Acids Res 2014; 42:4196-207. [PMID: 24476912 PMCID: PMC3985651 DOI: 10.1093/nar/gku078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Site-specific transcription factors (TFs) bind to their target sites on the DNA, where they regulate the rate at which genes are transcribed. Bacterial TFs undergo facilitated diffusion (a combination of 3D diffusion around and 1D random walk on the DNA) when searching for their target sites. Using computer simulations of this search process, we show that the organization of the binding sites, in conjunction with TF copy number and binding site affinity, plays an important role in determining not only the steady state of promoter occupancy, but also the order at which TFs bind. These effects can be captured by facilitated diffusion-based models, but not by standard thermodynamics. We show that the spacing of binding sites encodes complex logic, which can be derived from combinations of three basic building blocks: switches, barriers and clusters, whose response alone and in higher orders of organization we characterize in detail. Effective promoter organizations are commonly found in the E. coli genome and are highly conserved between strains. This will allow studies of gene regulation at a previously unprecedented level of detail, where our framework can create testable hypothesis of promoter logic.
Collapse
Affiliation(s)
- Daphne Ezer
- Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK and Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | |
Collapse
|
22
|
Brackley CA, Cates ME, Marenduzzo D. Intracellular facilitated diffusion: searchers, crowders, and blockers. PHYSICAL REVIEW LETTERS 2013; 111:108101. [PMID: 25166711 DOI: 10.1103/physrevlett.111.108101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Indexed: 06/03/2023]
Abstract
In bacteria, regulatory proteins search for a specific DNA-binding target via "facilitated diffusion": a series of rounds of three-dimensional diffusion in the cytoplasm, and one-dimensional (1D) linear diffusion along the DNA contour. Using large scale Brownian dynamics simulations we find that each of these steps is affected differently by crowding proteins, which can either be bound to the DNA acting as a road block to the 1D diffusion, or freely diffusing in the cytoplasm. Macromolecular crowding can strongly affect mechanistic features such as the balance between three-dimensional and 1D diffusion, but leads to surprising robustness of the total search time.
Collapse
Affiliation(s)
- C A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - M E Cates
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| |
Collapse
|
23
|
Abstract
Within a living cell, site-specific DNA-binding proteins need to search the whole genome to find a target of ~10-20 bp. That they find the target, and do so quickly, is vital for the correct functioning of the DNA, and of the cell as a whole. The current understanding is that this search is performed via facilitated diffusion, i.e. by combining three-dimensional bulk diffusion within the cytoplasm or nucleoplasm, with one-dimensional diffusion along the DNA backbone, to which the protein binds non-specifically. After reviewing the standard theory of facilitated diffusion, we discuss in the present article the still rather rare direct computer simulations of this process, focusing on the three-dimensional part of the search, and the effect of DNA looping and the general DNA conformation on its efficiency. We close by highlighting some open questions in this field.
Collapse
|
24
|
Xu Y, Feng J, Li J, Zhang H. Lévy noise induced switch in the gene transcriptional regulatory system. CHAOS (WOODBURY, N.Y.) 2013; 23:013110. [PMID: 23556947 DOI: 10.1063/1.4775758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The study of random fluctuations in a gene transcriptional regulatory system is extended to the case of non-Gaussian Lévy noise, which can describe unpredictable jump changes of the random environment. The stationary probability densities are given to explore the key roles of Lévy noise in a gene transcriptional regulatory system. The results demonstrate that the parameters of Lévy noise, including noise intensity, stability index, and skewness parameter, can induce switches between distinct gene-expression states. A further concern is the switching time (from the high concentration state to the low concentration one or from the low concentration state to the high concentration one), which is a random variable and often referred to as the mean first passage time. The effects of Lévy noise on expression and degradation time are studied by computing the mean first passage time in two directions and a number of different peculiarities of non-Gaussian Lévy noise compared with Gaussian noise are observed.
Collapse
Affiliation(s)
- Yong Xu
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China.
| | | | | | | |
Collapse
|
25
|
Veksler A, Kolomeisky AB. Speed-selectivity paradox in the protein search for targets on DNA: is it real or not? J Phys Chem B 2013; 117:12695-701. [PMID: 23316873 DOI: 10.1021/jp311466f] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein search for targets on DNA starts all major biological processes. Although significant experimental and theoretical efforts have been devoted to investigation of these phenomena, mechanisms of protein-DNA interactions during the search remain not fully understood. One of the most surprising observations is known as a speed-selectivity paradox. It suggests that experimentally observed fast findings of targets require smooth protein-DNA binding potentials, while the stability of the specific protein-DNA complex imposes a large energy gap which should significantly slow down the protein molecule. We developed a discrete-state stochastic approach that allowed us to investigate explicitly target search phenomena and to analyze the speed-selectivity paradox. A general dynamic phase diagram for different search regimes is constructed. The effect of the target position on search dynamics is investigated. Using experimentally observed parameters, it is found that slow protein diffusion on DNA does not lead to an increase in the search times. Thus, our theory resolves the speed-selectivity paradox by arguing that it does not exist. It is just an artifact of using approximate continuum theoretical models for analyzing protein search in the region of the parameter space beyond the range of validity of these models. In addition, the presented method, for the first time, provides an explanation for fast target search at the level of single protein molecules. Our theoretical predictions agree with all available experimental observations, and extensive Monte Carlo computer simulations are performed to support analytical calculations.
Collapse
Affiliation(s)
- Alex Veksler
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | | |
Collapse
|
26
|
Abstract
Under dilute in vitro conditions transcription factors rapidly locate their target sequence on DNA by using the facilitated diffusion mechanism. However, whether this strategy of alternating between three-dimensional bulk diffusion and one-dimensional sliding along the DNA contour is still beneficial in the crowded interior of cells is highly disputed. Here we use a simple model for the bacterial genome inside the cell and present a semi-analytical model for the in vivo target search of transcription factors within the facilitated diffusion framework. Without having to resort to extensive simulations we determine the mean search time of a lac repressor in a living E. coli cell by including parameters deduced from experimental measurements. The results agree very well with experimental findings, and thus the facilitated diffusion picture emerges as a quantitative approach to gene regulation in living bacteria cells. Furthermore we see that the search time is not very sensitive to the parameters characterizing the DNA configuration and that the cell seems to operate very close to optimal conditions for target localization. Local searches as implied by the colocalization mechanism are only found to mildly accelerate the mean search time within our model.
Collapse
Affiliation(s)
- Maximilian Bauer
- Institute of Physics and Astronomy, Potsdam University, Potsdam-Golm, Germany
- Physics Department, Technical University of Munich, Garching, Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy, Potsdam University, Potsdam-Golm, Germany
- Physics Department, Tampere University of Technology, Tampere, Finland
- * E-mail:
| |
Collapse
|
27
|
Zabet NR, Adryan B. Computational models for large-scale simulations of facilitated diffusion. MOLECULAR BIOSYSTEMS 2012; 8:2815-27. [PMID: 22892851 PMCID: PMC4007627 DOI: 10.1039/c2mb25201e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The binding of site-specific transcription factors to their genomic target sites is a key step in gene regulation. While the genome is huge, transcription factors belong to the least abundant protein classes in the cell. It is therefore fascinating how short the time frame is that they require to home in on their target sites. The underlying search mechanism is called facilitated diffusion and assumes a combination of three-dimensional diffusion in the space around the DNA combined with one-dimensional random walk on it. In this review, we present the current understanding of the facilitated diffusion mechanism and identify questions that lack a clear or detailed answer. One way to investigate these questions is through stochastic simulation and, in this manuscript, we support the idea that such simulations are able to address them. Finally, we review which biological parameters need to be included in such computational models in order to obtain a detailed representation of the actual process.
Collapse
Affiliation(s)
- Nicolae Radu Zabet
- Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Boris Adryan
- Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
28
|
Abstract
The predominant protein-centric perspective in protein-DNA-binding studies assumes that the protein drives the interaction. Research focuses on protein structural motifs, electrostatic surfaces and contact potentials, while DNA is often ignored as a passive polymer to be manipulated. Recent studies of DNA topology, the supercoiling, knotting, and linking of the helices, have shown that DNA has the capability to be an active participant in its transactions. DNA topology-induced structural and geometric changes can drive, or at least strongly influence, the interactions between protein and DNA. Deformations of the B-form structure arise from both the considerable elastic energy arising from supercoiling and from the electrostatic energy. Here, we discuss how these energies are harnessed for topology-driven, sequence-specific deformations that can allow DNA to direct its own metabolism.
Collapse
|
29
|
Bauer M, Metzler R. Generalized facilitated diffusion model for DNA-binding proteins with search and recognition states. Biophys J 2012; 102:2321-30. [PMID: 22677385 DOI: 10.1016/j.bpj.2012.04.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) such as the lac repressor find their target sequence on DNA at remarkably high rates. In the established Berg-von Hippel model for this search process, the TF alternates between three-dimensional diffusion in the bulk solution and one-dimensional sliding along the DNA chain. To overcome the so-called speed-stability paradox, in similar models the TF was considered as being present in two conformations (search state and recognition state) between which it switches stochastically. Combining both the facilitated diffusion model and alternating states, we obtain a generalized model. We explicitly treat bulk excursions for rodlike chains arranged in parallel and consider a simplified model for coiled DNA. Compared to previously considered facilitated diffusion models, corresponding to limiting cases of our generalized model, we surprisingly find a reduced target search rate. Moreover, at optimal conditions there is no longer an equipartition between the time spent by the protein on and off the DNA chain.
Collapse
Affiliation(s)
- Maximilian Bauer
- Physics Department, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
30
|
Sanders LP, Ambjörnsson T. First passage times for a tracer particle in single file diffusion and fractional Brownian motion. J Chem Phys 2012; 136:175103. [DOI: 10.1063/1.4707349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Chechkin AV, Zaid IM, Lomholt MA, Sokolov IM, Metzler R. Effective surface motion on a reactive cylinder of particles that perform intermittent bulk diffusion. J Chem Phys 2011; 134:204116. [PMID: 21639433 DOI: 10.1063/1.3593198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In many biological and small scale technological applications particles may transiently bind to a cylindrical surface. In between two binding events the particles diffuse in the bulk, thus producing an effective translation on the cylindrical surface. We here derive the effective motion on the surface allowing for additional diffusion on the cylindrical surface itself. We find explicit solutions for the number of adsorbed particles at one given instant, the effective surface displacement, as well as the surface propagator. In particular sub- and superdiffusive regimes are found, as well as an effective stalling of diffusion visible as a plateau in the mean squared displacement. We also investigate the corresponding first passage problem.
Collapse
Affiliation(s)
- Aleksei V Chechkin
- Institute for Theoretical Physics NSC KIPT, Akademicheskaya St.1, 61108 Kharkov, Ukraine
| | | | | | | | | |
Collapse
|
32
|
Murugan R. Theory on the dynamic memory in the transcription-factor-mediated transcription activation. Phys Rev E 2011; 83:041926. [PMID: 21599218 DOI: 10.1103/physreve.83.041926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Indexed: 11/07/2022]
Abstract
We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τ(L)≫max(τ(R),τ(E)), (b) τ(LT)≫τ(T), and (c) τ(I)≥(τ(EL)+τ(TR)) where τ(L) is the average time required for the looping-mediated spatial interactions of enhancer-transcription-factor complex with the corresponding promoter--RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τ(R),τ(E)) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τ(LT) is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τ(T) is the time required to generate a complete transcript, τ(I) is the transcription initiation time, τ(EL) is the elongation time, and τ(TR) is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.
Collapse
Affiliation(s)
- R Murugan
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India.
| |
Collapse
|
33
|
Kolomeisky AB. Physics of protein-DNA interactions: mechanisms of facilitated target search. Phys Chem Chem Phys 2010; 13:2088-95. [PMID: 21113556 DOI: 10.1039/c0cp01966f] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the most critical aspects of protein-DNA interactions is the ability of protein molecules to quickly find and recognize specific target sequences on DNA. Experimental measurements indicate that the corresponding association rates to few specific sites among large number of non-specific sites are typically large. For some proteins they might be even larger than maximal allowed three-dimensional diffusion rates. Although significant progress in understanding protein search and recognition of targets on DNA has been achieved, detailed mechanisms of these processes are still strongly debated. Here we present a critical review of current theoretical approaches and some experimental observations in this area. Specifically, the role of lowering dimensionality, non-specific interactions, diffusion along the DNA molecules, protein and target sites concentrations, and electrostatic effects are critically analyzed. Possible future directions and outstanding problems are also presented and discussed.
Collapse
|
34
|
Murugan R. Theory of site-specific DNA-protein interactions in the presence of conformational fluctuations of DNA binding domains. Biophys J 2010; 99:353-9. [PMID: 20643052 DOI: 10.1016/j.bpj.2010.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 11/15/2022] Open
Abstract
We develop a theory that explains how the thermally driven conformational fluctuations in the DNA binding domains (DBDs) of the DNA binding proteins (DBPs) are effectively coupled to the one-dimensional searching dynamics of DBPs for their cognate sites on DNA. We show that the rate gammaopt, associated with the flipping of conformational states of DBDs beyond which the maximum search efficiency of DBPs is achieved, varies with the one-dimensional sliding length L as gammaopt proportional, L(-2) and with the number of roadblock protein molecules present on the same DNA m as gammaopt proportional, m2. The required free energy barrier ERTO associated with this flipping transition seems to be varying with L as ERTO proportional, variant ln L2. When the barrier height associated with the conformational flipping of DBDs is comparable with that of the thermal free energy, then the possible value of L under in vivo conditions seems to be L<or=70 bps.
Collapse
Affiliation(s)
- R Murugan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
35
|
de la Rosa MAD, Koslover EF, Mulligan PJ, Spakowitz AJ. Dynamic strategies for target-site search by DNA-binding proteins. Biophys J 2010; 98:2943-53. [PMID: 20550907 DOI: 10.1016/j.bpj.2010.02.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/01/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022] Open
Abstract
Gene regulatory proteins find their target sites on DNA remarkably quickly; the experimental binding rate for lac repressor is orders-of-magnitude higher than predicted by free diffusion alone. It has been proposed that nonspecific binding aids the search by allowing proteins to slide and hop along DNA. We develop a reaction-diffusion theory of protein translocation that accounts for transport both on and off the strand and incorporates the physical conformation of DNA. For linear DNA modeled as a wormlike chain, the distribution of hops available to a protein exhibits long, power-law tails that make the long-time displacement along the strand superdiffusive. Our analysis predicts effective superdiffusion coefficients for given nonspecific binding and unbinding rate parameters. Translocation rate exhibits a maximum at intermediate values of the binding rate constant, while search efficiency is optimized at larger binding rate constant values. Thus, our theory predicts a region of values of the nonspecific binding and unbinding rate parameters that balance the protein translocation rate and the efficiency of the search. Published data for several proteins falls within this predicted region of parameter values.
Collapse
|
36
|
Metzler R. Wonderful world of single biopolymer thermodynamics. Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by K.R. Chaurasiya et al. Phys Life Rev 2010; 7:355-7; discussion 358-61. [PMID: 20667796 DOI: 10.1016/j.plrev.2010.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 11/19/2022]
Affiliation(s)
- Ralf Metzler
- Physics Department, Technical University of Munich, 85747 Garching, Germany.
| |
Collapse
|
37
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R Chaurasiya
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
38
|
Chatterjee D, Cherayil BJ. A model of anomalous enzyme-catalyzed gel degradation kinetics. J Phys Chem B 2010; 114:5190-5. [PMID: 20345155 DOI: 10.1021/jp100212r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We show that a model of target location involving n noninteracting particles moving subdiffusively along a line segment (a generalization of a model introduced by Sokolov et al. [Biophys. J. 2005, 89, 895.]) provides a basis for understanding recent experiments by Pelta et al. [Phys. Rev. Lett. 2007, 98, 228302.] on the kinetics of diffusion-limited gel degradation. These experiments find that the time t(c) taken by the enzyme thermolysin to completely hydrolyze a gel varies inversely as roughly the 3/2 power of the initial enzyme concentration [E]. In general, however, this time would be expected to vary either as [E](-1) or as [E](-2), depending on whether the brownian diffusion of the enzyme to the site of cleavage took place along the network chains (1-d diffusion) or through the pore spaces (3-d diffusion). In our model, the unusual dependence of t(c) on [E] is explained in terms of a reaction-diffusion equation that is formulated in terms of fractional rather than ordinary time derivatives.
Collapse
Affiliation(s)
- Debarati Chatterjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
39
|
Destainville N, Manghi M, Palmeri J. Microscopic mechanism for experimentally observed anomalous elasticity of DNA in two dimensions. Biophys J 2009; 96:4464-9. [PMID: 19486670 DOI: 10.1016/j.bpj.2009.03.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 02/26/2009] [Accepted: 03/10/2009] [Indexed: 11/27/2022] Open
Abstract
By exploring a recent model in which DNA bending elasticity, described by the wormlike chain model, is coupled to basepair denaturation, we demonstrate that small denaturation bubbles lead to anomalies in the flexibility of DNA at the nanometric scale, when confined in two dimensions (2D), as reported in atomic-force microscopy experiments. Our model yields very good fits to experimental data and quantitative predictions that can be tested experimentally. Although such anomalies exist when DNA fluctuates freely in three dimensions (3D), they are too weak to be detected. Interactions between bases in the helical double-stranded DNA are modified by electrostatic adsorption on a 2D substrate, which facilitates local denaturation. This work reconciles the apparent discrepancy between observed 2D and 3D DNA elastic properties and points out that conclusions about the 3D properties of DNA (and its companion proteins and enzymes) do not directly follow from 2D experiments by atomic-force microscopy.
Collapse
Affiliation(s)
- Nicolas Destainville
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Physique Théorique (Institut de Recherche sur Systèmes Atomiques et Moléculaires Complexes), Toulouse, France.
| | | | | |
Collapse
|
40
|
Shokri L, Rouzina I, Williams MC. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA. Phys Biol 2009; 6:025002. [PMID: 19571366 DOI: 10.1088/1478-3975/6/2/025002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork.
Collapse
Affiliation(s)
- Leila Shokri
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Murugan R. Packaging effects on site-specific DNA-protein interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:061920. [PMID: 19658537 DOI: 10.1103/physreve.79.061920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/26/2009] [Indexed: 05/28/2023]
Abstract
We show that the rate of site-specific association of a protein molecule of interest with the DNA chain can be approximately 10(2) times higher than that of the three-dimensional diffusion-controlled collision rate limit approximately 10(8) mol(-1) s(-1) only when the protein molecule of interest searches for its specific site on the DNA chain in a reduced dimensional space with a dimensionality dr of dr<1. Upon considering the concurrent dynamics of the linear DNA chain that is embedded in a d-dimensional space along with the one-dimensional diffusion dynamics of the nonspecifically bound protein molecule on the DNA chain, we derive the generalized scaling law epsilon approximately 2(3(2-d)+3), where epsilon is the number of times by which the rate of site-specific association of the protein molecule with the DNA chain can be enhanced over the three-dimensional diffusion-controlled collision rate limit and d is the dimensionality of the reduced search space. Using the analogy between the self-intersection loop length in the theory of random walks and the ring-closure events in the theory of site specific interactions of a protein molecule with the DNA chain, we further show that the extent of packaging and volume compression of the genomic DNA inside the living cell is designed in such a way that the efficiency of the protein molecule in the process of searching for its specific site on the genomic DNA is a maximum. Our simulation results suggest that the volume compression factor theta which is the ratio between the total volume of the living cell and the volume occupied by the DNA chain along with all the other bound protein molecules should be such that theta>or=100 for an efficient site specific interaction of a protein molecule of interest with the linear DNA chain that is embedded in a three-dimensional space. Our theoretical and simulation results agree well with the E. coli cellular system.
Collapse
Affiliation(s)
- Rajamanickam Murugan
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
42
|
Lin Y, Zhao T, Jian X, Farooqui Z, Qu X, He C, Dinner AR, Scherer NF. Using the bias from flow to elucidate single DNA repair protein sliding and interactions with DNA. Biophys J 2009; 96:1911-7. [PMID: 19254550 DOI: 10.1016/j.bpj.2008.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/05/2008] [Indexed: 11/28/2022] Open
Abstract
We perform single-molecule spatial tracking measurements of a DNA repair protein, the C-terminal domain of Ada (C-Ada) from Escherichia coli, moving on DNA extended by flow. The trajectories of single proteins labeled with a fluorophore are constructed. We analyze single-protein dwell times on DNA for different flow rates and conclude that sliding (with essentially no hopping) is the mechanism of C-Ada motion along stretched DNA. We also analyze the trajectory results with a drift-diffusion Langevin equation approach to elucidate the influence of flow on the protein motion; systematic variation of the flow enables one to estimate the microscopic friction. We integrate the step-size probability distribution to obtain a version of the fluctuation theorem that articulates the relation between the entropy production and consumption under the adjustable drag (i.e., bias) from the flow. This expression allows validation of the Langevin equation description of the motion. Comparison of the rate of sliding with recent computer simulations of DNA repair suggests that C-Ada could conduct its repair function while moving at near the one-dimensional diffusion limit.
Collapse
Affiliation(s)
- Yihan Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.
Collapse
|
44
|
Tkacik G, Bialek W. Diffusion, dimensionality, and noise in transcriptional regulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:051901. [PMID: 19518474 DOI: 10.1103/physreve.79.051901] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Indexed: 05/27/2023]
Abstract
The precision of biochemical signaling is limited by randomness in the diffusive arrival of molecules at their targets. For proteins binding to specific sites on DNA and regulating transcription, the ability of the proteins to diffuse in one dimension by sliding along the length of the DNA, in addition to their diffusion in bulk solution, would seem to generate a larger target for DNA binding, consequently reducing the noise in the occupancy of the regulatory site. Here we show that this effect is largely canceled by the enhanced temporal correlations in one-dimensional diffusion. With realistic parameters, sliding along DNA has surprisingly little effect on the physical limits to the precision of transcriptional regulation.
Collapse
Affiliation(s)
- Gasper Tkacik
- Joseph Henry Laboratories of Physics, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
45
|
Pedersen JN, Hansen MS, Novotný T, Ambjörnsson T, Metzler R. Bubble merging in breathing DNA as a vicious walker problem in opposite potentials. J Chem Phys 2009; 130:164117. [PMID: 19405571 DOI: 10.1063/1.3117922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate the coalescence of two DNA bubbles initially located at weak domains and separated by a more stable barrier region in a designed construct of double-stranded DNA. In a continuum Fokker-Planck approach, the characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribution of coalescence positions along the barrier. Below the melting temperature, we find a Kramers-type barrier crossing behavior, while at high temperatures, the bubble corners perform drift diffusion toward coalescence. In the calculations, we map the bubble dynamics on the problem of two vicious walkers in opposite potentials. We also present a discrete master equation approach to the bubble coalescence problem. Numerical evaluation and stochastic simulation of the master equation show excellent agreement with the results from the continuum approach. Given that the coalesced state is thermodynamically stabilized against a state where only one or a few of the base pairs of the barrier region are re-established, it appears likely that this type of setup could be useful for the quantitative investigation of thermodynamic DNA stability data as well as the rate constants involved in the unzipping and zipping dynamics of DNA in single molecule fluorescence experiments.
Collapse
|
46
|
Murugan R. Directional dependent dynamics of protein molecules on DNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041913. [PMID: 19518262 DOI: 10.1103/physreve.79.041913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/11/2009] [Indexed: 05/27/2023]
Abstract
We demonstrate that a protein molecule of interest undergoing the one-dimensional Brownian dynamics along DNA can exhibit a directional dependent net transport either toward or away from its target site depending on the distribution of the initial positions of the other classes of protein molecules present on the same DNA. Directionality arises as a consequence of the confinement of the search space and dynamic reflections by other protein molecules present on the same DNA chain. Energy cost for such directionality comes from the free energy spent on setting the initial positions of the other protein molecules. In the mechanism of action of cis-acting elements on the initiation of transcription, such free-energy inputs are derived from the site-specific binding affinities of the inflowing transcriptional factors toward their cis-acting elements. If the initial distribution of other protein molecules is a random one, then the protein molecule of interest exhibits a net transport away from its target site. This directionality originates from unequal natures of enhancing and retarding effects of the randomly distributed other classes of protein molecules. The protein molecule of interest overcomes the retarding effects of the other classes of protein molecules in a dynamical manner by increasing the number of dissociation-association events when it is far away from its target site and then by switching back to the sliding dynamics due to increase in the enhancing effects as it moves closer to its target site.
Collapse
Affiliation(s)
- Rajamanickam Murugan
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, Tamil Nadu 600 036, India.
| |
Collapse
|
47
|
Metzler R, Ambjörnsson T, Hanke A, Fogedby HC. Single DNA denaturation and bubble dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:034111. [PMID: 21817256 DOI: 10.1088/0953-8984/21/3/034111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.
Collapse
Affiliation(s)
- Ralf Metzler
- Physics Department, Technical University of Munich, James Franck Strasse, 85747 Garching, Germany
| | | | | | | |
Collapse
|
48
|
Bénichou O, Loverdo C, Moreau M, Voituriez R. Optimizing intermittent reaction paths. Phys Chem Chem Phys 2008; 10:7059-72. [PMID: 19039339 DOI: 10.1039/b811447c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various examples of biochemical reactions in cells, such as DNA/protein interactions, reveal that in extremely diluted regimes reaction paths are not always simple brownian trajectories. They can rather be qualified as intermittent, since they combine slow diffusion phases on one hand and a second mode of faster transport on the other hand, which can be either a faster diffusion mode, as in the case of DNA-binding proteins, or a ballistic mode powered by molecular motors in the case of intracellular transport. In this article, we introduce simple theoretical models which permit to calculate explicitly the reaction rates for reactions limited by intermittent transport. This approach shows quantitatively that intermittent reaction pathways are actually very efficient, since they permit to significantly increase the reaction rates, which could explain why they are observed so often. Moreover, we give theoretical arguments which suggest that intermittent transport could also be useful for in vitro chemistry. Indeed, we show that intermittent transport naturally pops up in the context of reaction at interfaces, where reactants combine surface diffusion phases and bulk excursions, and could permit to enhance reactivity. In this case, adjusting chemically the affinity of reactants with the interface makes possible to optimize the reaction rate.
Collapse
Affiliation(s)
- O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France.
| | | | | | | |
Collapse
|
49
|
Abstract
Many genetic processes depend on proteins interacting with specific sequences on DNA. Despite the large excess of nonspecific DNA in the cell, proteins can locate their targets rapidly. After initial nonspecific binding, they are believed to find the target site by 1D diffusion ("sliding") interspersed by 3D dissociation/reassociation, a process usually referred to as facilitated diffusion. The 3D events combine short intrasegmental "hops" along the DNA contour, intersegmental "jumps" between nearby DNA segments, and longer volume "excursions." The impact of DNA conformation on the search pathway is, however, still unknown. Here, we show direct evidence that DNA coiling influences the specific association rate of EcoRV restriction enzymes. Using optical tweezers together with a fast buffer exchange system, we obtained association times of EcoRV on single DNA molecules as a function of DNA extension, separating intersegmental jumping from other search pathways. Depending on salt concentration, targeting rates almost double when the DNA conformation is changed from fully extended to a coiled configuration. Quantitative analysis by an extended facilitated diffusion model reveals that only a fraction of enzymes are ready to bind to DNA. Generalizing our results to the crowded environment of the cell we predict a major impact of intersegmental jumps on target localization speed on DNA.
Collapse
|
50
|
Shokri L, Marintcheva B, Eldib M, Hanke A, Rouzina I, Williams MC. Kinetics and thermodynamics of salt-dependent T7 gene 2.5 protein binding to single- and double-stranded DNA. Nucleic Acids Res 2008; 36:5668-77. [PMID: 18772224 PMCID: PMC2553585 DOI: 10.1093/nar/gkn551] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair. However, it differs from other ssDNA-binding proteins by its weaker binding to ssDNA and lack of cooperative ssDNA binding. By studying the rate-dependent DNA melting force in the presence of gp2.5 and its deletion mutant lacking 26 C-terminal residues, we probe the kinetics and thermodynamics of gp2.5 binding to ssDNA and double-stranded DNA (dsDNA). These force measurements allow us to determine the binding rate of both proteins to ssDNA, as well as their equilibrium association constants to dsDNA. The salt dependence of dsDNA binding parallels that of ssDNA binding. We attribute the four orders of magnitude salt-independent differences between ssDNA and dsDNA binding to nonelectrostatic interactions involved only in ssDNA binding, in contrast to T4 gene 32 protein, which achieves preferential ssDNA binding primarily through cooperative interactions. The results support a model in which dimerization interactions must be broken for DNA binding, and gp2.5 monomers search dsDNA by 1D diffusion to bind ssDNA. We also quantitatively compare the salt-dependent ssDNA- and dsDNA-binding properties of the T4 and T7 ssDNA-binding proteins for the first time.
Collapse
Affiliation(s)
- Leila Shokri
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|