1
|
Xu YP, Zhou HY, Wang GC, Zhang Y, Yang T, Zhao Y, Li RT, Zhang RR, Guo Y, Wang X, Li XF, Qin CF, Tang R. Rational Design of a Replication-Competent and Inheritable Magnetic Viruses for Targeting Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002435. [PMID: 32954651 DOI: 10.1002/smll.202002435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Infection with live-attenuated vaccines always inevitably induces side effects that reduce their safety. This study suggests a concept of magnetic virus produced by genetically modifying viral surfaces with Fe3 O4 nanoparticles (NPs) to control their tropisms. An iron-affinity peptide is designed to be displayed on the viral surface protein (VP1) of human enterovirus type 71 (EV71), a typical nonenveloped picornavirus, as the model. The modified EV71 can self-bind with Fe3 O4 NPs under physiological conditions, resulting in novel EV71-Fe3 O4 hybrid materials. This rationally engineered EV71 with Fe3 O4 retains its original biological infectivity, but its tropism can be precisely controlled by magnetism. Both in vitro and in vivo experiments demonstrate that EV71-Fe3 O4 can infect only a desired area within the limit of the applied magnetic field, which effectively reduces its pathological damage. More importantly, this characteristic of EV71 can be inherited due to the gene-induced coassembly of viruses and NPs. This achievement provides a proof of concept in virus vaccine improvement by a combination of gene modification and material incorporation, leading to great potential for biomedical developments.
Collapse
Affiliation(s)
- Yan-Peng Xu
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hang-Yu Zhou
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215000, China
| | - Guang-Chuan Wang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ying Zhang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Tianxu Yang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Yueqi Zhao
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiaoyu Wang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
2
|
Edwards TH, Stoll S. Optimal Tikhonov regularization for DEER spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 288:58-68. [PMID: 29414064 PMCID: PMC5840305 DOI: 10.1016/j.jmr.2018.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 05/05/2023]
Abstract
Tikhonov regularization is the most commonly used method for extracting distance distributions from experimental double electron-electron resonance (DEER) spectroscopy data. This method requires the selection of a regularization parameter, α, and a regularization operator, L. We analyze the performance of a large set of α selection methods and several regularization operators, using a test set of over half a million synthetic noisy DEER traces. These are generated from distance distributions obtained from in silico double labeling of a protein crystal structure of T4 lysozyme with the spin label MTSSL. We compare the methods and operators based on their ability to recover the model distance distributions from the noisy time traces. The results indicate that several α selection methods perform quite well, among them the Akaike information criterion and the generalized cross validation method with either the first- or second-derivative operator. They perform significantly better than currently utilized L-curve methods.
Collapse
Affiliation(s)
- Thomas H Edwards
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States.
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States.
| |
Collapse
|
3
|
Consentius P, Gohlke U, Loll B, Alings C, Heinemann U, Wahl MC, Risse T. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Phys Chem Chem Phys 2017; 19:20723-20734. [DOI: 10.1039/c7cp03144k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling structural and dynamic details of spin labeled proteins using a combination of single crystal EPR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Philipp Consentius
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin
- Germany
| | - Ulrich Gohlke
- Medicine in the Helmholtz Association
- 13125 Berlin
- Germany
| | - Bernhard Loll
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- Laboratory of Structural Biochemistry
- 14195 Berlin
- Germany
| | - Claudia Alings
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- Laboratory of Structural Biochemistry
- 14195 Berlin
- Germany
| | - Udo Heinemann
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin
- Germany
- Medicine in the Helmholtz Association
| | - Markus C. Wahl
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- Laboratory of Structural Biochemistry
- 14195 Berlin
- Germany
| | - Thomas Risse
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin
- Germany
- Berlin Joint EPR Laboratory, Freie Universität Berlin
| |
Collapse
|
4
|
Shi F, Zhang Q, Wang P, Sun H, Wang J, Rong X, Chen M, Ju C, Reinhard F, Chen H, Wrachtrup J, Wang J, Du J. Single-protein spin resonance spectroscopy under ambient conditions. Science 2015; 347:1135-8. [DOI: 10.1126/science.aaa2253] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
López CJ, Fleissner MR, Brooks EK, Hubbell WL. Stationary-phase EPR for exploring protein structure, conformation, and dynamics in spin-labeled proteins. Biochemistry 2014; 53:7067-75. [PMID: 25333901 PMCID: PMC4238802 DOI: 10.1021/bi5011128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Proteins tethered to solid supports
are of increasing interest
in bioanalytical chemistry and protein science in general. However,
the extent to which tethering modifies the energy landscape and dynamics
of the protein is most often unknown because there are few biophysical
methods that can determine secondary and tertiary structures and explore
conformational equilibria and dynamics of a tethered protein with
site-specific resolution. Site-directed spin labeling (SDSL) combined
with electron paramagnetic resonance (EPR) offers a unique opportunity
for this purpose. Here, we employ a general strategy using unnatural
amino acids that enables efficient and site-specific tethering of
a spin-labeled protein to a Sepharose solid support. Remarkably, EPR
spectra of spin-labeled T4 lysozyme (T4L) reveal that a single site-specific
attachment suppresses rotational motion of the protein sufficiently
to allow interpretation of the spectral line shape in terms of protein
internal dynamics. Importantly, line shape analysis and distance mapping
using double electron–electron resonance reveal that internal
dynamics, the tertiary fold, conformational equilibria, and ligand
binding of the tethered proteins were similar to those in solution,
in contrast to random attachment via native lysine residues. The results
of this study set the stage for the development of an EPR-based flow
system that will house soluble and membrane proteins immobilized site-specifically,
thereby enabling facile screening of structural and dynamical effects
of binding partners.
Collapse
Affiliation(s)
- Carlos J López
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | | | | | | |
Collapse
|
6
|
Hahn A, Reschke S, Leimkühler S, Risse T. Ketoxime Coupling of p-Acetylphenylalanine at Neutral pH for Site-Directed Spin Labeling of Human Sulfite Oxidase. J Phys Chem B 2014; 118:7077-84. [DOI: 10.1021/jp503471j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aaron Hahn
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Stefan Reschke
- Institut
für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse
24-25, 14476 Golm, Germany
| | - Silke Leimkühler
- Institut
für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse
24-25, 14476 Golm, Germany
| | - Thomas Risse
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
7
|
Gruian C, Boehme S, Simon S, Steinhoff HJ, Klare JP. Assembly and function of the tRNA-modifying GTPase MnmE adsorbed to surface functionalized bioactive glass. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7615-7625. [PMID: 24785159 DOI: 10.1021/am500933e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein adsorption onto solid surfaces is a common phenomenon in tissue engineering related applications, and considerable progress was achieved in this field. However, there are still unanswered questions or contradictory opinions concerning details of the protein's structure, conformational changes, or aggregation once adsorbed onto solid surfaces. Electron paramagnetic resonance (EPR) spectroscopy and site-directed spin labeling (SDSL) were employed in this work to investigate the conformational changes and dynamics of the tRNA-modifying dimeric protein MnmE from E. coli, an ortholog of the human GTPBP3, upon adsorption on bioactive glass mimicking the composition of the classical 45S5 Bioglass. In addition, prior to protein attachment, the bioactive glass surface was modified with the protein coupling agent glutaraldehyde. Continuous wave EPR spectra of different spin labeled MnmE mutants were recorded to assess the dynamics of the attached spin labels before and after protein adsorption. The area of the continuous wave (cw)-EPR absorption spectrum was further used to determine the amount of the attached protein. Double electron-electron resonance (DEER) experiments were conducted to measure distances between the spin labels before and after adsorption. The results revealed that the contact regions between MnmE and the bioactive glass surface are located at the G domains and at the N-terminal domains. The low modulation depths of all DEER time traces recorded for the adsorbed single MnmE mutants, corroborated with the DEER measurements performed on MnmE double mutants, show that the adsorption process leads to dissociation of the dimer and alters the tertiary structure of MnmE, thereby abolishing its functionality. However, glutaraldehyde reduces the aggressiveness of the adsorption process and improves the stability of the protein attachment.
Collapse
Affiliation(s)
- C Gruian
- Faculty of Physics and Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University , Cluj-Napoca, 400084, Romania
| | | | | | | | | |
Collapse
|
8
|
Gruian C, Vulpoi A, Steinhoff HJ, Simon S. Structural changes of methemoglobin after adsorption on bioactive glass, as a function of surface functionalization and salt concentration. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Li Q, Fung LWM. Structural and dynamic study of the tetramerization region of non-erythroid alpha-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance. Biochemistry 2009; 48:206-15. [PMID: 19072330 DOI: 10.1021/bi8013032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N-terminal region of alpha-spectrin is responsible for its association with beta-spectrin in a heterodimer, forming functional tetramers. Non-erythroid alpha-spectrin (alphaII-spectrin) has a significantly higher association affinity for beta-spectrin than the homologous erythroid alpha-spectrin (alphaI-spectrin). We have previously determined the solution structure of the N-terminal region of alphaI-spectrin by NMR methods, but currently no structural information is available for alphaII-spectrin. We have used cysteine scanning, spin labeling electron paramagnetic resonance (EPR), and isothermal titration calorimetry (ITC) methods to study the tetramerization region of alphaII-spectrin. EPR data clearly show that, in alphaII-spectrin, the first nine N-terminal residues were unstructured, followed by an irregular helix (helix C'), frayed at the N-terminal end, but rigid at the C-terminal end, which merges into the putative triple-helical structural domain. The region corresponding to the important unstructured junction region linking helix C' to the first structural domain in alphaI-spectrin was clearly structured. On the basis of the published model for aligning helices A', B', and C', important interactions among residues in helix C' of alphaI- and alphaII-spectrin and helices A' and B' of betaI- and betaII-spectrin are identified, suggesting similar coiled coil helical bundling for spectrin I and II in forming tetramers. The differences in affinity are likely due to the differences in the conformation of the junction regions. Equilibrium dissociation constants of spin-labeled alphaII and betaI complexes from ITC measurements indicate that residues 15, 19, 37, and 40 are functionally important residues in alphaII-spectrin. Interestingly, all four corresponding homologous residues in alphaI-spectrin (residues 24, 28, 46, and 49) have been reported to be clinically significant residues involved in hematological diseases.
Collapse
Affiliation(s)
- Qufei Li
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607
| | | |
Collapse
|
10
|
Jacobsen K, Risse T. On the origin of the polar order of T4 lysozyme on planar model surfaces. J Phys Chem B 2008; 112:967-72. [PMID: 18171040 DOI: 10.1021/jp075375m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site directed spin labeling is used to investigate the origin of the macroscopic alignment of T4 lysozyme vectorially tethered to planar biomimetic surfaces. T4 lysozyme was adsorbed to a quartz-supported dioleoylphosphatidylcholine (DOPC) bilayer by selective binding of the histidine-tagged protein to functionalized headgroups (1,2-dioleoyl-sn-glycero-3-[[N(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl], DOGS NTA) of the bilayer. This results in a polar oriented ensemble of proteins on the surface, which gives rise to angular-dependent electron paramagnetic resonance (EPR) spectra. In order to reveal the mechanism of the protein alignment, the influence of protein coverage on the order of the molecules was addressed. Along the lines described previously for a full monolayer (Jacobsen, et al. Biophys. J. 2005, 88, 4351), the polar orientation of the molecules was inferred from an analysis of the EPR line shape using the stochastic Liouville equation (SLE) approach developed by Freed and co-workers. The simulations reveal that the orientation of the protein is strongly determined by lateral protein-protein interactions. In comparison to the lipid bilayer, a fusion protein of T4 lysozyme (T4L) with Annexin XII was investigated, where the two-dimensional crystallization of Annexin XII on a dioleoylphosphatidylserine (DOPS) bilayer provides a surface layer of regularly anchored T4L molecules. For this system, it is found that the interaction between T4L and Annexin plays a more important role for understanding the structure in the adsorbed state.
Collapse
Affiliation(s)
- Kerstin Jacobsen
- Fritz Haber Institute of Max Planck Society, Department of Chemical Physics, Faradayweg 4-6, 14195 Berlin, Germany
| | | |
Collapse
|
11
|
Inbaraj JJ, Cardon TB, Laryukhin M, Grosser SM, Lorigan GA. Determining the topology of integral membrane peptides using EPR spectroscopy. J Am Chem Soc 2007; 128:9549-54. [PMID: 16848493 PMCID: PMC2533427 DOI: 10.1021/ja0622204] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports on the development of a new structural biology technique for determining the membrane topology of an integral membrane protein inserted into magnetically aligned phospholipid bilayers (bicelles) using EPR spectroscopy. The nitroxide spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC), was attached to the pore-lining transmembrane domain (M2delta) of the nicotinic acetylcholine receptor (AChR) and incorporated into a bicelle. The corresponding EPR spectra revealed hyperfine splittings that were highly dependent on the macroscopic orientation of the bicelles with respect to the static magnetic field. The helical tilt of the peptide can be easily calculated using the hyperfine splittings gleaned from the orientational dependent EPR spectra. A helical tilt of 14 degrees was calculated for the M2delta peptide with respect to the bilayer normal of the membrane, which agrees well with previous 15N solid-state NMR studies. The helical tilt of the peptide was verified by simulating the corresponding EPR spectra using the standardized MOMD approach. This new method is advantageous because: (1) bicelle samples are easy to prepare, (2) the helical tilt can be directly calculated from the orientational-dependent hyperfine splitting in the EPR spectra, and (3) EPR spectroscopy is approximately 1000-fold more sensitive than 15N solid-state NMR spectroscopy; thus, the helical tilt of an integral membrane peptide can be determined with only 100 microg of peptide. The helical tilt can be determined more accurately by placing TOAC spin labels at several positions with this technique.
Collapse
Affiliation(s)
- Johnson J Inbaraj
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|
12
|
Inbaraj JJ, Laryukhin M, Lorigan GA. Determining the helical tilt angle of a transmembrane helix in mechanically aligned lipid bilayers using EPR spectroscopy. J Am Chem Soc 2007; 129:7710-1. [PMID: 17539638 DOI: 10.1021/ja071587l] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johnson J Inbaraj
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | |
Collapse
|
13
|
Kang E, Park JW, McClellan S, Kim JM, Holland D, Lee GU, Franses E, Park K, Thompson DH. Specific adsorption of histidine-tagged proteins on silica surfaces modified with Ni2+/NTA-derivatized poly(ethylene glycol). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6281-8. [PMID: 17444666 PMCID: PMC2533260 DOI: 10.1021/la063719e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Silica surfaces modified with nitrilotriacetic acid (NTA)-polyethylene glycol (PEG) derivatives were used to immobilize hexahistidine-tagged green fluorescent protein (His6-GFP), biotin/streptavidin-AlexaFluor555 (His6-biotin/SA-AF), and gramicidin A-containing vesicles (His6-gA). Three types of surface-reactive PEG derivatives-NTA-PEG3400-Si(OMe)3, NTA-PEG3400-vinylsulfone, and mPEG5000-Si(OMe)3 (control)-were grafted onto silica and tested for their ability to capture His6-tag species via His6/Ni2+/NTA chelation. The composition and thicknesses of the PEG-modified surfaces were characterized using X-ray photoelectron spectroscopy, contact angle, and ellipsometry. Protein capture efficiencies of the NTA-PEG-grafted surfaces were evaluated by measuring fluorescence intensities of these surfaces after exposure to His6-tag species. XPS and ellipsometry data indicate that surface adsorption occurs via specific interactions between the His6-tag and the Ni2+/NTA-PEG-grafted surface. Protein immobilization was most effective for NTA-PEG3400-Si(OMe)3-modified surfaces, with maximal areal densities achieved at 45 pmol/cm2 for His6-GFP and 95 fmol/cm2 for His6-biotin/SA-AF. Lipid vesicles containing His6-gA in a 1:375 gA/lipid ratio could also be immobilized on Ni2+/NTA-PEG3400-Si(OMe)3-modified surfaces at 0.5 mM total lipid. Our results suggest that NTA-PEG-Si(OMe)3 conjugates may be useful tools for immobilizing His6-tag proteins on solid surfaces to produce protein-functionalized surfaces.
Collapse
Affiliation(s)
- Eunah Kang
- School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jin-won Park
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Scott McClellan
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jong-Mok Kim
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - David Holland
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Gil U. Lee
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Elias Franses
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Kinam Park
- School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Pharmaceutics, Purdue University, West Lafayette, IN 47907
| | - David H. Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
14
|
Tombolato F, Ferrarini A, Freed JH. Dynamics of the nitroxide side chain in spin-labeled proteins. J Phys Chem B 2006; 110:26248-59. [PMID: 17181283 PMCID: PMC2883179 DOI: 10.1021/jp0629487] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of the tether linking methanethiosulfonate (MTSSL) spin probes to alpha-helices has been investigated with the purpose of rationalizing its effects on ESR line shapes. Torsional profiles for the chain bonds have been calculated ab initio, and steric interactions with the alpha-helix and the neighboring residues have been introduced at the excluded-volume level. As a consequence of the restrictions deriving from chain geometry and local constraints, a limited number of allowed conformers has been identified that undergo torsional oscillations and conformational jumps. Torsional fluctuations are described as damped oscillations, while transition rates between conformers are calculated according to the Langer multidimensional extension of the Kramers theory. The time scale and amplitude of the different motions are compared; the major role played by rotations of the outermost bonds of the side chain emerges, along with the effects of substituents in the pyrroline ring on the conformer distribution and dynamics. The extent and symmetry of magnetic tensor averaging produced by the side chain motions are estimated, the implications for the ESR spectra of spin-labeled proteins are discussed, and suggestions for the introduction of realistic features of the spin probe dynamics into the line shape simulation are presented.
Collapse
Affiliation(s)
- Fabio Tombolato
- Dipartimento di Scienze Chimiche, Via Marzolo 1, Università di Padova, 35131 Padova, Italy
| | | | | |
Collapse
|
15
|
Tombolato F, Ferrarini A, Freed JH. Modeling the effects of structure and dynamics of the nitroxide side chain on the ESR spectra of spin-labeled proteins. J Phys Chem B 2006; 110:26260-71. [PMID: 17181284 PMCID: PMC2885803 DOI: 10.1021/jp062949z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the companion paper (J. Phys. Chem. B 2006, 110, jp0629487), a study of the conformational dynamics of methanethiosulfonate spin probes linked at a surface-exposed alpha-helix has been presented. Here, on the basis of this analysis, X-band ESR spectra of these spin labels are simulated within the framework of the Stochastic Liouville equation (SLE) methodology. Slow reorientations of the whole protein are superimposed on fast chain motions, which have been identified with conformational jumps and fluctuations in the minima of the chain torsional potential. Fast chain motions are introduced in the SLE for the protein reorientations through partially averaged magnetic tensors and relaxation times calculated according to the motional narrowing theory. The 72R1 and 72R2 mutants of T4 lysozyme, which bear the spin label at a solvent-exposed helix site, have been taken as test systems. For the side chain of the R2 spin label, only a few noninterconverting conformers are possible, whose mobility is limited to torsional fluctuations, yielding almost identical spectra, typical of slightly mobile nitroxides. In the case of R1, more complex spectra result from the simultaneous presence of constrained and mobile chain conformers, with relative weights that can depend on the local environment. The model provides an explanation for the experimentally observed dependence of the spectral line shapes on temperature, solvent, and pattern of substituents in the pyrroline ring. The relatively simple methodology presented here allows the introduction of realistic features of the spin probe dynamics into the simulation of ESR spectra of spin-labeled proteins; moreover, it provides suggestions for a proper account of such dynamics in more sophisticated approaches.
Collapse
Affiliation(s)
- Fabio Tombolato
- Dipartimento di Scienze Chimiche, Via Marzolo 1, Università di Padova, 35131 Padova, Italy
| | | | | |
Collapse
|
16
|
Khairy K, Budil D, Fajer P. Nonlinear-least-squares analysis of slow motional regime EPR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 183:152-9. [PMID: 16934507 DOI: 10.1016/j.jmr.2006.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 05/11/2023]
Abstract
A comparison between the full Newton-type optimization NL2SNO, the Levenberg-Marquardt method with the model-trust region modification, and the simplex algorithm is made in the context of the iterative fitting of EPR spectra. EPR lineshape simulations are based on the stochastic Liouville equation (SLE), with an anisotropic diffusion tensor and an anisotropic restraining potential describing the motional amplitude of the spin label. The simplex algorithm was found to be the most reliable, and an approach-incorporating both NL2SNO as well as the downhill simplex methods-is proposed as a strategy-of-choice.
Collapse
Affiliation(s)
- Khaled Khairy
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | | | | |
Collapse
|
17
|
Karp ES, Inbaraj JJ, Laryukhin M, Lorigan GA. Electron Paramagnetic Resonance Studies of an Integral Membrane Peptide Inserted into Aligned Phospholipid Bilayer Nanotube Arrays. J Am Chem Soc 2006; 128:12070-1. [PMID: 16967948 DOI: 10.1021/ja064077k] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This communication reports for the first time the determination of the helical tilt of an integral membrane peptide inserted into aligned phospholipids bilayer nanotube arrays using spin label EPR spectroscopy. Also, we demonstrate herein how the helical tilt of the peptide can be easily calculated using the hyperfine splitting values gleaned from a perpendicularly aligned bilayer in phospholipid bilayer nanotube arrays. EPR spectral simulations were used to verify the method.
Collapse
Affiliation(s)
- Ethan S Karp
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
18
|
Jacobsen K, Hubbell WL, Ernst OP, Risse T. Details of the Partial Unfolding of T4 Lysozyme on Quartz Using Site-Directed Spin Labeling. Angew Chem Int Ed Engl 2006; 45:3874-7. [PMID: 16671129 DOI: 10.1002/anie.200600008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kerstin Jacobsen
- Fritz Haber Institute of the Max Planck Society, Department of Chemical Physics, Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
19
|
Jacobsen K, Hubbell WL, Ernst OP, Risse T. Partielle Entfaltung von T4-Lysozym auf einer Quarzoberfläche: Analyse der Strukturänderungen adsorbierter Proteine durch ESR-Spektroskopie. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Das K, Pink M, Rajca S, Rajca A. Synthesis and Structure of a Nucleoside with π-Conjugated Nitroxide Spin Label Forming a One-Dimensional Ferromagnetic Chain. J Am Chem Soc 2006; 128:5334-5. [PMID: 16620092 DOI: 10.1021/ja060846o] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spin labeled 2'-deoxyuridine, in which a significant fraction of the spin density is delocalized from a nitroxide radical to the DNA base residue, was prepared as a crystalline solid, stable at ambient conditions. The crystal packing, which includes multiple hydrogen bonds, leads to one-dimensional chains of molecules with predominant intrachain ferromagnetic coupling and weaker interchain antiferromagnetic coupling.
Collapse
Affiliation(s)
- Kausik Das
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | | | | | | |
Collapse
|
21
|
Qin PZ, Iseri J, Oki A. A model system for investigating lineshape/structure correlations in RNA site-directed spin labeling. Biochem Biophys Res Commun 2006; 343:117-24. [PMID: 16530169 PMCID: PMC2424215 DOI: 10.1016/j.bbrc.2006.02.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 02/22/2006] [Indexed: 11/25/2022]
Abstract
In RNA site-directed spin labeling (SDSL) studies, structural and dynamic information at the individual RNA nucleotide level is derived from the observed electron paramagnetic resonance spectrum of a covalently attached nitroxide. A systematic approach for RNA SDSL is to establish a library that categorizes observed spectral lineshapes based on known RNA structures, thus enabling lineshape-based structure identification at any RNA site. To establish the first RNA SDSL library, selective secondary structure elements have been systematically engineered into a model RNA. Nitroxide lineshapes reporting features specific to each element were obtained utilizing a new avidin-tethering scheme for suppressing spectral effects due to uniform RNA tumbling. The data demonstrated two key features required for a SDSL library with a predicting power: (i) spectral divergence--distinctive lineshape for different elements; and (ii) spectral convergence--similar lineshape for the same element in different contexts. This sets the foundation for further RNA SDSL library development.
Collapse
Affiliation(s)
- Peter Z Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA.
| | | | | |
Collapse
|
22
|
Freger V, Ben-David A. Use of Attenuated Total Reflection Infrared Spectroscopy for Analysis of Partitioning of Solutes between Thin Films and Solution. Anal Chem 2005; 77:6019-25. [PMID: 16159136 DOI: 10.1021/ac050689w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The paper examines attenuated total reflection (ATR) spectroscopy as a tool for quantifying the partitioning of small molecular species between a solution and a thin film, while the film is directly exposed to the solution for equilibration. For the case of a thin film having a thickness substantially smaller than the decay length of the evanescent wave, we developed suitable linear relationships that relate the measured absorption of the characteristic band to the concentration of the species under study in the film and in solution. In the application of ATR-Fourier transform infrared spectroscopy, the method is particularly suitable for films a few tens to hundreds of nanometers thick and for solutes that preferentially partition into the film. As an example, the partitioning isotherm of 1-pentanol between water and a thin polyamide film separated from a reverse osmosis membrane was determined experimentally, and the limitations of the method are discussed.
Collapse
Affiliation(s)
- Viatcheslav Freger
- Zuckerberg Institute for Water Research and Department of Biotechnology and Environmental Engineering, Ben-Gurion University of the Negev, POB 635, Beer-Sheva 84105, Israel.
| | | |
Collapse
|