1
|
Drew DL, Ahammad T, Serafin RA, Sahu ID, Khan RH, Faul E, McCarrick RM, Lorigan GA. Probing the local secondary structure of bacteriophage S 21 pinholin membrane protein using electron spin echo envelope modulation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183836. [PMID: 34906602 DOI: 10.1016/j.bbamem.2021.183836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
There have recently been advances in methods for detecting local secondary structures of membrane protein using electron paramagnetic resonance (EPR). A three pulsed electron spin echo envelope modulation (ESEEM) approach was used to determine the local helical secondary structure of the small hole forming membrane protein, S21 pinholin. This ESEEM approach uses a combination of site-directed spin labeling and 2H-labeled side chains. Pinholin S21 is responsible for the permeabilization of the inner cytosolic membrane of double stranded DNA bacteriophage host cells. In this study, we report on the overall global helical structure using circular dichroism (CD) spectroscopy for the active form and the negative-dominant inactive mutant form of S21 pinholin. The local helical secondary structure was confirmed for both transmembrane domains (TMDs) for the active and inactive S21 pinholin using the ESEEM spectroscopic technique. Comparison of the ESEEM normalized frequency domain intensity for each transmembrane domain gives an insight into the α-helical folding nature of these domains as opposed to a π or 310-helix which have been observed in other channel forming proteins.
Collapse
Affiliation(s)
- Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
2
|
Deo T, Cheng Q, Paul S, Qiang W, Potapov A. Application of DNP-enhanced solid-state NMR to studies of amyloid-β peptide interaction with lipid membranes. Chem Phys Lipids 2021; 236:105071. [PMID: 33716023 DOI: 10.1016/j.chemphyslip.2021.105071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
The cellular membrane disruption induced by the aggregation of Aβ peptide has been proposed as a plausible cause of neuronal cell death during Alzheimer's disease. The molecular-level details of the Aβ interaction with cellular membranes were previously probed using solid state NMR (ssNMR), however, due to the limited sensitivity of the latter, studies were limited to samples with high Aβ-to-lipid ratio. The dynamic nuclear polarization (DNP) is a technique for increasing the sensitivity of NMR. In this work we demonstrate the feasibility of DNP-enhanced ssNMR studies of Aβ40 peptide interacting with various model liposomes: (1) a mixture of zwitterionic 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG); (2) a mixture of POPC, POPG, cholesterol, sphingomyelin and ganglioside GM1; (3) the synaptic plasma membrane vesicles (SPMVs) extracted from rat brain tissues. In addition, DNP-ssNMR was applied to capturing changes in Aβ40 conformation taking place upon the peptide insertion into POPG liposomes. The signal enhancements under conditions of DNP allow carrying out informative 2D ssNMR experiments with about 0.25 mg of Aβ40 peptides (i.e. reaching Aβ40-to-lipid ratio of 1:200). In the studied liposome models, the 13C NMR chemical shifts at many 13C-labelled sites of Aβ40 are characteristic of β-sheets. In addition, in POPG liposomes the peptide forms hydrophobic contacts F19-L34 and F19-I32. Both the chemical shifts and hydrophobic contacts of Aβ40 in POPG remain the same before and after 8 h of incubation. This suggests that conformation at the 13C-labelled sites of the peptide is similar before and after the insertion process. Overall, our results demonstrate that DNP helps to overcome the sensitivity limitation of ssNMR, and thereby expand the applicability of ssNMR for charactering the Aβ peptide interacting with lipids.
Collapse
Affiliation(s)
- Thomas Deo
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Qinghui Cheng
- Department of Chemistry, Binghamton University, the State University of New York, Binghamton, NY, 13902, USA
| | - Subhadip Paul
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Wei Qiang
- Department of Chemistry, Binghamton University, the State University of New York, Binghamton, NY, 13902, USA
| | - Alexey Potapov
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
3
|
H. Haeri H, Jerschabek V, Sadeghi A, Hinderberger D. Copper–Calcium Poly(Acrylic Acid) Composite Hydrogels as Studied by Electron Paramagnetic Resonance (EPR) Spectroscopy. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Haleh H. Haeri
- Institut für Chemie Martin‐Luther‐Universität Halle‐Wittenberg Von‐Danckelmann‐Platz 4 Halle (Saale) 06120 Germany
| | - Vanessa Jerschabek
- Institut für Chemie Martin‐Luther‐Universität Halle‐Wittenberg Von‐Danckelmann‐Platz 4 Halle (Saale) 06120 Germany
| | - Arash Sadeghi
- Institut für Chemie Martin‐Luther‐Universität Halle‐Wittenberg Von‐Danckelmann‐Platz 4 Halle (Saale) 06120 Germany
| | - Dariush Hinderberger
- Institut für Chemie Martin‐Luther‐Universität Halle‐Wittenberg Von‐Danckelmann‐Platz 4 Halle (Saale) 06120 Germany
| |
Collapse
|
4
|
Stevanato G, Casano G, Kubicki DJ, Rao Y, Esteban Hofer L, Menzildjian G, Karoui H, Siri D, Cordova M, Yulikov M, Jeschke G, Lelli M, Lesage A, Ouari O, Emsley L. Open and Closed Radicals: Local Geometry around Unpaired Electrons Governs Magic-Angle Spinning Dynamic Nuclear Polarization Performance. J Am Chem Soc 2020; 142:16587-16599. [PMID: 32806886 DOI: 10.1021/jacs.0c04911] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of magic-angle spinning dynamic nuclear polarization (MAS DNP) has allowed atomic-level characterization of materials for which conventional solid-state NMR is impractical due to the lack of sensitivity. The rapid progress of MAS DNP has been largely enabled through the understanding of rational design concepts for more efficient polarizing agents (PAs). Here, we identify a new design principle which has so far been overlooked. We find that the local geometry around the unpaired electron can change the DNP enhancement by an order of magnitude for two otherwise identical conformers. We present a set of 13 new stable mono- and dinitroxide PAs for MAS DNP NMR where this principle is demonstrated. The radicals are divided into two groups of isomers, named open (O-) and closed (C-), based on the ring conformations in the vicinity of the N-O bond. In all cases, the open conformers exhibit dramatically improved DNP performance as compared to the closed counterparts. In particular, a new urea-based biradical named HydrOPol and a mononitroxide O-MbPyTol yield enhancements of 330 ± 60 and 119 ± 25, respectively, at 9.4 T and 100 K, which are the highest enhancements reported so far in the aqueous solvents used here. We find that while the conformational changes do not significantly affect electron spin-spin distances, they do affect the distribution of the exchange couplings in these biradicals. Electron spin echo envelope modulation (ESEEM) experiments suggest that the improved performance of the open conformers is correlated with higher solvent accessibility.
Collapse
Affiliation(s)
- Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gilles Casano
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Dominik J Kubicki
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Laura Esteban Hofer
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Georges Menzildjian
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS de Lyon/UCB-Lyon 1), 69100 Villeurbanne, France
| | - Hakim Karoui
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Didier Siri
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Maxim Yulikov
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Moreno Lelli
- Magnetic Resonance Center (CERM/CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS de Lyon/UCB-Lyon 1), 69100 Villeurbanne, France
| | - Olivier Ouari
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Aloi E, Bartucci R. Cryogenically frozen PEGylated liposomes and micelles: Water penetration and polarity profiles. Biophys Chem 2020; 266:106463. [PMID: 32911450 DOI: 10.1016/j.bpc.2020.106463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
Poly(ethylene glycol) (PEG)-grafted lipid dispersions are widely investigated in fundamental and biotechnological research for their successful use in drug-delivery. Here, we consider mixtures of the bilayer-forming lipid dipalmitoylphosphatidylcholine (DPPC) with the micelle-forming lipid PEG:2000-phosphatidilethanolamine (PEG:2000-DPPE) fully hydrated in D2O and measured at 77 K. Electron Spin Echo Envelope Modulation and continuous wave Electron Paramagnetic Resonance of chain-labelled lipids are employed to detect the extent of solvent permeation and the environmental polarity, respectively, across the hydrocarbon regions of the lipid assemblies. Sigmoidal water penetration and polarity profiles are described in sterically stabilized liposomes (SSL) formed at submicellar content of PEG:2000-DPPE incorporated in DPPC. Compared to DPPC bilayers, SSL show increased hydrophobicity at both the polar/apolar interface and the chain termini, and a broader transition that is shifted toward the interface. Solvent exposure and polarity decrease on going down the chain in PEG:2000-DPPE micelles. However, compared to SSL, polymer-lipid micelles show higher solvent permeation at any chain segment and the chain termini are accessible to water. In any sample, heterogeneity is found in H-bond formation between the spin-label nitroxide groups and the solvent molecules. The results at cryogenic temperature add new insights into the biophysico-chemical characterization of PEGylated lipid dispersions.
Collapse
Affiliation(s)
- Erika Aloi
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Rosa Bartucci
- Molecular Biophysics Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
6
|
Sannikova N, Timofeev I, Bagryanskaya E, Bowman M, Fedin M, Krumkacheva O. Electron Spin Relaxation of Photoexcited Porphyrin in Water-Glycerol Glass. Molecules 2020; 25:E2677. [PMID: 32527023 PMCID: PMC7321249 DOI: 10.3390/molecules25112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the photoexcited triplet state of porphyrin was proposed as a promising spin-label for pulsed dipolar electron paramagnetic resonance (EPR). Herein, we report the factors that determine the electron spin echo dephasing of the photoexcited porphyrin in a water-glycerol matrix. The electron spin relaxation of a water-soluble porphyrin was measured by Q-band EPR, and the temperature dependence and the effect of solvent deuteration on the relaxation times were studied. The phase memory relaxation rate (1/Tm) is noticeably affected by solvent nuclei and is substantially faster in protonated solvents than in deuterated solvents. The Tm is as large as 13-17 μs in deuterated solvent, potentially expanding the range of distances available for measurement by dipole spectroscopy with photoexcited porphyrin. The 1/Tm depends linearly on the degree of solvent deuteration and can be used to probe the environment of a porphyrin in or near a biopolymer, including the solvent accessibility of porphyrins used in photodynamic therapy. We characterized the noncovalent binding of porphyrin to human serum albumin (HSA) from 1/Tm and electron spin echo envelope modulation (ESEEM) and found that porphyrin is quite exposed to solvent on the surface of HSA. The 1/Tm and ESEEM are equally effective and provide complementary methods to determine the solvent accessibility of a porphyrin bound to protein or to determine the location of the porphyrin.
Collapse
Affiliation(s)
- Natalya Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Ivan Timofeev
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Elena Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Michael Bowman
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Matvey Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| |
Collapse
|
7
|
Aloi E, Bartucci R. Solvent accessibility in interdigitated and micellar phases formed by DPPC/Lyso-PPC mixtures: D2O-ESEEM of chain labeled lipids. Chem Phys Lipids 2019; 221:39-45. [DOI: 10.1016/j.chemphyslip.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022]
|
8
|
Topology of active, membrane-embedded Bax in the context of a toroidal pore. Cell Death Differ 2018; 25:1717-1731. [PMID: 30185826 DOI: 10.1038/s41418-018-0184-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Bax is a Bcl-2 protein critical for apoptosis induction. In healthy cells, Bax is mostly a monomeric, cytosolic protein, while upon apoptosis initiation it inserts into the outer mitochondrial membrane, oligomerizes, and forms pores that release proapoptotic factors like Cytochrome c into the cytosol. The structures of active Bax and its homolog Bak are only partially understood and the topology of the proteins with respect to the membrane bilayer is controversially described in the literature. Here, we systematically review and examine the protein-membrane, protein-water, and protein-protein contacts of the nine helices of active Bax and Bak, and add a new set of topology data obtained by fluorescence and EPR methods. We conclude based on the consistent part of the datasets that the core/dimerization domain of Bax (Bak) is water exposed with only helices 4 and 5 in membrane contact, whereas the piercing/latch domain is in peripheral membrane contact, with helix 9 being transmembrane. Among the available structural models, those considering the dimerization/core domain at the rim of a toroidal pore are the most plausible to describe the active state of the proteins, although the structural flexibility of the piercing/latch domain does not allow unambiguous discrimination between the existing models.
Collapse
|
9
|
Prokopiou G, Lee MD, Collauto A, Abdelkader EH, Bahrenberg T, Feintuch A, Ramirez-Cohen M, Clayton J, Swarbrick JD, Graham B, Otting G, Goldfarb D. Small Gd(III) Tags for Gd(III)–Gd(III) Distance Measurements in Proteins by EPR Spectroscopy. Inorg Chem 2018; 57:5048-5059. [DOI: 10.1021/acs.inorgchem.8b00133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgia Prokopiou
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elwy H. Abdelkader
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Thorsten Bahrenberg
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marie Ramirez-Cohen
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jessica Clayton
- Department of Physics, University of California, Santa Barbara, California 93106-9530, United States
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601,Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
New limits of sensitivity of site-directed spin labeling electron paramagnetic resonance for membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:841-853. [DOI: 10.1016/j.bbamem.2017.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 01/27/2023]
|
11
|
Sahu ID, Lorigan GA. Site-Directed Spin Labeling EPR for Studying Membrane Proteins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3248289. [PMID: 29607317 PMCID: PMC5828257 DOI: 10.1155/2018/3248289] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 01/13/2023]
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible for the survival of living organisms. In this review, a brief introduction of the most popular SDSL EPR techniques and illustrations of recent applications for studying pertinent structural and dynamic properties on membrane proteins will be discussed.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
12
|
Ghosh S, Lawless MJ, Rule GS, Saxena S. The Cu 2+-nitrilotriacetic acid complex improves loading of α-helical double histidine site for precise distance measurements by pulsed ESR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:163-171. [PMID: 29272745 DOI: 10.1016/j.jmr.2017.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/09/2023]
Abstract
Site-directed spin labeling using two strategically placed natural histidine residues allows for the rigid attachment of paramagnetic Cu2+. This double histidine (dHis) motif enables extremely precise, narrow distance distributions resolved by Cu2+-based pulsed ESR. Furthermore, the distance measurements are easily relatable to the protein backbone-structure. The Cu2+ ion has, till now, been introduced as a complex with the chelating agent iminodiacetic acid (IDA) to prevent unspecific binding. Recently, this method was found to have two limiting concerns that include poor selectivity towards α-helices and incomplete Cu2+-IDA complexation. Herein, we introduce an alternative method of dHis-Cu2+ loading using the nitrilotriacetic acid (NTA)-Cu2+ complex. We find that the Cu2+-NTA complex shows a four-fold increase in selectivity toward α-helical dHis sites. Furthermore, we show that 100% Cu2+-NTA complexation is achievable, enabling precise dHis loading and resulting in no free Cu2+ in solution. We analyze the optimum dHis loading conditions using both continuous wave and pulsed ESR. We implement these findings to show increased sensitivity of the Double Electron-Electron Resonance (DEER) experiment in two different protein systems. The DEER signal is increased within the immunoglobulin binding domain of protein G (called GB1). We measure distances between a dHis site on an α-helix and dHis site either on a mid-strand or a non-hydrogen bonded edge-strand β-sheet. Finally, the DEER signal is increased twofold within two α-helix dHis sites in the enzymatic dimer glutathione S-transferase exemplifying the enhanced α-helical selectivity of Cu2+-NTA.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
13
|
Segawa TF, Doppelbauer M, Garbuio L, Doll A, Polyhach YO, Jeschke G. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods. J Chem Phys 2017; 144:194201. [PMID: 27208942 DOI: 10.1063/1.4948988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the (1)H NMR spectrum of H2O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10-20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.
Collapse
Affiliation(s)
- Takuya F Segawa
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Maximilian Doppelbauer
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Luca Garbuio
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Andrin Doll
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Yevhen O Polyhach
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|
14
|
Lawless MJ, Ghosh S, Cunningham TF, Shimshi A, Saxena S. On the use of the Cu2+–iminodiacetic acid complex for double histidine based distance measurements by pulsed ESR. Phys Chem Chem Phys 2017; 19:20959-20967. [DOI: 10.1039/c7cp02564e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu2+-based DEER signal of the double histidine motif was increased by a factor of two by understanding optimal loading conditions.
Collapse
Affiliation(s)
- M. J. Lawless
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - S. Ghosh
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - T. F. Cunningham
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - A. Shimshi
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - S. Saxena
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| |
Collapse
|
15
|
Bordignon E, Nalepa AI, Savitsky A, Braun L, Jeschke G. Changes in the Microenvironment of Nitroxide Radicals around the Glass Transition Temperature. J Phys Chem B 2015; 119:13797-806. [DOI: 10.1021/acs.jpcb.5b04104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enrica Bordignon
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
- Berlin
Joint EPR Laboratories, Department of Experimental Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Anna I. Nalepa
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Lukas Braun
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Liu L, Mayo DJ, Sahu ID, Zhou A, Zhang R, McCarrick RM, Lorigan GA. Determining the Secondary Structure of Membrane Proteins and Peptides Via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Methods Enzymol 2015; 564:289-313. [PMID: 26477255 DOI: 10.1016/bs.mie.2015.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Revealing detailed structural and dynamic information of membrane embedded or associated proteins is challenging due to their hydrophobic nature which makes NMR and X-ray crystallographic studies challenging or impossible. Electron paramagnetic resonance (EPR) has emerged as a powerful technique to provide essential structural and dynamic information for membrane proteins with no size limitations in membrane systems which mimic their natural lipid bilayer environment. Therefore, tremendous efforts have been devoted toward the development and application of EPR spectroscopic techniques to study the structure of biological systems such as membrane proteins and peptides. This chapter introduces a novel approach established and developed in the Lorigan lab to investigate membrane protein and peptide local secondary structures utilizing the pulsed EPR technique electron spin echo envelope modulation (ESEEM) spectroscopy. Detailed sample preparation strategies in model membrane protein systems and the experimental setup are described. Also, the ability of this approach to identify local secondary structure of membrane proteins and peptides with unprecedented efficiency is demonstrated in model systems. Finally, applications and further developments of this ESEEM approach for probing larger size membrane proteins produced by overexpression systems are discussed.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.
| | - Daniel J Mayo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Andy Zhou
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
17
|
Guzzi R, Bartucci R. Electron spin resonance of spin-labeled lipid assemblies and proteins. Arch Biochem Biophys 2015; 580:102-11. [PMID: 26116378 DOI: 10.1016/j.abb.2015.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/29/2023]
Abstract
Spin-label electron spin resonance (ESR) spectroscopy is a valuable means to study molecular mobility and interactions in biological systems. This paper deals with conventional, continuous wave ESR of nitroxide spin-labels at 9-GHz providing an introduction to the basic principles of the technique and applications to self-assembled lipid aggregates and proteins. Emphasis is given to segmental lipid chain order and rotational dynamics of lipid structures, environmental polarity of membranes and proteins, structure and conformational dynamics of proteins.
Collapse
Affiliation(s)
- Rita Guzzi
- Department of Physics, University of Calabria, 87036 Rende (CS), Italy
| | - Rosa Bartucci
- Department of Physics, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
18
|
Manukovsky N, Frydman V, Goldfarb D. Gd3+ Spin Labels Report the Conformation and Solvent Accessibility of Solution and Vesicle-Bound Melittin. J Phys Chem B 2015; 119:13732-41. [DOI: 10.1021/acs.jpcb.5b03523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nurit Manukovsky
- Departments of †Chemical Physics and ‡Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Veronica Frydman
- Departments of †Chemical Physics and ‡Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniella Goldfarb
- Departments of †Chemical Physics and ‡Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
19
|
Kinde MN, Chen Q, Lawless MJ, Mowrey DD, Xu J, Saxena S, Xu Y, Tang P. Conformational Changes Underlying Desensitization of the Pentameric Ligand-Gated Ion Channel ELIC. Structure 2015; 23:995-1004. [PMID: 25960405 DOI: 10.1016/j.str.2015.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/18/2022]
Abstract
Structural rearrangements underlying functional transitions of pentameric ligand-gated ion channels (pLGICs) are not fully understood. Using (19)F nuclear magnetic resonance and electron spin resonance spectroscopy, we found that ELIC, a pLGIC from Erwinia chrysanthemi, expanded the extracellular end and contracted the intracellular end of its pore during transition from the resting to an apparent desensitized state. Importantly, the contraction at the intracellular end of the pore likely forms a gate to restrict ion transport in the desensitized state. This gate differs from the hydrophobic gate present in the resting state. Conformational changes of the TM2-TM3 loop were limited to the N-terminal end. The TM4 helices and the TM3-TM4 loop appeared relatively insensitive to agonist-mediated structural rearrangement. These results indicate that conformational changes accompanying functional transitions are not uniform among different ELIC regions. This work also revealed the co-existence of multiple conformations for a given state and suggested asymmetric conformational arrangements in a homomeric pLGIC.
Collapse
Affiliation(s)
- Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Qiang Chen
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jiawei Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
20
|
Lund A, Hsieh MF, Siaw TA, Han SI. Direct dynamic nuclear polarization targeting catalytically active 27Al sites. Phys Chem Chem Phys 2015; 17:25449-54. [DOI: 10.1039/c5cp03396a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first study demonstrating the viability of targeted 27Al DNP characterization by varying the functional side groups of mono-radical spin probes.
Collapse
Affiliation(s)
- Alicia Lund
- Department of Chemistry and Biochemistry University of California Santa Barbara
- Santa Barbara
- USA
| | - Ming-Feng Hsieh
- Department of Chemical Engineering University of California Santa Barbara
- Santa Barbara
- USA
| | - Ting-Ann Siaw
- Department of Chemistry and Biochemistry University of California Santa Barbara
- Santa Barbara
- USA
| | - Song-I. Han
- Department of Chemistry and Biochemistry University of California Santa Barbara
- Santa Barbara
- USA
- Department of Chemical Engineering University of California Santa Barbara
- Santa Barbara
| |
Collapse
|
21
|
Matei I, Ariciu AM, Neacsu MV, Collauto A, Salifoglou A, Ionita G. Cationic Spin Probe Reporting on Thermal Denaturation and Complexation–Decomplexation of BSA with SDS. Potential Applications in Protein Purification Processes. J Phys Chem B 2014; 118:11238-52. [DOI: 10.1021/jp5071055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iulia Matei
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul
Independentei, Bucharest 060021, Romania
- Department
of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, Bucharest, Romania
| | - Ana Maria Ariciu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul
Independentei, Bucharest 060021, Romania
| | - Maria Victoria Neacsu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul
Independentei, Bucharest 060021, Romania
| | - Alberto Collauto
- Department
of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Athanasios Salifoglou
- Department
Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Gabriela Ionita
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul
Independentei, Bucharest 060021, Romania
| |
Collapse
|
22
|
Franck JM, Sokolovski M, Kessler N, Matalon E, Gordon-Grossman M, Han SI, Goldfarb D, Horovitz A. Probing water density and dynamics in the chaperonin GroEL cavity. J Am Chem Soc 2014; 136:9396-403. [PMID: 24888581 PMCID: PMC4091268 DOI: 10.1021/ja503501x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
ATP-dependent binding of the chaperonin
GroEL to its cofactor GroES
forms a cavity in which encapsulated substrate proteins can fold in
isolation from bulk solution. It has been suggested that folding in
the cavity may differ from that in bulk solution owing to steric confinement,
interactions with the cavity walls, and differences between the properties
of cavity-confined and bulk water. However, experimental data regarding
the cavity-confined water are lacking. Here, we report measurements
of water density and diffusion dynamics in the vicinity of a spin
label attached to a cysteine in the Tyr71 → Cys GroES mutant
obtained using two magnetic resonance techniques: electron-spin echo
envelope modulation and Overhauser dynamic nuclear polarization. Residue
71 in GroES is fully exposed to bulk water in free GroES and to confined
water within the cavity of the GroEL–GroES complex. Our data
show that water density and translational dynamics in the vicinity
of the label do not change upon complex formation, thus indicating
that bulk water-exposed and cavity-confined GroES surface water share
similar properties. Interestingly, the diffusion dynamics of water
near the GroES surface are found to be unusually fast relative to
other protein surfaces studied. The implications of these findings
for chaperonin-assisted folding mechanisms are discussed.
Collapse
Affiliation(s)
- John M Franck
- Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Maltsev S, Hudson SM, Sahu ID, Liu L, Lorigan GA. Solid-state NMR (31)P paramagnetic relaxation enhancement membrane protein immersion depth measurements. J Phys Chem B 2014; 118:4370-7. [PMID: 24689497 PMCID: PMC4002136 DOI: 10.1021/jp500267y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/01/2014] [Indexed: 11/29/2022]
Abstract
Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that (31)P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of spin-labeled membrane peptides and proteins. Changes in the (31)P NMR PRE times coupled with modeling studies can be used to describe the spin-label position/amino acid within the lipid bilayer and the corresponding helical tilt. This method provides valuable insight on protein-lipid interactions and membrane protein structural topology. Solid-state (31)P NMR data on the 23 amino acid α-helical nicotinic acetylcholine receptor nAChR M2δ transmembrane domain model peptide followed predicted behavior of (31)P PRE rates of the phospholipid headgroup as the spin-label moves from the membrane surface toward the center of the membrane. Residue 11 showed the smallest changes in (31)P PRE (center of the membrane), while residue 22 shows the largest (31)P PRE change (near the membrane surface), when compared to the diamagnetic control M2δ sample. This PRE SS-NMR technique can be used as a molecular ruler to measure membrane immersion depth.
Collapse
Affiliation(s)
- Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Stephen M. Hudson
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
24
|
Dzuba SA. Structural studies of biological membranes using ESEEM spectroscopy of spin labels and deuterium substitution. J STRUCT CHEM+ 2013. [DOI: 10.1134/s0022476613070019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Matalon E, Faingold O, Eisenstein M, Shai Y, Goldfarb D. The topology, in model membranes, of the core peptide derived from the T-cell receptor transmembrane domain. Chembiochem 2013; 14:1867-75. [PMID: 23881822 DOI: 10.1002/cbic.201300191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 01/16/2023]
Abstract
The T-cell receptor-CD3 complex (TCR-CD3) serves a critical role in protecting organisms from infectious agents. The TCR is a heterodimer composed of α- and β-chains, which are responsible for antigen recognition. Within the transmembrane domain of the α-subunit, a region has been identified to be crucial for the assembly and function of the TCR. This region, termed core peptide (CP), consists of nine amino acids (GLRILLLKV), two of which are charged (lysine and arginine) and are crucial for the interaction with CD3. Earlier studies have shown that a synthetic peptide corresponding to the CP sequence can suppress the immune response in animal models of T-cell-mediated inflammation, by disrupting proper assembly of the TCR. As a step towards the understanding of the source of the CP activity, we focused on CP in egg phosphatidylcholine/cholesterol (9:1, mol/mol) model membranes and determined its secondary structure, oligomerization state, and orientation with respect to the membrane. To achieve this goal, 15-residue segments of TCRα, containing the CP, were synthesized and spin-labeled at different locations with a nitroxide derivative. Electron spin-echo envelope modulation spectroscopy was used to probe the position and orientation of the peptides within the membrane, and double electron-electron resonance measurements were used to probe its conformation and oligomerization state. We found that the peptide is predominantly helical in a membrane environment and tends to form oligomers (mostly dimers) that are parallel to the membrane plane.
Collapse
Affiliation(s)
- Erez Matalon
- Department of Chemical Physics, Weizmann Institute of Science, 234 Hertzl St, Rehovot, 7632700 (Israel)
| | | | | | | | | |
Collapse
|
26
|
Hoffmann SK, Goslar J, Lijewski S. Electron Paramagnetic Resonance and Electron Spin Echo Studies of Co 2+ Coordination by Nicotinamide Adenine Dinucleotide (NAD +) in Water Solution. APPLIED MAGNETIC RESONANCE 2013; 44:817-826. [PMID: 23766555 PMCID: PMC3677979 DOI: 10.1007/s00723-013-0444-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/31/2013] [Indexed: 06/02/2023]
Abstract
Co2+ binding to the nicotinamide adenine dinucleotide (NAD+) molecule in water solution was studied by electron paramagnetic resonance (EPR) and electron spin echo at low temperatures. Cobalt is coordinated by NAD+ when the metal is in excess only, but even in such conditions, the Co/NAD+ complexes coexist with Co(H2O)6 complexes. EPR spin-Hamiltonian parameters of the Co/NAD+ complex at 6 K are gz = 2.01, gx = 2.38, gy = 3.06, Az = 94 × 10-4 cm-1, Ax = 33 × 10-4 cm-1 and Ay = 71 × 10-4 cm-1. They indicate the low-spin Co2+ configuration with S = 1/2. Electron spin echo envelope modulation spectroscopy with Fourier transform of the modulated spin echo decay shows a strong coordination by nitrogen atoms and excludes the coordination by phosphate and/or amide groups. Thus, Co2+ ion is coordinated in pseudo-tetrahedral geometry by four nitrogen atoms of adenine rings of two NAD+ molecules.
Collapse
Affiliation(s)
- Stanisław K. Hoffmann
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Janina Goslar
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Stefan Lijewski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| |
Collapse
|
27
|
Lai YC, Chen YF, Chiang YW. ESR study of interfacial hydration layers of polypeptides in water-filled nanochannels and in vitrified bulk solvents. PLoS One 2013; 8:e68264. [PMID: 23840841 PMCID: PMC3695931 DOI: 10.1371/journal.pone.0068264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/03/2013] [Indexed: 01/04/2023] Open
Abstract
There is considerable evidence for the essential role of surface water in protein function and structure. However, it is unclear to what extent the hydration water and protein are coupled and interact with each other. Here, we show by ESR experiments (cw, DEER, ESEEM, and ESE techniques) with spin-labeling and nanoconfinement techniques that the vitrified hydration layers can be evidently recognized in the ESR spectra, providing nanoscale understanding for the biological interfacial water. Two peptides of different secondary structures and lengths are studied in vitrified bulk solvents and in water-filled nanochannels of different pore diameter (6.1∼7.6 nm). The existence of surface hydration and bulk shells are demonstrated. Water in the immediate vicinity of the nitroxide label (within the van der Waals contacts, ∼0.35 nm) at the water-peptide interface is verified to be non-crystalline at 50 K, and the water accessibility changes little with the nanochannel dimension. Nevertheless, this water accessibility for the nanochannel cases is only half the value for the bulk solvent, even though the peptide structures remain largely the same as those immersed in the bulk solvents. On the other hand, the hydration density in the range of ∼2 nm from the nitroxide spin increases substantially with decreasing pore size, as the density for the largest pore size (7.6 nm) is comparable to that for the bulk solvent. The results demonstrate that while the peptides are confined but structurally unaltered in the nanochannels, their surrounding water exhibits density heterogeneity along the peptide surface normal. The causes and implications, especially those involving the interactions between the first hydration water and peptides, of these observations are discussed. Spin-label ESR techniques are proven useful for studying the structure and influences of interfacial hydration.
Collapse
Affiliation(s)
- Yei-Chen Lai
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Fan Chen
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Manukovsky N, Sanders E, Matalon E, Wolf SG, Goldfarb D. Membrane curvature and cholesterol effects on lipids packing and spin-labelled lipids conformational distributions. Mol Phys 2013. [DOI: 10.1080/00268976.2013.800601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Konov K, Isaev N, Dzuba S. Glycerol penetration profile in phospholipid bilayers measured by ESEEM of spin-labelled lipids. Mol Phys 2013. [DOI: 10.1080/00268976.2013.796416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Kyrychenko A, Ladokhin AS. Molecular dynamics simulations of depth distribution of spin-labeled phospholipids within lipid bilayer. J Phys Chem B 2013; 117:5875-85. [PMID: 23614631 DOI: 10.1021/jp4026706] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spin-labeled lipids are commonly used as fluorescence quenchers in studies of membrane penetration of dye-labeled proteins and peptides using depth-dependent quenching. Accurate calculations of depth of the fluorophore rely on the use of several spin labels placed in the membrane at various positions. The depth of the quenchers (spin probes) has to be determined independently; however, experimental determination of transverse distributions of spin probe depths is difficult. In this Article, we use molecular dynamics (MD) simulations to study the membrane behavior and depth distributions of spin-labeled phospholipids in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. To probe different depths within the bilayer, a series containing five Doxyl-labeled lipids (n-Doxyl PC) has been studied, in which a spin moiety was covalently attached to nth carbon atoms (where n = 5, 7, 10, 12, and 14) of the sn-2 stearoyl chain of the host phospholipid. Our results demonstrate that the chain-attached spin labels are broadly distributed across the model membrane and their environment is characterized by a high degree of mobility and structural heterogeneity. Despite the high thermal disorder, the depth distributions of the Doxyl labels were found to correlate well with their attachment positions, indicating that the distribution of the spin label within the model membrane is dictated by the depth of the nth lipid carbon atom and not by intrinsic properties of the label. In contrast, a much broader and heterogeneous distribution was observed for a headgroup-attached Tempo spin label of Tempo-PC lipids. MD simulations reveal that, due to the hydrophobic nature, a Tempo moiety favors partitioning from the headgroup region deeper into the membrane. Depending on the concentration of Tempo-PC lipids, the probable depth of the Tempo moiety could span a range from 14.4 to 18.2 Å from the membrane center. Comparison of the MD-estimated immersion depths of Tempo and n-Doxyl labels with their suggested experimental depth positions allows us to review critically the possible sources of error in depth-dependent fluorescence quenching studies.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, USA.
| | | |
Collapse
|
31
|
Matalon E, Kaminker I, Zimmermann H, Eisenstein M, Shai Y, Goldfarb D. Topology of the trans-membrane peptide WALP23 in model membranes under negative mismatch conditions. J Phys Chem B 2013; 117:2280-93. [PMID: 23311473 DOI: 10.1021/jp310056h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organization and orientation of membrane-inserted helices is important for better understanding the mode of action of membrane-active peptides and of protein-membrane interactions. Here we report on the application of ESEEM (electron spin-echo envelope modulation) and DEER (double electron-electron resonance) techniques to probe the orientation and oligomeric state of an α-helical trans-membrane model peptide, WALP23, under conditions of negative mismatch between the hydrophobic cores of the model membrane and the peptide. Using ESEEM, we measured weak dipolar interactions between spin-labeled WALP23 and (2)H nuclei of either the solvent (D2O) or of lipids specifically deuterated at the choline group. The ESEEM data obtained from the deuterated lipids were fitted using a model that provided the spin label average distance from a layer of (2)H nuclei in the hydrophilic region of the membrane and the density of the (2)H nuclei in the layer. DEER was used to probe oligomerization through the dipolar interaction between two spin-labels on different peptides. We observed that the center of WALP23 does not coincide with the bilayer midplane and its N-terminus is more buried than the C-terminus. In addition, the ESEEM data fitting yielded a (2)H layer density that was much lower than expected. The DEER experiments revealed the presence of oligomers, the presence of which was attributable to the negative mismatch and the electrostatic dipole of the peptide. A discussion of a possible arrangement of the individual helices in the oligomers that is consistent with the ESEEM and DEER data is presented.
Collapse
Affiliation(s)
- Erez Matalon
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | | | |
Collapse
|
32
|
Hussain S, Franck JM, Han S. Transmembrane Protein Activation Refined by Site-Specific Hydration Dynamics. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201206147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Hussain S, Franck JM, Han S. Transmembrane protein activation refined by site-specific hydration dynamics. Angew Chem Int Ed Engl 2013; 52:1953-8. [PMID: 23307344 DOI: 10.1002/anie.201206147] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/18/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Sunyia Hussain
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93016, USA
| | | | | |
Collapse
|
34
|
Doll A, Bordignon E, Joseph B, Tschaggelar R, Jeschke G. Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 222:34-43. [PMID: 22820007 DOI: 10.1016/j.jmr.2012.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 05/03/2023]
Abstract
We demonstrate the application of continuous wave dynamic nuclear polarization (DNP) at 0.35 T for site-specific water accessibility studies on spin-labeled membrane proteins at concentrations in the 10-100 μM range. The DNP effects at such low concentrations are weak and the experimentally achievable dynamic nuclear polarizations can be below the equilibrium polarization. This sensitivity problem is solved with an optimized home-built DNP probe head consisting of a dielectric microwave resonator and a saddle coil as close as possible to the sample. The performance of the probe head is demonstrated with both a modified pulsed EPR spectrometer and a dedicated CW EPR spectrometer equipped with a commercial NMR console. In comparison to a commercial pulsed ENDOR resonator, the home-built resonator has an FID detection sensitivity improvement of 2.15 and an electron spin excitation field improvement of 1.2. The reproducibility of the DNP results is tested on the water soluble maltose binding protein MalE of the ABC maltose importer, where we determine a net standard deviation of 9% in the primary DNP data in the concentration range between 10 and 100 μM. DNP parameters are measured in a spin-labeled membrane protein, namely the vitamin B(12) importer BtuCD in both detergent-solubilized and reconstituted states. The data obtained in different nucleotide states in the presence and absence of binding protein BtuF reveal the applicability of this technique to qualitatively extract water accessibility changes between different conformations by the ratio of primary DNP parameters ϵ. The ϵ-ratio unveils the physiologically relevant transmembrane communication in the transporter in terms of changes in water accessibility at the cytoplasmic gate of the protein induced by both BtuF binding at the periplasmic region of the transporter and ATP binding at the cytoplasmic nucleotide binding domains.
Collapse
Affiliation(s)
- Andrin Doll
- ETH Zurich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Syryamina VN, De Zotti M, Peggion C, Formaggio F, Toniolo C, Raap J, Dzuba SA. A Molecular View on the Role of Cholesterol upon Membrane Insertion, Aggregation, and Water Accessibility of the Antibiotic Lipopeptide Trichogin GA IV As Revealed by EPR. J Phys Chem B 2012; 116:5653-60. [DOI: 10.1021/jp301660a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Victoria N. Syryamina
- Institute
of Chemical Kinetics
and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Jan Raap
- Leiden Institute
of Chemistry,
Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - Sergei A. Dzuba
- Institute
of Chemical Kinetics
and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
36
|
EPR and potentiometric studies of copper(II) binding to nicotinamide adenine dinucleotide (NAD+) in water solution. J Inorg Biochem 2012; 111:18-24. [PMID: 22484248 DOI: 10.1016/j.jinorgbio.2012.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 11/24/2022]
Abstract
Coordination of Cu(II) by nicotinamide adenine dinucleotide (NAD(+)) molecule has been studied in water solutions of various pH by potentiometry and electron paramagnetic resonance (EPR) and electron spin echo (ESE) spectroscopy. Potentiometric results indicate Cu(II) coordination by protonated NAD(+) at low pH and by deprotonated NAD(+) at high pH. At medium pH value (around pH=7) NAD(+) is not able to coordinate Cu(II) ions effectively and mainly the Cu(H(2)O)(6) complexes exist in the studied solution. This has been confirmed by EPR results. Electronic structure of Cu(II)-NAD complex and coordination sites is determined from EPR and ESE measurements in frozen solutions (at 77K and 6K). EPR spectra exclude coordination with nitrogen atoms. Detailed analysis of EPR parameters (g(||)=2.420, g(perpendicular)==2.080, A(||)=-131×10(-4)cm(-1) and A(perpendicular)=8×10(-4)cm(-1)) performed in terms of molecular orbital (MO) theory shows that Cu(II)NAD complex has elongated axial octahedral symmetry with a relatively strong delocalization of unpaired electron density on in-plane and axial ligands. The distortion of octahedron is analyzed using A(||) vs. g(||) diagram for various CuO(x) complexes. Electron spin echo decay modulation excludes the coordination by oxygen atoms of phosphate groups. We postulate a coordination of Cu(II) by two hydroxyl oxygen atoms of two ribose moieties of the NAD molecules and four solvated water molecules both at low and high pH values with larger elongation of the octahedron at higher pH.
Collapse
|
37
|
Gordon-Grossman M, Zimmermann H, Wolf SG, Shai Y, Goldfarb D. Investigation of Model Membrane Disruption Mechanism by Melittin using Pulse Electron Paramagnetic Resonance Spectroscopy and Cryogenic Transmission Electron Microscopy. J Phys Chem B 2011; 116:179-88. [DOI: 10.1021/jp207159z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Mayo D, Zhou A, Sahu I, McCarrick R, Walton P, Ring A, Troxel K, Coey A, Hawn J, Emwas AH, Lorigan GA. Probing the structure of membrane proteins with electron spin echo envelope modulation spectroscopy. Protein Sci 2011; 20:1100-4. [PMID: 21563228 DOI: 10.1002/pro.656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 11/09/2022]
Abstract
A new approach has been developed to probe the structural properties of membrane peptides and proteins using the pulsed electron paramagnetic resonance technique of electron spin echo envelope modulation (ESEEM) spectroscopy and the α-helical M2δ subunit of the acetylcholine receptor incorporated into phospholipid bicelles. To demonstrate the practicality of this method, a cysteine-mutated nitroxide spin label (SL) is positioned 1, 2, 3, and 4 residues away from a fully deuterated Val side chain (denoted i + 1 to i + 4). The characteristic periodicity of the α-helical structure gives rise to a unique pattern in the ESEEM spectra. In the i + 1 and i + 2 samples, the ²H nuclei are too far away to be detected. However, with the 3.6 residue per turn pattern of an α-helix, the i + 3 and i + 4 samples reveal a strong signal from the ²H nuclei of the Val side chain. Modeling studies verify these data suggesting that the closest ²H-labeled Val to SL distance would in fact be expected in the i + 3 and i + 4 samples. This technique is very advantageous, because it provides pertinent qualitative structural information on an inherently difficult system like membrane proteins in a short period of time (minutes) with small amounts of protein (μg).
Collapse
Affiliation(s)
- Daniel Mayo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochem J 2011; 436:609-20. [DOI: 10.1042/bj20110056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytotoxicity, a major obstacle in therapeutic application of antimicrobial peptides, is controlled by leucine-zipper-like sequences in melittin and other naturally occurring antimicrobial peptides. Magainin 2 shows significantly lower cytotoxicity than many naturally occurring antimicrobial peptides and lacks this structural element. To investigate the consequences of introducing a leucine zipper sequence in magainin 2, a novel analogue (Mag-mut) was designed by rearranging only the positions of its hydrophobic amino acids to include this structural element. Both magainin 2 and Mag-mut showed appreciable similarities in their secondary structures in the presence of negatively charged lipid vesicles, in localizing and permeabilizing the selected bacteria and exhibiting bactericidal activities. However, Mag-mut bound and localized strongly on to the mammalian cells tested and exhibited significantly higher cytotoxicity than magainin 2. Only Mag-mut, but not magainin 2, permeabilized human red blood cells and zwitterionic lipid vesicles. In contrast with magainin 2, Mag-mut self-assembled in an aqueous environment and bound co-operatively on to zwitterionic lipid vesicles. The peptides formed pores of different sizes on to a selected mammalian cell. The results of the present study indicate an important role of the leucine zipper sequence in the cytotoxicity of Mag-mut and demonstrate that its introduction into a non-toxic peptide, without altering the amino acid composition, can render cytotoxicity.
Collapse
|
40
|
Chu S, Maltsev S, Emwas AH, Lorigan GA. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 207:89-94. [PMID: 20851650 PMCID: PMC2978330 DOI: 10.1016/j.jmr.2010.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 05/20/2023]
Abstract
A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T₁) times of ³¹P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The ³¹P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τ(c), the r⁻⁶-weighted, time-averaged distances between the spin-labels and the ³¹P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - A-H Emwas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| |
Collapse
|
41
|
Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S, Verma R, Vishwakarma AL, Ghosh JK. Cell-Selective Lysis by Novel Analogues of Melittin against Human Red Blood Cells and Escherichia coli. Biochemistry 2010; 49:7920-9. [DOI: 10.1021/bi100729m] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Cieslak JA, Focia PJ, Gross A. Electron spin-echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel. Biochemistry 2010; 49:1486-94. [PMID: 20092291 DOI: 10.1021/bi9016523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that (31)P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the (31)P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.
Collapse
Affiliation(s)
- John A Cieslak
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
43
|
Gordon-Grossman M, Gofman Y, Zimmermann H, Frydman V, Shai Y, Ben-Tal N, Goldfarb D. A Combined Pulse EPR and Monte Carlo Simulation Study Provides Molecular Insight on Peptide−Membrane Interactions. J Phys Chem B 2009; 113:12687-95. [DOI: 10.1021/jp905129b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michal Gordon-Grossman
- Departments of Chemical Physics, Chemical Infrastructure
Unit, Biological Chemistry, The Weizmann Institute of Science, Rehovot,
Israel 76100, GKSS Research Center, Geesthacht, Germany 21502, Max-Planck
Institute for Medical Research, Heidelberg, Germany, and Department
of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv
University, Tel-Aviv, Israel 69978
| | - Yana Gofman
- Departments of Chemical Physics, Chemical Infrastructure
Unit, Biological Chemistry, The Weizmann Institute of Science, Rehovot,
Israel 76100, GKSS Research Center, Geesthacht, Germany 21502, Max-Planck
Institute for Medical Research, Heidelberg, Germany, and Department
of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv
University, Tel-Aviv, Israel 69978
| | - Herbert Zimmermann
- Departments of Chemical Physics, Chemical Infrastructure
Unit, Biological Chemistry, The Weizmann Institute of Science, Rehovot,
Israel 76100, GKSS Research Center, Geesthacht, Germany 21502, Max-Planck
Institute for Medical Research, Heidelberg, Germany, and Department
of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv
University, Tel-Aviv, Israel 69978
| | - Veronica Frydman
- Departments of Chemical Physics, Chemical Infrastructure
Unit, Biological Chemistry, The Weizmann Institute of Science, Rehovot,
Israel 76100, GKSS Research Center, Geesthacht, Germany 21502, Max-Planck
Institute for Medical Research, Heidelberg, Germany, and Department
of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv
University, Tel-Aviv, Israel 69978
| | - Yechiel Shai
- Departments of Chemical Physics, Chemical Infrastructure
Unit, Biological Chemistry, The Weizmann Institute of Science, Rehovot,
Israel 76100, GKSS Research Center, Geesthacht, Germany 21502, Max-Planck
Institute for Medical Research, Heidelberg, Germany, and Department
of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv
University, Tel-Aviv, Israel 69978
| | - Nir Ben-Tal
- Departments of Chemical Physics, Chemical Infrastructure
Unit, Biological Chemistry, The Weizmann Institute of Science, Rehovot,
Israel 76100, GKSS Research Center, Geesthacht, Germany 21502, Max-Planck
Institute for Medical Research, Heidelberg, Germany, and Department
of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv
University, Tel-Aviv, Israel 69978
| | - Daniella Goldfarb
- Departments of Chemical Physics, Chemical Infrastructure
Unit, Biological Chemistry, The Weizmann Institute of Science, Rehovot,
Israel 76100, GKSS Research Center, Geesthacht, Germany 21502, Max-Planck
Institute for Medical Research, Heidelberg, Germany, and Department
of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv
University, Tel-Aviv, Israel 69978
| |
Collapse
|
44
|
Ionita G, Florent M, Goldfarb D, Chechik V. Studying Supramolecular Assemblies by ESEEM Spectroscopy: Inclusion Complexes of Cyclodextrins. J Phys Chem B 2009; 113:5781-7. [DOI: 10.1021/jp8099048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gabriela Ionita
- Institute of Physical Chemistry, 202 Splaiul Independentei, Bucharest, Romania 060021, Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel 76100, and Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Marc Florent
- Institute of Physical Chemistry, 202 Splaiul Independentei, Bucharest, Romania 060021, Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel 76100, and Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Daniella Goldfarb
- Institute of Physical Chemistry, 202 Splaiul Independentei, Bucharest, Romania 060021, Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel 76100, and Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Victor Chechik
- Institute of Physical Chemistry, 202 Splaiul Independentei, Bucharest, Romania 060021, Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel 76100, and Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
45
|
Volkov A, Dockter C, Bund T, Paulsen H, Jeschke G. Pulsed EPR determination of water accessibility to spin-labeled amino acid residues in LHCIIb. Biophys J 2009; 96:1124-41. [PMID: 19186148 PMCID: PMC2716639 DOI: 10.1016/j.bpj.2008.09.047] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 09/22/2008] [Indexed: 11/24/2022] Open
Abstract
Membrane proteins reside in a structured environment in which some of their residues are accessible to water, some are in contact with alkyl chains of lipid molecules, and some are buried in the protein. Water accessibility of residues may change during folding or function-related structural dynamics. Several techniques based on the combination of pulsed electron paramagnetic resonance (EPR) with site-directed spin labeling can be used to quantify such water accessibility. Accessibility parameters for different residues in major plant light-harvesting complex IIb are determined by electron spin echo envelope modulation spectroscopy in the presence of deuterated water, deuterium contrast in transversal relaxation rates, analysis of longitudinal relaxation rates, and line shape analysis of electron-spin-echo-detected EPR spectra as well as by the conventional techniques of measuring the maximum hyperfine splitting and progressive saturation in continuous-wave EPR. Systematic comparison of these parameters allows for a more detailed characterization of the environment of the spin-labeled residues. These techniques are applicable independently of protein size and require approximately 10-20 nmol of singly spin-labeled protein per sample. For a residue close to the N-terminus, in a domain unresolved in the existing x-ray structures of light-harvesting complex IIb, all methods indicate high water accessibility.
Collapse
Affiliation(s)
- A. Volkov
- Max-Planck Institute for Polymer Research, Mainz, Germany
| | - C. Dockter
- Institute of General Botany, Johannes Gutenberg University, Mainz, Germany
| | - T. Bund
- Institute of General Botany, Johannes Gutenberg University, Mainz, Germany
| | - H. Paulsen
- Institute of General Botany, Johannes Gutenberg University, Mainz, Germany
| | - G. Jeschke
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, Zürich, Switzerland
| |
Collapse
|
46
|
De Simone F, Guzzi R, Sportelli L, Marsh D, Bartucci R. Electron spin-echo studies of spin-labelled lipid membranes and free fatty acids interacting with human serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1541-9. [PMID: 17397796 DOI: 10.1016/j.bbamem.2007.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/29/2007] [Accepted: 02/12/2007] [Indexed: 11/23/2022]
Abstract
Human serum albumin (HSA) is an abundant plasma protein that transports fatty acids and also binds a wide variety of hydrophobic pharmacores. Echo-detected (ED) EPR spectra and D(2)O-electron spin echo envelope modulation (ESEEM) Fourier-transform spectra of spin-labelled free fatty acids and phospholipids were used jointly to investigate the binding of stearic acid to HSA and the adsorption of the protein on dipalmitoyl phosphatidylcholine (DPPC) membranes. In membranes, torsional librations are detected in the ED-spectra, the intensity of which depends on chain position at low temperature. Water penetration into the membrane is seen in the D(2)O-ESEEM spectra, the intensity of which decreases greatly at the middle of the membrane. Both the chain librational motion and the water penetration are only little affected by adsorption of serum albumin at the DPPC membrane surface. In contrast, both the librational motion and the accessibility of the chains to water are very different in the hydrophobic fatty acid binding sites of HSA from those in membranes. Indeed, the librational motion of bound fatty acids is suppressed at low temperature, and is similar for the different chain positions, at all temperatures. Correspondingly, all segments of the bound chains are accessible to water, to rather similar extents.
Collapse
Affiliation(s)
- Francesco De Simone
- Dipartimento di Fisica, Laboratorio di Biofisica Molecolare and UdR CNISM, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy
| | | | | | | | | |
Collapse
|
47
|
van den Bogaart G, Mika JT, Krasnikov V, Poolman B. The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis. Biophys J 2007; 93:154-63. [PMID: 17434946 PMCID: PMC1914432 DOI: 10.1529/biophysj.107.106005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dual-color fluorescence-burst analysis was used to study melittin-induced leakage of macromolecules from liposomes of various lipid compositions. To perform dual-color fluorescence-burst analysis, fluorescently labeled size-marker molecules were encapsulated into liposomes, labeled with a second lipid-attached fluorophore. By correlating the fluorescence bursts, resulting from the liposomes diffusing through the detection volume of a dual-color confocal microscope, the distribution of size-marker molecules over the liposomes was determined. It was found that melittin causes leakage via two different mechanisms: 1), For liposomes composed of neutral bilayer-forming lipids, low melittin concentrations induced pore formation with the pore size depending on the melittin concentration. 2), For liposomes containing anionic and/or nonbilayer forming lipids, melittin induced fusion or aggregation of liposomes accompanied by a-specific leakage. Experiments with liposomes prepared from Escherichia coli lipid extracts and intact cells of Lactococcus lactis indicate that both mechanisms are physiologically relevant.
Collapse
Affiliation(s)
- Geert van den Bogaart
- Biochemistry Department, Groningen Biomolecular Science and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|