1
|
Zilberzwige-Tal S, Fontanarrosa P, Bychenko D, Dorfan Y, Gazit E, Myers CJ. Investigating and Modeling the Factors That Affect Genetic Circuit Performance. ACS Synth Biol 2023; 12:3189-3204. [PMID: 37916512 PMCID: PMC10661042 DOI: 10.1021/acssynbio.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 11/03/2023]
Abstract
Over the past 2 decades, synthetic biology has yielded ever more complex genetic circuits that are able to perform sophisticated functions in response to specific signals. Yet, genetic circuits are not immediately transferable to an outside-the-lab setting where their performance is highly compromised. We propose introducing a broader test step to the design-build-test-learn workflow to include factors that might contribute to unexpected genetic circuit performance. As a proof of concept, we have designed and evaluated a genetic circuit in various temperatures, inducer concentrations, nonsterilized soil exposure, and bacterial growth stages. We determined that the circuit's performance is dramatically altered when these factors differ from the optimal lab conditions. We observed significant changes in the time for signal detection as well as signal intensity when the genetic circuit was tested under nonoptimal lab conditions. As a learning effort, we then proceeded to generate model predictions in untested conditions, which is currently lacking in synthetic biology application design. Furthermore, broader test and learn steps uncovered a negative correlation between the time it takes for a gate to turn ON and the bacterial growth phases. As the synthetic biology discipline transitions from proof-of-concept genetic programs to appropriate and safe application implementations, more emphasis on test and learn steps (i.e., characterizing parts and circuits for a broad range of conditions) will provide missing insights on genetic circuit behavior outside the lab.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Pedro Fontanarrosa
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Darya Bychenko
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Yuval Dorfan
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Bio-engineering,
Electrical Engineering Faculty, Holon Institute
of Technology (HIT), Holon 5810201, Israel
- Alagene
Ltd., Innovation Center, Reichman University, Herzliya 7670608, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Chris J. Myers
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Baggett DW, Medyukhina A, Tripathi S, Shirnekhi HK, Wu H, Pounds SB, Khairy K, Kriwacki R. An Image Analysis Pipeline for Quantifying the Features of Fluorescently-Labeled Biomolecular Condensates in Cells. FRONTIERS IN BIOINFORMATICS 2022; 2:897238. [PMID: 36304323 PMCID: PMC9580871 DOI: 10.3389/fbinf.2022.897238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biomolecular condensates are cellular organelles formed through liquid-liquid phase separation (LLPS) that play critical roles in cellular functions including signaling, transcription, translation, and stress response. Importantly, condensate misregulation is associated with human diseases, including neurodegeneration and cancer among others. When condensate-forming biomolecules are fluorescently-labeled and examined with fluorescence microscopy they appear as illuminated foci, or puncta, in cells. Puncta features such as number, volume, shape, location, and concentration of biomolecular species within them are influenced by the thermodynamics of biomolecular interactions that underlie LLPS. Quantification of puncta features enables evaluation of the thermodynamic driving force for LLPS and facilitates quantitative comparisons of puncta formed under different cellular conditions or by different biomolecules. Our work on nucleoporin 98 (NUP98) fusion oncoproteins (FOs) associated with pediatric leukemia inspired us to develop an objective and reliable computational approach for such analyses. The NUP98-HOXA9 FO forms hundreds of punctate transcriptional condensates in cells, leading to hematopoietic cell transformation and leukemogenesis. To quantify the features of these puncta and derive the associated thermodynamic parameters, we developed a live-cell fluorescence microscopy image processing pipeline based on existing methodologies and open-source tools. The pipeline quantifies the numbers and volumes of puncta and fluorescence intensities of the fluorescently-labeled biomolecule(s) within them and generates reports of their features for hundreds of cells. Using a standard curve of fluorescence intensity versus protein concentration, the pipeline determines the apparent molar concentration of fluorescently-labeled biomolecules within and outside of puncta and calculates the partition coefficient (Kp) and Gibbs free energy of transfer (ΔGTr), which quantify the favorability of a labeled biomolecule partitioning into puncta. In addition, we provide a library of R functions for statistical analysis of the extracted measurements for certain experimental designs. The source code, analysis notebooks, and test data for the Punctatools pipeline are available on GitHub: https://github.com/stjude/punctatools. Here, we provide a protocol for applying our Punctatools pipeline to extract puncta features from fluorescence microscopy images of cells.
Collapse
Affiliation(s)
- David W. Baggett
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Anna Medyukhina
- Center for Bioimage Informatics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Swarnendu Tripathi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Hazheen K. Shirnekhi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Stanley B. Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Khaled Khairy
- Center for Bioimage Informatics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Integrated Biomedical Sciences Program, The University of Tennessee Science Center, Memphis, TN, United States
| |
Collapse
|
3
|
Morikawa TJ, Nishiyama M, Yoshizawa K, Fujita H, Watanabe TM. Glycine insertion modulates the fluorescence properties of Aequorea victoria green fluorescent protein and its variants in their ambient environment. Biophys Physicobiol 2021; 18:145-158. [PMID: 34178565 PMCID: PMC8214926 DOI: 10.2142/biophysico.bppb-v18.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 12/04/2022] Open
Abstract
The green fluorescent protein (GFP) derived from Pacific Ocean jellyfish is an essential tool in biology. GFP-solvent interactions can modulate the fluorescent property of GFP. We previously reported that glycine insertion is an effective mutation in the yellow variant of GFP, yellow fluorescent protein (YFP). Glycine insertion into one of the β-strands comprising the barrel structure distorts its structure, allowing water molecules to invade near the chromophore, enhancing hydrostatic pressure or solution hydrophobicity sensitivity. However, the underlying mechanism of how glycine insertion imparts environmental sensitivity to YFP has not been elucidated yet. To unveil the relationship between fluorescence and β-strand distortion, we investigated the effects of glycine insertion on the dependence of the optical properties of GFP variants named enhanced-GFP (eGFP) and its yellow (eYFP) and cyan (eCFP) variants with respect to pH, temperature, pressure, and hydrophobicity. Our results showed that the quantum yield decreased depending on the number of inserted glycines in all variants, and the dependence on pH, temperature, pressure, and hydrophobicity was altered, indicating the invasion of water molecules into the β-barrel. Peak shifts in the emission spectrum were observed in glycine-inserted eGFP, suggesting a change of the electric state in the excited chromophore. A comparative investigation of the spectral shift among variants under different conditions demonstrated that glycine insertion rearranged the hydrogen bond network between His148 and the chromophore. The present results provide important insights for further understanding the fluorescence mechanism in GFPs and suggest that glycine insertion could be a potent approach for investigating the relationship between water molecules and the intra-protein chromophore.
Collapse
Affiliation(s)
- Takamitsu J Morikawa
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Keiko Yoshizawa
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan
| | - Hideaki Fujita
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
4
|
Savelev I, Myakishev-Rempel M. Evidence for DNA resonance signaling via longitudinal hydrogen bonds. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 156:14-19. [PMID: 32712047 DOI: 10.1016/j.pbiomolbio.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 12/22/2022]
Abstract
The theory of the morphogenic field suggests that chemical signaling is supplemented by electromagnetic signaling governing the structure and shape of tissues, organs and the body. The theory of DNA resonance suggests that the morphogenic field is created by the genomic DNA which sends and receives electromagnetic signals in a sequence-specific manner. Previously, the authors have proposed the existence of HIDERs, genomic elements that serve as antennas in resonance signaling and demonstrated that they occur nonrandomly and are conserved in evolution. Here, it is proposed that longitudinal hydrogen bonds exist in the double helix, that chains of these bonds form delocalized proton clouds, that the shapes of these clouds are sequence-specific and form the basis of sequence-specificity of resonance between HIDERs. Based on longitudinal hydrogen bonds, a proton DNA resonance code was devised and used to identify HIDERs which are enriched 20 fold in the genome and conserved in evolution. It was suggested that these HIDERs are the key elements responsible for DNA resonance signaling and the formation of the morphogenic field.
Collapse
Affiliation(s)
| | - Max Myakishev-Rempel
- Localized Therapeutics, San Diego, CA, USA; DNA Resonance Lab, San Diego, CA, USA.
| |
Collapse
|
5
|
Single-Molecule Imaging and Computational Microscopy Approaches Clarify the Mechanism of the Dimerization and Membrane Interactions of Green Fluorescent Protein. Int J Mol Sci 2019; 20:ijms20061410. [PMID: 30897814 PMCID: PMC6471090 DOI: 10.3390/ijms20061410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/01/2023] Open
Abstract
Green fluorescent protein (GFP) is widely used as a biomarker in living systems; however, GFP and its variants are prone to forming low-affinity dimers under physiological conditions. This undesirable tendency is exacerbated when fluorescent proteins (FP) are confined to membranes, fused to naturally-oligomeric proteins, or expressed at high levels in cells. Oligomerization of FPs introduces artifacts into the measurement of subunit stoichiometry, as well as interactions between proteins fused to FPs. Introduction of a single mutation, A206K, has been shown to disrupt hydrophobic interactions in the region responsible for GFP dimerization, thereby contributing to its monomerization. Nevertheless, a detailed understanding of how this single amino acid-dependent inhibition of dimerization in GFP occurs at the atomic level is still lacking. Single-molecule experiments combined with computational microscopy (atomistic molecular dynamics) revealed that the amino group of A206 contributes to GFP dimer formation via a multivalent electrostatic interaction. We further showed that myristoyl modification is an efficient mechanism to promote membrane attachment of GFP. Molecular dynamics-based site-directed mutagenesis has been used to identify the key functional residues in FPs. The data presented here have been utilized as a monomeric control in downstream single-molecule studies, facilitating more accurate stoichiometry quantification of functional protein complexes in living cells.
Collapse
|
6
|
Amdursky N, Głowacki ED, Meredith P. Macroscale Biomolecular Electronics and Ionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802221. [PMID: 30334284 DOI: 10.1002/adma.201802221] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/25/2018] [Indexed: 05/18/2023]
Abstract
The conduction of ions and electrons over multiple length scales is central to the processes that drive the biological world. The multidisciplinary attempts to elucidate the physics and chemistry of electron, proton, and ion transfer in biological charge transfer have focused primarily on the nano- and microscales. However, recently significant progress has been made on biomolecular materials that can support ion and electron currents over millimeters if not centimeters. Likewise, similar transport phenomena in organic semiconductors and ionics have led to new innovations in a wide variety of applications from energy generation and storage to displays and bioelectronics. Here, the underlying principles of conduction on the macroscale in biomolecular materials are discussed, highlighting recent examples, and particularly the establishment of accurate structure-property relationships to guide rationale material and device design. The technological viability of biomolecular electronics and ionics is also discussed.
Collapse
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, SE-60174, Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, 58183, Linköping, Sweden
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
7
|
Abstract
Inside proteins, protons move on proton wires (PWs). Starting from the highest resolution X-ray structure available, we conduct a 306 ns molecular dynamics simulation of the (A-state) wild-type (wt) green fluorescent protein (GFP) to study how its PWs change with time. We find that the PW from the chromophore via Ser205 to Glu222, observed in all X-ray structures, undergoes rapid water molecule insertion between Ser205 and Glu222. Sometimes, an alternate Ser205-bypassing PW exists. Side chain rotations of Thr203 and Ser205 play an important role in shaping the PW network in the chromophore region. Thr203, with its bulkier side chain, exhibits slower transitions between its three rotameric states. Ser205 experiences more frequent rotations, slowing down when the Thr203 methyl group is close by. The combined states of both residues affect the PW probabilities. A random walk search for PWs from the chromophore reveals several exit points to the bulk, one being a direct water wire (WW) from the chromophore to the bulk. A longer WW connects the "bottom" of the GFP barrel with a "water pool" (WP1) situated below Glu222. These two WWs were not observed in X-ray structures of wt-GFP, but their analogues have been reported in related fluorescent proteins. Surprisingly, the high-resolution X-ray structure utilized herein shows that Glu222 is protonated at low temperatures. At higher temperatures, we suggest ion pairing between anionic Glu222 and a proton hosted in WP1. Upon photoexcitation, these two recombine, while a second proton dissociates from the chromophore and either exits the protein using the short WW or migrates along the GFP-barrel axis on the long WW. This mechanism reconciles the conflicting experimental and theoretical data on proton motion within GFP.
Collapse
Affiliation(s)
- Ai Shinobu
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Noam Agmon
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
8
|
Tran LH, Lee C, Kang TJ, Jang SH. Graphene Oxide-mediated Fluorescence Quenching of Green Fluorescent Protein for Biomedical Applications. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lan-Huong Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials; Daegu University; Gyeongsan 38453 Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials; Daegu University; Gyeongsan 38453 Korea
| | - Tai Jong Kang
- Department of Chemistry and Applied Chemistry; Daegu University; Gyeongsan 38453 Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials; Daegu University; Gyeongsan 38453 Korea
| |
Collapse
|
9
|
Kipriyanov AA, Kipriyanov AA, Doktorov AB. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A↔ C↔ B + B. J Chem Phys 2016; 144:144110. [DOI: 10.1063/1.4945626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Dependence of fluorescent protein brightness on protein concentration in solution and enhancement of it. Sci Rep 2016; 6:22342. [PMID: 26956628 PMCID: PMC4783657 DOI: 10.1038/srep22342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
Fluorescent proteins have been widely used in biology because of their compatibility and varied applications in living specimens. Fluorescent proteins are often undesirably sensitive to intracellular conditions such as pH and ion concentration, generating considerable issues at times. However, harnessing these intrinsic sensitivities can help develop functional probes. In this study, we found that the fluorescence of yellow fluorescent protein (YFP) depends on the protein concentration in the solution and that this dependence can be enhanced by adding a glycine residue in to the YFP; we applied this finding to construct an intracellular protein-crowding sensor. A Förster resonance energy transfer (FRET) pair, involving a cyan fluorescent protein (CFP) insensitive to protein concentration and a glycine-inserted YFP, works as a genetically encoded probe to evaluate intracellular crowding. By measuring the fluorescence of the present FRET probe, we were able to detect dynamic changes in protein crowding in living cells.
Collapse
|
11
|
Liu B, Xue Y, Zhao W, Chen Y, Fan C, Gu L, Zhang Y, Zhang X, Sun L, Huang X, Ding W, Sun F, Ji W, Xu T. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci Rep 2015; 5:13017. [PMID: 26462878 PMCID: PMC4604464 DOI: 10.1038/srep13017] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
We demonstrate the use of cryogenic super-resolution correlative light and electron microscopy (csCLEM) to precisely determine the spatial relationship between proteins and their native cellular structures. Several fluorescent proteins (FPs) were found to be photoswitchable and emitted far more photons under our cryogenic imaging condition, resulting in higher localization precision which is comparable to ambient super-resolution imaging. Vitrified specimens were prepared by high pressure freezing and cryo-sectioning to maintain a near-native state with better fluorescence preservation. A 2-3-fold improvement of resolution over the recent reports was achieved due to the photon budget performance of screening out Dronpa and optimized imaging conditions, even with thin sections which is at a disadvantage when calculate the structure resolution from label density. We extended csCLEM to mammalian cells by introducing cryo-sectioning and observed good correlation of a mitochondrial protein with the mitochondrial outer membrane at nanometer resolution in three dimensions.
Collapse
Affiliation(s)
- Bei Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Fan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lusheng Gu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yongdeng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaojun Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Temperature sensing using red fluorescent protein. BIOTECHNOL BIOPROC E 2015; 20:67-72. [PMID: 32218680 PMCID: PMC7090752 DOI: 10.1007/s12257-014-0456-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/17/2023]
Abstract
Genetically encoded fluorescent proteins are extensively utilized for labeling and imaging proteins, organelles, cell tissues, and whole organisms. In this study, we explored the feasibility of mRFP1 and its variants for measuring intracellular temperature. A linear relationship was observed between the temperature and fluorescence intensity of mRFP1 and its variants. Temperature sensitivities of E. coli expressing mRFP1, mRFP-P63A and mRFP-P63A[(4R)-FP] were -1.27%, -1.26% and -0.77%/°C, respectively. Finally, we demonstrated the potentiality of mRFP1 and its variants as an in vivo temperature sensor.
Collapse
|
13
|
Shinobu A, Agmon N. The Hole in the Barrel: Water Exchange at the GFP Chromophore. J Phys Chem B 2015; 119:3464-78. [DOI: 10.1021/jp5127255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ai Shinobu
- The Fritz
Haber Research
Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Noam Agmon
- The Fritz
Haber Research
Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Yamamoto S, Park S, Sugiyama H. Development of a visible nanothermometer with a highly emissive 2′-O-methylated guanosine analogue. RSC Adv 2015. [DOI: 10.1039/c5ra24756j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have synthesized a fluorescent base analogue, 2-aminothieno[3,4-d]pyrimidine based G-mimic deoxyribonucleoside, 2′-OMe-thG, and investigated its photophysical properties and DNA incorporation.
Collapse
Affiliation(s)
- Seigi Yamamoto
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Soyoung Park
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Hiroshi Sugiyama
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
15
|
Isaev AN. Structure of a proton wire in the harmonic model with allowance for the interproton interaction for the first and second neighbors. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Velez-Vega C, McKay DJJ, Aravamuthan V, Pearlstein R, Duca JS. Time-averaged distributions of solute and solvent motions: exploring proton wires of GFP and PfM2DH. J Chem Inf Model 2014; 54:3344-61. [PMID: 25405925 DOI: 10.1021/ci500571h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton translocation pathways of selected variants of the green fluorescent protein (GFP) and Pseudomonas fluorescens mannitol 2-dehydrogenase (PfM2DH) were investigated via an explicit solvent molecular dynamics-based analysis protocol that allows for direct quantitative relationship between a crystal structure and its time-averaged solute-solvent structure obtained from simulation. Our study of GFP is in good agreement with previous research suggesting that the proton released from the chromophore upon photoexcitation can diffuse through an extended internal hydrogen bonding network that allows for the proton to exit to bulk or be recaptured by the anionic chromophore. Conversely for PfM2DH, we identified the most probable ionization states of key residues along the proton escape channel from the catalytic site to bulk solvent, wherein the solute and high-density solvent crystal structures of binary and ternary complexes were properly reproduced. Furthermore, we proposed a plausible mechanism for this proton translocation process that is consistent with the state-dependent structural shifts observed in our analysis. The time-averaged structures generated from our analyses facilitate validation of MD simulation results and provide a comprehensive profile of the dynamic all-occupancy solvation network within and around a flexible solute, from which detailed hydrogen-bonding networks can be inferred. In this way, potential drawbacks arising from the elucidation of these networks by examination of static crystal structures or via alternate rigid-protein solvation analysis procedures can be overcome. Complementary studies aimed at the effective use of our methodology for alternate implementations (e.g., ligand design) are currently underway.
Collapse
Affiliation(s)
- Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
17
|
Mironov VA, Bravaya KB, Nemukhin AV. Role of Zwitterions in Kindling Fluorescent Protein Photochemistry. J Phys Chem B 2014; 119:2467-74. [DOI: 10.1021/jp5075219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vladimir A. Mironov
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow, 119991, Russian Federation
| | - Ksenia B. Bravaya
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Alexander V. Nemukhin
- Department
of Chemistry, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow, 119991, Russian Federation
- N.M.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119334, Russian Federation
| |
Collapse
|
18
|
Seixas de Melo JS, Maçanita AL. Unveiling the Eigen-Weller ion pair from the excited state proton transfer kinetics of 3-chloro-4-methyl-7-hydroxycoumarin. J Phys Chem B 2014; 119:2604-10. [PMID: 25325432 DOI: 10.1021/jp508782h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The prototropic reactions of the first excited singlet state of 3-chloro-4-methylumbelliferone (3Cl4MU), in dioxane:water mixtures (Dx:H2O), were revisited using ps-time-resolved fluorescence techniques. The data response to the dielectric constant of the mixtures revealed the presence of an additional fourth kinetic species, kinetically coupled to the neutral (N*), the tautomeric (T*), and anionic (A(-)*) forms of 3Cl4MU, which is assigned to the elusive geminate (A(-)*···H(+)) ion pair. From the data analysis, all rate constants of the prototropic and diffusion processes involved were separately evaluated. The results showed that, whenever the geminate ionic pair is not kinetically detected, the evaluated values for deprotonation and protonation rate constants can substantially deviate from the real ones, depending on the efficiencies of pair recombination and dissociation. Finally, the results provide convincing kinetic evidence for the Eigen-Weller mechanism (intermediacy of the geminate ionic pair) in a quasi-aqueous medium, which to our knowledge had not yet been given.
Collapse
Affiliation(s)
- J Sérgio Seixas de Melo
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra , Rua Larga, 3004-535 Coimbra, Portugal
| | | |
Collapse
|
19
|
Kipriyanov AA, Doktorov AB. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics. J Chem Phys 2014; 141:144105. [DOI: 10.1063/1.4897257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Alexey A. Kipriyanov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia and Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander B. Doktorov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia and Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
20
|
Zhuo Y, Solntsev KM, Reddish F, Tang S, Yang JJ. Effect of Ca²⁺ on the steady-state and time-resolved emission properties of the genetically encoded fluorescent sensor CatchER. J Phys Chem B 2014; 119:2103-11. [PMID: 24836743 PMCID: PMC4329989 DOI: 10.1021/jp501707n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
We
previously designed a calcium sensor CatchER (a GFP-based Calcium
sensor for detecting high concentrations in the high calcium concentration
environment such as ER) with a capability for monitoring calcium ion
responses in various types of cells. Calcium binding to CatchER induces
the ratiometric changes in the absorption spectra, as well as an increase
in fluorescence emission at 510 nm upon excitation at both 395 and
488 nm. Here, we have applied the combination of the steady-state
and time-resolved optical methods and Hydrogen/Deuterium isotope exchange
to understand the origin of such calcium-induced optical property
changes of CatchER. We first demonstrated that calcium binding results
in a 44% mean fluorescence lifetime increase of the indirectly excited
anionic chromophore. Thus, CatchER is the first protein-based calcium
indicator with the single fluorescent moiety to show the direct correlation
between the lifetime and calcium binding. Calcium exhibits a strong
inhibition on the excited-state proton transfer nonadiabatic geminate
recombination in protic (vs deuteric) medium. Analysis of CatchER
crystal structures and the MD simulations reveal the proton transfer
mechanism in which the disrupted proton migration path in CatchER
is rescued by calcium binding. Our finding provides important insights
for a strategy to design calcium sensors and suggests that CatchER
could be a useful probe for FLIM imaging of calcium in situ.
Collapse
Affiliation(s)
- You Zhuo
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | | | | | | | | |
Collapse
|
21
|
Doktorov AB, Kipriyanov AA. General theory of multistage geminate reactions of isolated pairs of reactants. I. Kinetic equations. J Chem Phys 2014; 140:184104. [PMID: 24832250 DOI: 10.1063/1.4874001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
General matrix approach to the consideration of multistage geminate reactions of isolated pairs of reactants depending on reactant mobility is formulated on the basis of the concept of "effective" particles. Various elementary reactions (stages of multistage reaction including physicochemical processes of internal quantum state changes) proceeding with the participation of isolated pairs of reactants (or isolated reactants) are taken into account. Investigation has been made in terms of kinetic approach implying the derivation of general (matrix) kinetic equations for local and mean probabilities of finding any of the reaction species in the sample under study (or for local and mean concentrations). The recipes for the calculation of kinetic coefficients of the equations for mean quantities in terms of relative coordinates of reactants have been formulated in the general case of inhomogeneous reacting systems. Important specific case of homogeneous reacting systems is considered.
Collapse
Affiliation(s)
- Alexander B Doktorov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey A Kipriyanov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
22
|
Reigh SY. Effect of an external electric field on the diffusion-influenced geminate reversible reaction of a neutral particle and a charged particle in three dimensions. IV. Excited-state ABCD reaction. J Chem Phys 2014; 140:064502. [DOI: 10.1063/1.4864202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
23
|
Abstract
An engineered fluorescent protein exhibits visibly striking photochromism and thermochromism under ambient conditions.
Collapse
Affiliation(s)
- Y. Shen
- Department of Chemistry
- University of Alberta
- Edmonton, Canada
| | - M. D. Wiens
- Department of Chemistry
- University of Alberta
- Edmonton, Canada
| | - R. E. Campbell
- Department of Chemistry
- University of Alberta
- Edmonton, Canada
| |
Collapse
|
24
|
|
25
|
Simkovitch R, Huppert A, Huppert D, Remington SJ, Miller Y. Proton Transfer in Wild-Type GFP and S205V Mutant Is Reduced by Conformational Changes of Residues in the Proton Wire. J Phys Chem B 2013; 117:11921-31. [DOI: 10.1021/jp405698g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ron Simkovitch
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Huppert
- Gertner Research Center, Tel-Hashomer 52621, Israel
| | - Dan Huppert
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - S. James Remington
- Department
of Physics and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, United States
| | - Yifat Miller
- Department
of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be’er
Sheva 84105, Israel
- Ilse
Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel
| |
Collapse
|
26
|
Green fluorescent protein as an indicator of cryoinjury in tissues. Ann Biomed Eng 2013; 41:2676-86. [PMID: 23897049 DOI: 10.1007/s10439-013-0874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
The fluorescence intensity of Green Fluorescent Protein (GFP) has previously been demonstrated to be an accurate indicator of cellular viability following cryoinsult in individual GFP-transfected cells. In an attempt to ascertain whether GFP fluorescence intensity may also be used as a viability indicator following cryogenic insults in whole tissues, this study examines the transient fluorescence intensity of GFP-transfected mouse hepatic tissue ex vivo following cryoinsult. The observed trends are compared with diffusion-based models. It was observed that the fluorescence intensity of the exposed tissues exhibited slow exponential decay, while the solution in which the tissues were placed inversely gained fluorescence. This slow decay (~3 h) is in contrast to the rapidly diminished fluorescence intensity (seconds) seen in GFP-cell cultures following cryoinsult. These trends suggest that mass diffusion of GFP in the interstitial space, and ultimately into the surrounding medium, is the primary mechanism which determines the fluorescence loss in cryoinjured tissues. These results suggest GFP-transfected tissues may be effectively used as indicators of cryoinjury, and hence viability, following hypothermal insult provided that a sufficiently long incubation is held before observation. It was found that a meaningful observation (15% reduction in fluorescence) could be made three hours subsequent to cryoinjury for the tissues used in this study.
Collapse
|
27
|
Kang B, Karthikeyan S, Jang DJ, Kim H, Lee JY. Concerted Asynchronous Proton Transfer in H-Bonding Relay Model: An Implication of Green Fluorescent Protein. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.7.1961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Khokhlova SS, Agmon N. Green's function for reversible geminate reaction with volume reactivity. J Chem Phys 2013; 137:184103. [PMID: 23163360 DOI: 10.1063/1.4764357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The kinetics of a diffusing particle near a reversible trap may be described by an extension of the Feynman-Kac equation to the case of reversible binding, which can occur within a finite reaction sphere. We obtain the Green's function solution for the Laplace transform of this equation when the particle is initially either bound or unbound. We study the solution in the time-domain by either inverting the Laplace transform numerically or propagating the partial differential equation in the time-domain. We show that integrals of this solution over the reaction sphere agree with previously obtained solutions.
Collapse
Affiliation(s)
- Svetlana S Khokhlova
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
29
|
Fron E, Van der Auweraer M, Moeyaert B, Michiels J, Mizuno H, Hofkens J, Adam V. Revealing the excited-state dynamics of the fluorescent protein Dendra2. J Phys Chem B 2013; 117:2300-13. [PMID: 23356883 DOI: 10.1021/jp309219m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Green-to-red photoconversion is a reaction that occurs in a limited number of fluorescent proteins and that is currently mechanistically debated. In this contribution, we report on our investigation of the photoconvertible fluorescent protein Dendra2 by employing a combination of pump-probe, up-conversion and single photon timing spectroscopic techniques. Our findings indicate that upon excitation of the neutral green state an excited state proton transfer proceeds with a time constant of 3.4 ps between the neutral green and the anionic green states. In concentrated solution we detected resonance energy transfer (25 ps time constant) between green and red monomers. The time-resolved emission spectra suggest also the formation of a super-red species, first observed for DsRed (a red fluorescent protein from the corallimorph species Discosoma) and consistent with peculiar structural details present in both proteins.
Collapse
Affiliation(s)
- Eduard Fron
- Division of Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Ke G, Wang C, Ge Y, Zheng N, Zhu Z, Yang CJ. L-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells. J Am Chem Soc 2012; 134:18908-11. [PMID: 23126671 DOI: 10.1021/ja3082439] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Noninvasive and accurate measurement of intracellular temperature is of great significance in biology and medicine. This paper describes a safe, stable, and accurate intracellular nano-thermometer based on an L-DNA molecular beacon (L-MB), a dual-labeled hairpin oligonucleotide built from the optical isomer of naturally occurring d-DNA. Relying on the temperature-responsive hairpin structure and the FRET signaling mechanism of MBs, the fluorescence of L-MBs is quenched below the melting temperature and enhanced with increasing temperature. Because of the excellent reversibility and tunable response range, L-MBs are very suitable for temperature sensing. More importantly, the non-natural L-DNA backbone prevents the L-MBs from binding to cellular nucleic acids and proteins as well as from being digested by nucleases inside the cells, thus ensuring excellent stability and accuracy of the nano-thermometer in a complex cellular environment. The L-MB nano-thermometer was used for the photothermal study of Pd nanosheets in living cells, establishing the nano-thermometer as a useful tool for intracellular temperature measurement.
Collapse
Affiliation(s)
- Guoliang Ke
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
31
|
Manzo C, Zurla C, Dunlap DD, Finzi L. The effect of nonspecific binding of lambda repressor on DNA looping dynamics. Biophys J 2012; 103:1753-61. [PMID: 23083719 DOI: 10.1016/j.bpj.2012.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/11/2022] Open
Abstract
The λ repressor (CI) protein-induced DNA loop maintains stable lysogeny, yet allows efficient switching to lysis. Herein, the kinetics of loop formation and breakdown has been characterized at various concentrations of protein using tethered particle microscopy and a novel, to our knowledge, method of analysis. Our results show that a broad distribution of rate constants and complex kinetics underlie loop formation and breakdown. In addition, comparison of the kinetics of looping in wild-type DNA and DNA with mutated o3 operators showed that these sites may trigger nucleation of nonspecific binding at the closure of the loop. The average activation energy calculated from the rate constant distribution is consistent with a model in which nonspecific binding of CI between the operators shortens their effective separation, thereby lowering the energy barrier for loop formation and broadening the rate constant distribution for looping. Similarly, nonspecific binding affects the kinetics of loop breakdown by increasing the number of loop-securing protein interactions, and broadens the rate constant distribution for this reaction. Therefore, simultaneous increase of the rate constant for loop formation and reduction of that for loop breakdown stabilizes lysogeny. Given these simultaneous changes, the frequency of transitions between the looped and the unlooped state remains nearly constant. Although the loop becomes more stable thermodynamically with increasing CI concentration, it still opens periodically, conferring sensitivity to environmental changes, which may require switching to lytic conditions.
Collapse
Affiliation(s)
- Carlo Manzo
- Physics Department, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
32
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
33
|
First principle study of proton transfer in the green fluorescent protein (GFP): Ab initio PES in a cluster model. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Albers AE, Chan EM, McBride PM, Ajo-Franklin CM, Cohen BE, Helms BA. Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells. J Am Chem Soc 2012; 134:9565-8. [DOI: 10.1021/ja302290e] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Aaron E. Albers
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United
States
| | - Emory M. Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United
States
| | - Patrick M. McBride
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United
States
| | - Caroline M. Ajo-Franklin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United
States
| | - Bruce E. Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United
States
| | - Brett A. Helms
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United
States
| |
Collapse
|
35
|
Erez Y, Gepshtein R, Presiado I, Trujillo K, Kallio K, Remington SJ, Huppert D. Structure and Excited-State Proton Transfer in the GFP S205A Mutant. J Phys Chem B 2011; 115:11776-85. [DOI: 10.1021/jp2052689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuval Erez
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry Tel Aviv University, Tel Aviv 69978, Israel
| | - Rinat Gepshtein
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry Tel Aviv University, Tel Aviv 69978, Israel
| | - Itay Presiado
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry Tel Aviv University, Tel Aviv 69978, Israel
| | - Kristina Trujillo
- Institute of Molecular Biology and Department of Physics, University of Oregon 97403-1229, United States
| | - Karen Kallio
- Institute of Molecular Biology and Department of Physics, University of Oregon 97403-1229, United States
| | - S. James Remington
- Institute of Molecular Biology and Department of Physics, University of Oregon 97403-1229, United States
| | - Dan Huppert
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
36
|
Bettati S, Pasqualetto E, Lolli G, Campanini B, Battistutta R. Structure and single crystal spectroscopy of Green Fluorescent Proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:824-33. [PMID: 20940063 DOI: 10.1016/j.bbapap.2010.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 11/15/2022]
Abstract
Usually, spectroscopic data on proteins in solution are interpreted at molecular level on the basis of the three-dimensional structures determined in the crystalline state. While it is widely recognized that the protein crystal structures are reliable models for the solution 3D structures, nevertheless it is also clear that sometimes the crystallization process can introduce some "artifacts" that can make difficult or even flaw the attempt to correlate the properties in solution with those in the crystalline state. In general, therefore, it would be desirable to identify some sort of control. In the case of the spectroscopic properties of proteins, the most straightforward check is to acquire data not only in solution but also on the crystals. In this regard, the Green Fluorescent Protein (GFP) is an interesting case in that a massive quantity of data correlating the spectroscopic properties in solution with the structural information in the crystalline state is available in literature. Despite that, a relatively limited amount of spectroscopic studies on single crystals of GFP or related FPs have been described. Here we review and discuss the main spectroscopic (in solution) and structural (in crystals) studies performed on the GFP and related fluorescent proteins, together with the spectroscopic analyses on various FPs members in the crystalline state. One main conclusion is that "in cristallo" spectroscopic studies are useful in providing new opportunities for gathering information not available in solution and are highly recommended to reliably correlate solution properties with structural features. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Stefano Bettati
- Department of Biochemistry and Molecular Biology, University of Parma, Viale Usberti 23/A, 43124 Parma, Italy
| | | | | | | | | |
Collapse
|
37
|
Shinobu A, Palm GJ, Schierbeek AJ, Agmon N. Visualizing Proton Antenna in a High-Resolution Green Fluorescent Protein Structure. J Am Chem Soc 2010; 132:11093-102. [DOI: 10.1021/ja1010652] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ai Shinobu
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, Institute for Chemistry and Biochemistry, Ernst-Moritz-Arndt-University, 17489 Greifswald, Germany, Bruker AXS B.V., Oostsingel 209, Delft NL-2612 HL, The Netherlands, and Rigaku Europe, Unit B6, Chaucer Business Park, Watery Lane, Kemsing, Sevenoaks, Kent TN15 6QY, England
| | - Gottfried J. Palm
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, Institute for Chemistry and Biochemistry, Ernst-Moritz-Arndt-University, 17489 Greifswald, Germany, Bruker AXS B.V., Oostsingel 209, Delft NL-2612 HL, The Netherlands, and Rigaku Europe, Unit B6, Chaucer Business Park, Watery Lane, Kemsing, Sevenoaks, Kent TN15 6QY, England
| | - Abraham J. Schierbeek
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, Institute for Chemistry and Biochemistry, Ernst-Moritz-Arndt-University, 17489 Greifswald, Germany, Bruker AXS B.V., Oostsingel 209, Delft NL-2612 HL, The Netherlands, and Rigaku Europe, Unit B6, Chaucer Business Park, Watery Lane, Kemsing, Sevenoaks, Kent TN15 6QY, England
| | - Noam Agmon
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, Institute for Chemistry and Biochemistry, Ernst-Moritz-Arndt-University, 17489 Greifswald, Germany, Bruker AXS B.V., Oostsingel 209, Delft NL-2612 HL, The Netherlands, and Rigaku Europe, Unit B6, Chaucer Business Park, Watery Lane, Kemsing, Sevenoaks, Kent TN15 6QY, England
| |
Collapse
|
38
|
Abstract
Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients' temperatures could be measured, recorded, and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review, the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nanoscale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even subcellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic, this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia-based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry rapidly moved into the clinic, so too will these molecular thermometers.
Collapse
Affiliation(s)
- Kevin M McCabe
- Department of Civil, Environmental, and Architectural Engineering [K.M.M., M.H.], University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
39
|
Isaev AN. Quantum-chemical calculations of a long proton wire. Application of a harmonic model to analysis of the structure of an ionic defect in a water chain with an excess proton. J Phys Chem A 2010; 114:2201-12. [PMID: 20085360 DOI: 10.1021/jp908259p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum-chemical calculations of molecular complexes (NH(3))(3)Zn(2+)...(H(2)O)(n)...NH(3) (C(n), n = 11, 16, 21, and 30) simulating a proton wire donor-water chain-acceptor were carried out. Earlier found periodicity in the length of the O-H bonds in water chain is explained within the framework of a one-component harmonic model. In complexes C(n), the geometry and electronic structure of ionic defect in water chain with an excess proton were studied. Calculations carried out at ab initio (B3LYP/6-31+G**) and semiempirical (PM3) levels of theory predict different patterns of distribution of the O-H bonds lengths and positive charge on the H-bond hydrogen atoms in the region of ionic defect. The obtained data show how a length of water chain and position of a protonated water link in the chain influence the ionic defect structure. To describe the observed structures of ionic defect, the harmonic model was used and the role of parameters of the H-bonded chain was investigated. The performed analysis explains different mechanisms (concerted and stepwise) of proton transfer along the H-bonded chain derived from ab initio and semiempirical calculation schemes.
Collapse
Affiliation(s)
- Alexander N Isaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia.
| |
Collapse
|
40
|
Faro AR, Adam V, Carpentier P, Darnault C, Bourgeois D, de Rosny E. Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochem Photobiol Sci 2010; 9:254-62. [PMID: 20126803 DOI: 10.1039/b9pp00121b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have studied the photoswitching behaviour of a number of photochromic fluorescent proteins at cryo-temperature. Spectroscopic investigations at the ensemble level showed that EYFP, Dronpa and IrisFP all exhibit reversible photoswitching at 100 K, albeit with a low quantum yield. The photophysics of the process were studied in more details in the case of EYFP. The data suggest that photoinduced protonation of the chromophore is responsible for off-switching at cryo-temperature, and thus is possible in the absence of significant conformational freedom. This finding is consistent with the hypothesis that chromophore protonation may precede large amplitude conformational changes such as cis-trans isomerisation during off-photoswitching at room temperature. However, our data suggest that low-barrier photoinduced protonation pathways may in fact compete with room-temperature off-switching reactions in photochromic fluorescent proteins. The occurrence of reversible photoswitching at low-temperature is of interest to envisage cryo-nanoscopy experiments using genetically encoded fluorophores.
Collapse
Affiliation(s)
- Aline Regis Faro
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, Université Joseph Fourier, 41 rue Jules Horowitz, F-38027, Grenoble, France
| | | | | | | | | | | |
Collapse
|
41
|
Sun Q, Wang S, Zhang H, Li Z, Pifisterer C, Fischer S, Nanbu S, Smith SC. Structural and Relaxation Effects in Proton Wire Energetics: Model Studies of the Green Fluorescent Protein Photocycle. Aust J Chem 2010. [DOI: 10.1071/ch09509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present the results of a systematic series of constrained minimum energy pathway calculations on ground state potential energy surfaces, for a cluster model of the proton chain transfer that mediates the photocycle of the green fluorescent protein, as well as for a model including the solvated protein environment. The calculations vary in terms of the types of modes that are assumed to be capable of relaxing in concert with the movement of the protons and the results demonstrate that the nature and extent of dynamical relaxation has a substantive impact on the activation energy for the proton transfer. We discuss the implications of this in terms of currently available dynamical models and chemical rate theories that might be brought to bear on the kinetics of this important example of proton chain transfer in a biological system.
Collapse
|
42
|
Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. SPRINGER SERIES ON FLUORESCENCE 2010. [DOI: 10.1007/978-3-642-04702-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
43
|
Cox MJ, Timmer RLA, Bakker HJ, Park S, Agmon N. Distance-dependent proton transfer along water wires connecting acid-base pairs. J Phys Chem A 2009; 113:6599-606. [PMID: 19449829 DOI: 10.1021/jp9004778] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report time-resolved mid-IR kinetics for the ultrafast acid-base reaction between photoexcited 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS), and acetate at three concentrations (0.5, 1.0, and 2.0 M) and three temperatures (5, 30, and 65 degrees C) in liquid D(2)O. The observed proton-transfer kinetics agree quantitatively, over all times (200 fs-500 ps), with an extended Smoluchowski model which includes distance-dependent reactivity in the form of a Gaussian rate function, k(r). This distance dependence contrasts with the exponential k(r) that is typically observed for electron-transfer reactions. The width of k(r) is essentially the only parameter varied in fitting the proton-transfer kinetics at each concentration and temperature. We find that k(r) likely represents the rate of concerted (multi)proton hopping across "proton wires" of different length r that connect acid-base pairs in solution. The concerted nature of the proton transfer is supported by the fact that k(r) shows a steeper dependence on r at higher temperatures.
Collapse
Affiliation(s)
- M Jocelyn Cox
- FOM-institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Nemukhin AV, Grigorenko BL, Savitsky AP. Computer modeling of the structure and spectra of fluorescent proteins. Acta Naturae 2009; 1:33-43. [PMID: 22649601 PMCID: PMC3347511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Fluorescent proteins from the family of green fluorescent proteins are intensively used as biomarkers in living systems. The chromophore group based on the hydroxybenzylidene-imidazoline molecule, which is formed in nature from three amino-acid residues inside the protein globule and well shielded from external media, is responsible for light absorption and fluorescence. Along with the intense experimental studies of the properties of fluorescent proteins and their chromophores by biochemical, X-ray, and spectroscopic tools, in recent years, computer modeling has been used to characterize their properties and spectra. We present in this review the most interesting results of the molecular modeling of the structural parameters and optical and vibrational spectra of the chromophorecontaining domains of fluorescent proteins by methods of quantum chemistry, molecular dynamics, and combined quantum-mechanical-molecular-mechanical approaches. The main emphasis is on the correlation of theoretical and experimental data and on the predictive power of modeling, which may be useful for creating new, efficient biomarkers.
Collapse
Affiliation(s)
- A V Nemukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University
| | | | | |
Collapse
|
45
|
Arata HF, Fujita H. Miniaturized thermocontrol devices enable analysis of biomolecular behavior on their timescales, second to millisecond. Integr Biol (Camb) 2009; 1:363-70. [PMID: 20023743 DOI: 10.1039/b901902b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To establish general-purpose methods and tools for biological experiments on a short time scale is an essential requirement for future research in molecular biology because most of the functions of living organisms at the molecular level take place on a time scale from 1-second to millisecond. Thermal control with on-chip micro-thermodevices is one of the strongest and most useful ways to realize biological experiments at molecular level on these time scales. Novel biological phenomena revealed by the experiments using micro-thermodevices on a 1-second and millisecond time scale will be shown for the proof. Finally, the advantages and impact of this methodology in molecular biology will be discussed.
Collapse
Affiliation(s)
- Hideyuki F Arata
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
46
|
Shinobu A, Agmon N. Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis. J Phys Chem A 2009; 113:7253-66. [DOI: 10.1021/jp8102047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ai Shinobu
- Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Noam Agmon
- Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
47
|
|
48
|
Seward HE, Bagshaw CR. The photochemistry of fluorescent proteins: implications for their biological applications. Chem Soc Rev 2009; 38:2842-51. [DOI: 10.1039/b901355p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
van Thor JJ. Photoreactions and dynamics of the green fluorescent protein. Chem Soc Rev 2009; 38:2935-50. [DOI: 10.1039/b820275n] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Chai S, Zhao GJ, Song P, Yang SQ, Liu JY, Han KL. Reconsideration of the excited-state double proton transfer (ESDPT) in 2-aminopyridine/acid systems: role of the intermolecular hydrogen bonding in excited states. Phys Chem Chem Phys 2009; 11:4385-90. [PMID: 19458842 DOI: 10.1039/b816589k] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Shuo Chai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | | | | | | | | | | |
Collapse
|